Nothing Special   »   [go: up one dir, main page]

JPH09316217A - Ablator material and its production - Google Patents

Ablator material and its production

Info

Publication number
JPH09316217A
JPH09316217A JP8133896A JP13389696A JPH09316217A JP H09316217 A JPH09316217 A JP H09316217A JP 8133896 A JP8133896 A JP 8133896A JP 13389696 A JP13389696 A JP 13389696A JP H09316217 A JPH09316217 A JP H09316217A
Authority
JP
Japan
Prior art keywords
ablator
resin
fiber
carbon
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8133896A
Other languages
Japanese (ja)
Other versions
JP3644612B2 (en
Inventor
Moichi Higuchi
口 茂 一 樋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP13389696A priority Critical patent/JP3644612B2/en
Publication of JPH09316217A publication Critical patent/JPH09316217A/en
Application granted granted Critical
Publication of JP3644612B2 publication Critical patent/JP3644612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an ablator material, having less recession than a conventional FRP ablator material and, at the same time, better in heat insulating properties than a conventional C/C ablator material. SOLUTION: This ablator material having a carbon fiber/carbon composite material impregnated with a resin is obtained as follows. A material is prepared by laminating pre-pregs, which are obtained by impregnating a fiber cloth with a resin, to each other, or a resin-impregnated dry preform prepared by knitting in three directions is subjected to a curing treatment to obtain a fiber-reinforced resin. The fiber-reinforced resin is further subjected to carbonization, or carbonization and graphitization to obtain a carbon fiber/carbon composite material whose density is adjusted low. The carbon fiber/carbon composite material is impregnated with a resin and the resultant carbon fiber/carbon composite material is subjected to a curing treatment to obtain the objective ablator material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、飛翔体の表面を高
熱ガスから保護するのに利用されるアブレータ材料およ
びその製造方法に係わり、従来の繊維強化樹脂(FR
P)製アブレータ材料に比べてリセッション量が少ない
と共に、従来の炭素繊維/炭素複合材(C/C材)製ア
ブレータ材料に比べて断熱性の良いアブレータ材料およ
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ablator material used for protecting the surface of a flying object from high-temperature gas and a method for manufacturing the same, and relates to a conventional fiber reinforced resin (FR).
The present invention relates to an ablator material having a smaller amount of recession than that of the ablator material made of P) and having a better heat insulating property than that of a conventional ablator material made of a carbon fiber / carbon composite material (C / C material), and a manufacturing method thereof.

【0002】[0002]

【従来の技術】飛翔体が地球などの大気圏に再突入する
時には、大気との摩擦によって高熱状態となるので、内
部機器などへの熱影響を回避するためには、飛翔体の表
面を高熱ガスから保護することが必要である。
2. Description of the Related Art When a projectile re-enters the atmosphere such as the earth, it is heated to a high temperature due to friction with the atmosphere. Therefore, in order to avoid thermal effects on internal equipment, the surface of the projectile must be heated with high-temperature gas. Need to be protected from.

【0003】従来、このような高熱ガスに対する熱保護
のための方法としては、例えば、(i)比較的弱い加熱
を長時間受ける場合に適したものとして、耐熱性に優れ
た表面材料を高温に保持し、表面からの輻射放熱によっ
て熱保護を行うようにした輻射冷却法、具体的には、耐
熱タイルを用いる方法や、(ii)比較的強い加熱を短
時間受ける場合に適したものとして、熱容量の大きい機
体で熱を吸収して、機体表面の溶融・燃焼等による変形
を防ぐようにした加熱吸収法、具体的にはノーズキャッ
プを用いる方法や、(iii)強い加熱を長時間受ける
場合に適したものとして、樹脂を主材料とする表面材の
熱分解・燃焼・昇華に伴う低温気体の噴出によって加熱
を減じ、高温表面からの輻射冷却と併せて熱防護を行う
ようにしたFRP製アブレータを用いるアブレーション
法や、表面の酸化消耗によるリセッション量が少ないC
/C製アブレータを用いるアブレーション法などがあ
る。
Conventionally, as a method for heat protection against such high-temperature gas, for example, (i) a surface material excellent in heat resistance is heated to a high temperature as a method suitable for a case of being subjected to relatively weak heating for a long time. A radiant cooling method that holds and protects heat by radiating heat from the surface, specifically, a method using a heat-resistant tile, or (ii) as a method suitable for receiving relatively strong heating for a short time, A heat absorption method that absorbs heat with a machine with a large heat capacity to prevent deformation due to melting or burning of the machine surface, specifically using a nose cap, or (iii) when receiving strong heat for a long time Suitable for the FRP, which reduces heat by jetting low-temperature gas due to thermal decomposition, combustion, and sublimation of the surface material whose main material is resin, and performs thermal protection together with radiative cooling from the high-temperature surface. Or ablation method using ablator, amount recession due to oxidation wear of the surface is small C
There is an ablation method using a C / C ablator.

【0004】本発明は、上記(iii)のアブレーショ
ン法に採用されるアブレータ材料に関するものである
が、従来のFRP製アブレータとしては、例えば、図4
に示す工程で製造されるものがあった。
The present invention relates to an ablator material adopted in the ablation method of (iii) above. As a conventional FRP ablator, for example, FIG.
Some were manufactured by the process shown in.

【0005】すなわち、図4に示すように、繊維クロス
に樹脂を含浸させたプリプレグを適当な大きさに切断し
たのち積層し、次いでキュア処理してFRP化すること
により、密度(ρ)が1.3〜1.5g/cm程度の
2D−CFRP製アブレータ材料を得る。
That is, as shown in FIG. 4, a prepreg in which a fiber cloth is impregnated with a resin is cut to an appropriate size, laminated, and then cured to form an FRP. An ablator material made of 2D-CFRP of about 0.3 to 1.5 g / cm 3 is obtained.

【0006】一方、従来のC/C製アブレータとして
は、例えば、図5や図6に示す工程で製造されるものが
あった。
On the other hand, as a conventional C / C-made ablator, for example, there is one manufactured by the steps shown in FIGS.

【0007】すなわち、図5に示すように、3D方向に
編みあげたドライプリフォームに樹脂を含浸させたのち
HIP処理(熱間等方圧加圧処理)して樹脂を高圧炭化
し、さらに温度を上げて黒鉛化し、この樹脂含浸と炭化
処理と黒鉛化処理を数サイクル繰り返して密度を高める
ことにより密度(ρ)が1.8〜2.0g/cm程度
の炭素繊維/炭素複合材(3D−C/C材)製アブレー
タ材料を得る。
That is, as shown in FIG. 5, a dry preform knitted in the 3D direction is impregnated with a resin, and then HIP treatment (hot isostatic pressing treatment) is performed to carbonize the resin under a high pressure, and the temperature is further raised. The carbon fiber / carbon composite material (3D having a density (ρ) of about 1.8 to 2.0 g / cm 3 is obtained by raising and graphitizing, and repeating the resin impregnation, carbonization treatment, and graphitization treatment for several cycles to increase the density. An ablator material made of (C / C material) is obtained.

【0008】また、図6に示すように、2D方向に編ん
だプリプレグを積層してキュア処理することによってC
FRP素材としたのち炭化および黒鉛化処理し、さらに
樹脂含浸と炭化処理と黒鉛化処理とを数サイクル繰り返
して密度を高めることによって密度(ρ)が1.8〜
2.0g/cm程度の炭素繊維/炭素複合材(2D−
C/C材)製アブレータ材料を得る。
Further, as shown in FIG. 6, C is obtained by laminating prepregs knitted in the 2D direction and curing them.
The density (ρ) is 1.8 to by increasing the density by repeating the carbon impregnation, the carbonization and the graphitization for several cycles after the FRP material is carbonized and graphitized.
About 2.0 g / cm 3 carbon fiber / carbon composite material (2D-
C / C material) ablator material is obtained.

【0009】[0009]

【発明が解決しようとする課題】このような従来のアブ
レータ材料のうち、CFRP製アブレータ材料では、加
熱された際に樹脂の熱分解ガスを発生するためブロッキ
ング効果が大であり、熱分解ガスによる冷却作用を得る
ことができると共に断熱性が良好であるという利点を有
しているものの、樹脂が熱分解したあとには強度の低い
炭化層が形成されると共にこの炭化層の表面の酸化消耗
が多く、また、動圧を受けた際のメカニカルエローショ
ンが大きいためにリセッション量がかなり多くなるとい
う問題点があった。
Among such conventional ablator materials, the CFRP ablator material has a large blocking effect because it produces a thermal decomposition gas of the resin when heated, and thus has a large blocking effect. Although it has the advantages of being able to obtain a cooling action and good heat insulation, a carbonized layer of low strength is formed after the resin is pyrolyzed, and the surface of the carbonized layer is consumed by oxidation. In addition, there was a problem that the amount of recession was considerably large because the mechanical erosion upon receiving dynamic pressure was large.

【0010】一方、2D−C/C材ないしは3D−C/
C材製アブレータ材料では、加熱された際に熱分解ガス
の発生がないためブロッキング効果を得ることができず
熱がそのまま伝達されることになるものの、表面の酸化
消耗によるリセッション量が少なく、また、動圧に対し
ても当初から強固な炭化層を形成しているためメカニカ
ルエローションがほとんどなく、これによってもリセッ
ション量がかなり少ないという利点を有しているが、断
熱性があまりよくなく、また、上記したように加熱され
た際に熱分解ガスの発生がないためこの熱分解ガスによ
る冷却作用を得ることができず、熱の伝達が多くなるた
め、内部機器に対する熱保護が十分でない場合もあり得
るという問題点があった。
On the other hand, 2D-C / C material or 3D-C /
In the case of the ablator material made of C material, since the pyrolysis gas is not generated when heated, the blocking effect cannot be obtained and the heat is transmitted as it is, but the amount of recession due to the oxidative consumption of the surface is small, and Also, since a strong carbonized layer is formed from the beginning even with respect to dynamic pressure, there is almost no mechanical erosion, and this also has the advantage that the amount of recession is considerably small, but the heat insulation is not very good, In addition, when there is no generation of pyrolysis gas when heated as described above, it is not possible to obtain a cooling action by this pyrolysis gas, and heat transfer increases, so when heat protection to internal equipment is not sufficient There was also the problem that there could be.

【0011】[0011]

【発明の目的】本発明は、このような従来の課題にかん
がみてなされたものであって、従来のFRP製アブレー
タ材料に比べてリセッション量が少なく、また、従来の
C/C製アブレータ材料に比べて断熱性が良好であるア
ブレータ材料を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has a smaller recession amount as compared with a conventional FRP ablator material, and a conventional C / C ablator material. The purpose of the present invention is to provide an ablator material having a better heat insulating property.

【0012】[0012]

【課題を解決するための手段】本発明に係わるアブレー
タ材料は、請求項1に記載しているように、炭素繊維/
炭素複合材中に樹脂を含浸させてなる構成としたことを
特徴としている。
The ablator material according to the present invention, as defined in claim 1, is made of carbon fiber /
It is characterized in that the carbon composite material is impregnated with a resin.

【0013】また、本発明に係わるアブレータ材料の製
造方法は、請求項2に記載しているように、繊維強化樹
脂(FRP)を炭化ないしは炭化および黒鉛化処理して
炭素繊維/炭素複合材とし、炭素繊維/炭素複合材中に
樹脂を含浸させたのちキュア処理する構成としたことを
特徴としている。
Further, in the method for producing an ablator material according to the present invention, as described in claim 2, carbon fiber / carbon composite material is obtained by carbonizing or carbonizing and fiberizing fiber reinforced resin (FRP). The present invention is characterized in that the carbon fiber / carbon composite material is impregnated with resin and then cured.

【0014】また、本発明に係わるアブレータ材料の製
造方法の実施態様においては、請求項3に記載している
ように、繊維クロスに樹脂を含浸させたプリプレグを積
層したのちキュア処理して繊維強化樹脂を得るようにな
すことができ、あるいは、請求項4に記載しているよう
に、3方向に編んだドライプリフォームに樹脂を含浸さ
せたのちキュア処理して繊維強化樹脂を得るようになす
ことができる。
Further, in an embodiment of the method for producing an ablator material according to the present invention, as described in claim 3, fiber cloth is reinforced by laminating a fiber cloth with a resin-impregnated prepreg, followed by curing. A resin can be obtained, or as described in claim 4, a dry preform knitted in three directions is impregnated with resin and then cured to obtain a fiber reinforced resin. You can

【0015】[0015]

【発明の作用】本発明によるアブレータ材料では、低密
度に調整した炭素繊維/炭素複合材中に樹脂を含浸させ
てなるものとしているので、樹脂のもつ熱分解ガスの発
生によるブロッキング作用ならびに良好なる断熱性特性
と、炭素繊維/炭素複合材のもつ良好なる耐リセッショ
ン性とが活かされたものとなって、従来のFRP製アブ
レータ材料に比べてリセッション量が少なくかつまた従
来のC/C製アブレータ材料に比べて断熱性の良好なア
ブレータ材料となる。
In the ablator material according to the present invention, the carbon fiber / carbon composite material adjusted to have a low density is impregnated with the resin, so that the blocking action and the good effect due to the generation of the pyrolysis gas of the resin are improved. The heat insulating property and the good recession resistance of the carbon fiber / carbon composite material are utilized, resulting in a smaller amount of recession compared with the conventional FRP ablator material and the conventional C / C ablator. It is an ablator material with better heat insulation than the material.

【0016】また、本発明によるアブレータ材料の製造
方法では、繊維強化樹脂(FRP)を炭化ないしは炭化
および黒鉛化処理して従来のものよりも低密度に調整さ
れた炭素繊維/炭素複合材とし、この低密度に調整され
た炭素繊維/炭素複合材の内部に樹脂を含浸させたのち
キュア処理する構成としているので、樹脂のもつ熱分解
ガスの発生によるブロッキング作用ならびに良好なる断
熱性特性と、炭素繊維/炭素複合材のもつ良好なる耐リ
セッション性とが活かされて、従来のFRP製アブレー
タ材料に比べてリセッション量が少なくかつまた従来の
C/C製アブレータ材料に比べて断熱性の良好なアブレ
ータ材料が製造されることととなる。
Further, in the method for producing an ablator material according to the present invention, carbon reinforced resin (FRP) is carbonized or carbonized and graphitized to obtain a carbon fiber / carbon composite material adjusted to have a lower density than conventional ones, Since the carbon fiber / carbon composite material adjusted to have a low density is impregnated with a resin and then cured, the resin has a blocking effect due to the generation of a pyrolysis gas, a good heat insulating property, and carbon. Utilizing the good recession resistance of the fiber / carbon composite material, the amount of recession is smaller than that of the conventional FRP ablator material, and the heat insulation is better than that of the conventional C / C ablator material. The material will be manufactured.

【0017】[0017]

【発明の実施の形態】図1は本発明によるアブレータ材
料の製造方法の第一実施形態を示すものであって、繊維
クロスに樹脂を含浸させたプリプレグを適宜の大きさに
切断してこれらを積層して所要厚さにしたのち、キュア
処理してFRP化することにより繊維強化樹脂を得る。
1 shows a first embodiment of a method for producing an ablator material according to the present invention, in which a prepreg obtained by impregnating a fiber cloth with a resin is cut into an appropriate size. After laminating to a required thickness, a fiber-reinforced resin is obtained by curing and FRP.

【0018】次いで、この繊維強化樹脂を炭化し、場合
によってはさらに黒鉛化したのちHIP処理によって樹
脂を含浸させる。
Next, the fiber reinforced resin is carbonized, and if necessary, further graphitized and then impregnated with the resin by HIP treatment.

【0019】そして、このような炭化,(黒鉛化),樹
脂含浸の工程は、従来の炭素繊維/炭素複合材の製造方
法では必要サイクルを得り返すことによって、炭素繊維
/炭素複合材の密度を高めるようにしているのである
が、本発明では炭素繊維/炭素複合材の中に樹脂を含浸
させたままのものとするため、これらの炭化,(黒鉛
化),樹脂含浸の工程は1サイクルないしは数サイクル
にとどめ、低密度に調整された炭素繊維/炭素複合材と
することによって、この炭素繊維/炭素複合材中に樹脂
を含浸させ、この状態でキュア処理することによりFR
P化する。
The carbonization, (graphitization) and resin impregnation steps are repeated in the conventional method for producing a carbon fiber / carbon composite material in order to obtain the required cycle, thereby obtaining the density of the carbon fiber / carbon composite material. However, since the carbon fiber / carbon composite material is kept impregnated with resin in the present invention, the carbonization, (graphitization), and resin impregnation steps are performed for one cycle. Or, the carbon fiber / carbon composite material is adjusted to have a low density by keeping the carbon fiber / carbon composite material in a low density for several cycles, and the carbon fiber / carbon composite material is impregnated with a resin.
Convert to P.

【0020】これによって、炭素繊維/炭素複合材中に
樹脂が含浸された2D−C/CFRPよりなるアブレー
タ材料が製造される。
As a result, an ablator material made of 2D-C / CFRP in which a resin is impregnated in a carbon fiber / carbon composite material is manufactured.

【0021】図2は本発明によるアブレータ材料の製造
方法の他の実施形態を示すものであって、ドライプリフ
ォームを3次元に編むことによって3D−ドライプリフ
ォームを得たのち、樹脂含浸し、キュア処理を行ってF
RP化することにより繊維強化樹脂を得る。
FIG. 2 shows another embodiment of the method for producing an ablator material according to the present invention. A dry preform is three-dimensionally knitted to obtain a 3D-dry preform, which is then impregnated with a resin and cured. Go F
A fiber reinforced resin is obtained by converting to RP.

【0022】次いで、この繊維強化樹脂に対して図1に
示したと同様の処理を施すことによって、低密度に調整
された炭素繊維/炭素複合材中に樹脂が含浸された3D
−C/CFRPよりなるアブレータ材料が製造される。
Then, the fiber-reinforced resin is subjected to the same treatment as shown in FIG. 1 to impregnate the resin into the carbon fiber / carbon composite material adjusted to have a low density.
An ablator material consisting of C / CFRP is manufactured.

【0023】[0023]

【発明の効果】本発明に係わるアブレータ材料は、炭素
繊維/炭素複合材中に樹脂を含浸させてなるものである
から、従来の繊維強化樹脂(FRP)製アブレータ材料
のように熱分解ガスの発生によるブロッキング効果を得
ることができると共に従来の繊維強化樹脂(FRP)製
アブレータ材料に比べてリセッション量を少ないものと
することが可能であり、かつまた、従来の炭素繊維/炭
素複合材(C/C材)製アブレータ材料のように強固な
炭化層を形成させてメカニカルエロージョンの少ないも
のにできると共に従来の炭素繊維/炭素複合材(C/C
材)製アブレータ材料に比べて断熱性の良いアブレータ
材料とすることが可能であるという著しく優れた効果が
もたらされ、この結果、大気圏再突入カプセル用アブレ
ーション材料として使用した場合に空力形状を安定なも
のにすることが可能であると共に薄肉化を実現すること
ができ、軽量で且つ高性能なアブレータ材料を提供する
ことが可能であるという著大なる効果がもたらされる。
Since the ablator material according to the present invention is obtained by impregnating a carbon fiber / carbon composite material with a resin, the ablator material of a conventional fiber reinforced resin (FRP) is used to generate a thermal decomposition gas. It is possible to obtain a blocking effect due to generation, and it is possible to reduce the recession amount as compared with the conventional ablator material made of fiber reinforced resin (FRP), and also the conventional carbon fiber / carbon composite material (C / C material), a strong carbonized layer like an ablator material can be formed to reduce mechanical erosion, and the conventional carbon fiber / carbon composite material (C / C) can be used.
Material, it is possible to make it an ablator material with better heat insulation than the ablator material, and as a result, the aerodynamic shape is stable when used as an ablation material for atmospheric reentry capsules. It is possible to provide a thin and thin-walled material, and it is possible to provide a lightweight and high-performance ablator material, which is a significant effect.

【0024】また、本発明に係わるアブレータ材料の製
造方法では、繊維強化樹脂を炭化ないしは炭化および黒
鉛化処理して炭素繊維/炭素複合材とし、炭素繊維/炭
素複合材中に樹脂を含浸させたのちキュア処理するよう
にしたから、従来の繊維強化樹脂(FRP)製アブレー
タ材料のように熱分解ガスの発生によるブロッキング効
果を得ることができると共に従来の繊維強化樹脂(FR
P)製アブレータ材料に比べてリセッション量を少ない
ものとすることが可能であり、かつまた、従来の炭素繊
維/炭素複合材(C/C材)製アブレータ材料のように
強固な炭化層を形成させてメカニカルエロージョンの少
ないものにできると共に従来の炭素繊維/炭素複合材
(C/C材)製アブレータ材料に比べて断熱性の良いア
ブレータ材料を製造することが可能であるという著しく
優れた効果がもたらされる。
In the method for producing an ablator material according to the present invention, the fiber reinforced resin is carbonized or carbonized and graphitized to form a carbon fiber / carbon composite material, and the carbon fiber / carbon composite material is impregnated with the resin. Since the curing treatment is performed after that, it is possible to obtain the blocking effect due to the generation of pyrolysis gas as in the conventional fiber reinforced resin (FRP) ablator material, and the conventional fiber reinforced resin (FR).
P) It is possible to reduce the amount of recession as compared with the ablator material made of abrader material, and also to form a strong carbonized layer like the ablator material made of the conventional carbon fiber / carbon composite material (C / C material). In this way, it is possible to reduce the mechanical erosion, and it is possible to manufacture an ablator material having a good heat insulating property as compared with the conventional carbon fiber / carbon composite material (C / C material) ablator material. Be brought.

【0025】そして、請求項3に記載しているように、
繊維クロスに樹脂を含浸させたプリプレグを積層したの
ちキュア処理して得た繊維強化樹脂を用いることによっ
て、繊維配向が2次元構造の2D−C/CFRPアブレ
ータ材料を製造することが可能であり、請求項4に記載
しているように、3次元方向に編んだドライプリフォー
ムに樹脂を含浸させたのちキュア処理して得た繊維強化
樹脂を用いることによって、繊維配向が3次元構造の3
D−C/CFRPアブレータ材料を製造することが可能
であるという著しく優れた効果がもたらされる。
Then, as described in claim 3,
By using a fiber reinforced resin obtained by laminating a prepreg impregnated with a resin on a fiber cloth and then performing a curing treatment, it is possible to produce a 2D-C / CFRP ablator material having a two-dimensional fiber orientation. As described in claim 4, by using a fiber-reinforced resin obtained by impregnating a dry preform knitted in a three-dimensional direction with a resin and then curing the same, a fiber having a three-dimensional structure is obtained.
The remarkable advantage is that it is possible to manufacture DC / CFRP ablator materials.

【0026】[0026]

【実施例】発明例 表1の発明例の欄に示す繊維およびマトリックス構成を
有する密度1.52g/cmの複合化アブレータ材料
(2D−C/CFRP)を図1に示す工程に従って製造
した。
EXAMPLES Invention Example Table 1 of the invention examples of fibers are shown in the column and composite ablator material density 1.52 g / cm 3 having a matrix structure of (2D-C / CFRP) was prepared according to the process shown in FIG.

【0027】この場合、はじめのキュア(FRP化)処
理は、150℃×10kgf/cm×5hrの条件で
行い、その後の炭化処理は、N中で、750℃×1k
gf/cm×2hrの条件で行い、その後の黒鉛化処
理は、Ar中で、2500℃×1kgf/cm×1h
rの条件で行い、その後の樹脂含浸(HIP)は、真空
脱泡を室温で0.1kgf/cm×1hrの条件で行
うと共に含浸を室温で5kgf/cm×1hrの条件
で行い、その後のキュア(FRP化)処理は、150℃
×10kgf/cm×5hrの条件で行った。
In this case, the first curing (FRP conversion) treatment is carried out under the conditions of 150 ° C. × 10 kgf / cm 2 × 5 hr, and the subsequent carbonization treatment is carried out in N 2 at 750 ° C. × 1 k.
gf / cm 2 × 2 hr, and the subsequent graphitization is performed in Ar at 2500 ° C. × 1 kgf / cm 2 × 1 h.
conducted under the condition of r, then the resin-impregnated (HIP) is a vacuum degassing conducted under conditions of 5kgf / cm 2 × 1hr at room temperature impregnated with performed under conditions of 0.1kgf / cm 2 × 1hr at room temperature, then Cure (FRP conversion) is 150 ℃
It was performed under the condition of × 10 kgf / cm 2 × 5 hr.

【0028】従来例1 表1の従来例1の欄に示す繊維およびマトリックス構成
を有する密度1.38g/cmの繊維強化樹脂製アブ
レータ材料(2D−CFRP)を図4に示す工程に従っ
て製造した。
Conventional Example 1 An ablator material made of fiber reinforced resin (2D-CFRP) having a density of 1.38 g / cm 3 and having a fiber and matrix constitution shown in the column of Conventional Example 1 in Table 1 was manufactured according to the process shown in FIG. .

【0029】従来例2 表1の従来例2の欄に示す繊維およびマトリックス構成
を有する密度1.83g/cmの炭素繊維/炭素製ア
ブレータ材料(3D−C/C)を図5に示す工程に従っ
て製造した。
Conventional Example 2 A carbon fiber / carbon ablator material (3D-C / C) having a density of 1.83 g / cm 3 and having the fiber and matrix constitutions shown in the column of Conventional Example 2 in Table 1 is shown in FIG. Manufactured according to.

【0030】評価例 上記発明例および従来例1,2で製造したアブレータ材
料において、図3に示すように、供試体1の直径をD=
30mmとし、厚さをT=40mmとし、表面から深さ
がL=25mm入ったところに熱電対2の先端が位置す
るようにして、矢印A方向からのアーク加熱による風洞
試験を行った。
Evaluation Example In the ablator materials manufactured in the above-mentioned invention example and the conventional examples 1 and 2, as shown in FIG.
A wind tunnel test was performed by arc heating from the direction of arrow A so that the tip of the thermocouple 2 was positioned at a depth of 30 mm, a thickness of T = 40 mm, and a depth of L = 25 mm from the surface.

【0031】ここで、アーク加熱風洞試験条件は、大気
圏再突入をシミュレーションするものとして次のとおり
に設定した。
Here, the arc heating wind tunnel test conditions were set as follows for simulating atmospheric reentry.

【0032】・気流エンタルピー:11.0MJ/kg ・加熱率 :18MW/m ・加熱時間 :30sec ・動圧 :1.65kg/cm ・雰囲気 :空気 この結果を同じく表1に示す。Airflow enthalpy: 11.0 MJ / kg Heating rate: 18 MW / m 2 Heating time: 30 sec Dynamic pressure: 1.65 kg / cm 2 Atmosphere: Air The results are also shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示す結果より明らかなように、本発
明例によるアブレータ材料は、従来例1の繊維強化樹脂
(FRP)製アブレータ材料に比べてリセッション量が
かなり少なく、また、従来例2の炭素繊維/炭素複合材
(C/C材)製アブレータ材料に比べて最大内部上昇温
度が低いと共に最大内部上昇温度時刻が長く断熱性の良
いものとなっていることが確かめられた。
As is clear from the results shown in Table 1, the ablator material according to the present invention has a considerably smaller recession than the ablator material made of the fiber reinforced resin (FRP) of the conventional example 1 and the ablator material of the conventional example 2. It was confirmed that the ablator material made of carbon fiber / carbon composite material (C / C material) had a lower maximum internal temperature rise and a longer maximum internal temperature rise time, and had good heat insulating properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態によるアブレータ材料の製
造工程を例示する説明図である。
FIG. 1 is an explanatory diagram illustrating a manufacturing process of an ablator material according to an embodiment of the present invention.

【図2】本発明の他の実施形態によるアブレータ材料の
製造工程を例示する説明図である。
FIG. 2 is an explanatory view illustrating a manufacturing process of an ablator material according to another embodiment of the present invention.

【図3】本発明の実施例において採用した評価試験の要
領を示す説明図である。
FIG. 3 is an explanatory diagram showing a procedure of an evaluation test adopted in an example of the present invention.

【図4】従来のFRP製アブレータ材料の製造工程を例
示する説明図である。
FIG. 4 is an explanatory view illustrating a manufacturing process of a conventional FRP ablator material.

【図5】従来の3D−C/C材製アブレータ材料の製造
工程を例示する説明図である。
FIG. 5 is an explanatory view illustrating a manufacturing process of a conventional ablator material made of 3D-C / C material.

【図6】従来の2D−C/C材製アブレータ材料の製造
工程を例示する説明図である。
FIG. 6 is an explanatory view illustrating a manufacturing process of a conventional 2D-C / C ablator material.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維/炭素複合材中に樹脂を含浸さ
せてなることを特徴とするアブレータ材料。
1. An ablator material obtained by impregnating a carbon fiber / carbon composite material with a resin.
【請求項2】 繊維強化樹脂を炭化ないしは炭化および
黒鉛化処理して炭素繊維/炭素複合材とし、炭素繊維/
炭素複合材中に樹脂を含浸させたのちキュア処理するこ
とを特徴とするアブレータ材料の製造方法。
2. A carbon reinforced resin is carbonized or carbonized and graphitized to obtain a carbon fiber / carbon composite material.
A method for producing an ablator material, which comprises impregnating a carbon composite material with a resin and then performing a curing treatment.
【請求項3】 繊維クロスに樹脂を含浸させたプリプレ
グを積層したのちキュア処理して繊維強化樹脂を得る請
求項2に記載のアブレータ材料の製造方法。
3. The method for producing an ablator material according to claim 2, wherein a fiber reinforced resin is obtained by laminating a fiber cloth with a resin-impregnated prepreg and then performing a curing treatment.
【請求項4】 3方向に編んだドライプリフォームに樹
脂を含浸させたのちキュア処理して繊維強化樹脂を得る
請求項2に記載のアブレータ材料の製造方法。
4. The method for producing an ablator material according to claim 2, wherein a dry preform knitted in three directions is impregnated with a resin and then cured to obtain a fiber reinforced resin.
JP13389696A 1996-05-28 1996-05-28 Ablator material and manufacturing method thereof Expired - Fee Related JP3644612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13389696A JP3644612B2 (en) 1996-05-28 1996-05-28 Ablator material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13389696A JP3644612B2 (en) 1996-05-28 1996-05-28 Ablator material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09316217A true JPH09316217A (en) 1997-12-09
JP3644612B2 JP3644612B2 (en) 2005-05-11

Family

ID=15115645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13389696A Expired - Fee Related JP3644612B2 (en) 1996-05-28 1996-05-28 Ablator material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3644612B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280300B1 (en) 1998-11-25 2001-08-28 Ebara Corporation Filter apparatus
EP3130544A4 (en) * 2014-04-10 2017-05-24 Mitsubishi Heavy Industries, Ltd. Ablator, reentry vehicle, and methods respectively for manufacturing said ablator and said reentry vehicle
CN108081692A (en) * 2018-01-22 2018-05-29 山东大学 3 D weaving plate of resistance to ablative composite material and preparation method thereof
CN108248139A (en) * 2018-01-22 2018-07-06 山东大学 3 D weaving carbon carbon composite plate and preparation method thereof
CN113860900A (en) * 2021-10-29 2021-12-31 西安美兰德新材料有限责任公司 Rapid preparation method of high-performance carbon fiber composite material plate
CN115991608A (en) * 2022-12-26 2023-04-21 内蒙古航天红岗机械有限公司 Preparation method of endogenous fiber reinforced carbon/Tao Hou lining material
WO2023193614A1 (en) * 2022-04-07 2023-10-12 江苏大学 Preparation method for laser-induced carbonization layer in aramid fiber reinforced polymer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280300B1 (en) 1998-11-25 2001-08-28 Ebara Corporation Filter apparatus
EP3130544A4 (en) * 2014-04-10 2017-05-24 Mitsubishi Heavy Industries, Ltd. Ablator, reentry vehicle, and methods respectively for manufacturing said ablator and said reentry vehicle
US10647452B2 (en) 2014-04-10 2020-05-12 Mitsubishi Heavy Industries, Ltd. Ablator, re-entry vehicle and method of manufacturing them
CN108081692A (en) * 2018-01-22 2018-05-29 山东大学 3 D weaving plate of resistance to ablative composite material and preparation method thereof
CN108248139A (en) * 2018-01-22 2018-07-06 山东大学 3 D weaving carbon carbon composite plate and preparation method thereof
CN113860900A (en) * 2021-10-29 2021-12-31 西安美兰德新材料有限责任公司 Rapid preparation method of high-performance carbon fiber composite material plate
WO2023193614A1 (en) * 2022-04-07 2023-10-12 江苏大学 Preparation method for laser-induced carbonization layer in aramid fiber reinforced polymer
GB2621029A (en) * 2022-04-07 2024-01-31 Univ Jiangsu Preparation method for laser-induced carbonization layer in aramid fiber reinforced polymer
CN115991608A (en) * 2022-12-26 2023-04-21 内蒙古航天红岗机械有限公司 Preparation method of endogenous fiber reinforced carbon/Tao Hou lining material
CN115991608B (en) * 2022-12-26 2024-05-10 内蒙古航天红岗机械有限公司 Preparation method of endogenous fiber reinforced carbon/Tao Hou lining material

Also Published As

Publication number Publication date
JP3644612B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
CN103408315B (en) Three-dimensional mesophase pitch-based carbon/carbon composite material with high heat conductivity and preparation technology thereof
US7001544B2 (en) Method for manufacturing carbon-carbon composites
JP4458510B2 (en) Thermal protection system with fiber variable density
CN105110809B (en) The preparation method of the modified high heat conductance three-dimensional carbon/carbon composite of Graphene
CN108314458A (en) A kind of preparation method of high heat conduction carbon/carbon compound material
US20120219778A1 (en) Composite material containing soft carbon fiber felt and hard carbon fiber felt
US5057254A (en) Process for producing carbon/carbon composites
US5061414A (en) Method of making carbon-carbon composites
CN111675547B (en) Quasi-isotropic high-thermal-conductivity C/C composite material and preparation method thereof
JP3644612B2 (en) Ablator material and manufacturing method thereof
CN108440010A (en) A kind of assorted fibre enhancing superhigh temperature anti-yaw damper composite material and preparation method
Tang et al. Fabrication and study on thermal conductivity, electrical properties, and mechanical properties of the lightweight carbon/carbon fiber composite
CN113292352B (en) Preparation method of unidirectional high-thermal-conductivity carbon/carbon composite material
JP4245725B2 (en) High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same
CN102951919B (en) Method for growing beta-SiC nano fiber in situ in C/SiC composite material
CN113277866B (en) Preparation method of bidirectional high-thermal-conductivity carbon/carbon composite material
CN107522499A (en) The preparation method of C/C composites
EP0803487B1 (en) Process for producing carbonaceous preform
CN110093009A (en) A kind of graphite phase carbon nitride carbon modified/resistance to ablative composite material of phenolic aldehyde and preparation method thereof
KR940010099B1 (en) Process for producing carbon/carbon composite using coaltar-phenol resin
CN115387119B (en) Light dredging-heat insulation hybrid braided heat protection material and preparation method thereof
JP2775766B2 (en) Carbon fiber reinforced carbon composite and use thereof
JPH04284363A (en) Manufacture of carbon plate
JPH0426547A (en) Production of carbon reinforced carbon composite material
JPH06305831A (en) Production of carbon fiber-reinforced carbon composite material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees