JPH0931614A - Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger - Google Patents
Production of aluminum alloy fin material with high strength and high heat resistance for heat exchangerInfo
- Publication number
- JPH0931614A JPH0931614A JP20286995A JP20286995A JPH0931614A JP H0931614 A JPH0931614 A JP H0931614A JP 20286995 A JP20286995 A JP 20286995A JP 20286995 A JP20286995 A JP 20286995A JP H0931614 A JPH0931614 A JP H0931614A
- Authority
- JP
- Japan
- Prior art keywords
- hot rolling
- fin material
- temperature
- less
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明はベア材(裸材)あ
るいはブレージングシートの芯材の形態で自動車用クー
ラのコンデンサやエバポレータ等の各種の熱交換器のフ
ィンに使用されるアルミニウム合金フィン材に関するも
のであり、特に板厚を薄肉化した場合における熱交換器
組立時のフィンの変形、座屈を防ぐためにろう付け前の
強度(元板強度)を高め、しかもろう付け時の高温によ
る耐座屈性を高めた熱交換器用フィン材の製造方法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy fin material used in fins of various heat exchangers such as condensers and evaporators for automobile coolers in the form of a bare material or a brazing sheet core material. In order to prevent deformation and buckling of the fins when assembling the heat exchanger especially when the plate thickness is made thin, the strength before brazing (base plate strength) is increased, and the seat is resistant to high temperatures during brazing. The present invention relates to a method for manufacturing a fin material for a heat exchanger having improved flexibility.
【0002】[0002]
【従来の技術】一般に自動車のラジエータ、インターク
ーラ、エバポレータ、コンデンサ、オイルクーラ等の熱
交換器としては、従来からAl合金製の熱交換器が広く
使用されている。このようなAl合金製の熱交換器にお
いては、水等の温度媒体(作動流体)が流通するチュー
ブもしくはコアプレートあるいはパイプにアルミニウム
合金からなるフィン材をろう付けして組立てるのが通常
であり、この場合のフィン材としては、ブレージングシ
ート、すなわちアルミニウム合金芯材の片面もしくは両
面にアルミニウム合金ろう材からなる皮材を予め被着さ
せた合せ板として用いたり、あるいは裸のままのベア材
として用いることが行なわれている。そしてこのような
熱交換器用フィン材のブレージングシート用芯材、ある
いはベア材としては、従来一般には3003合金等のA
l−Mn系合金を用いることが多い。2. Description of the Related Art Generally, heat exchangers made of Al alloy have been widely used as heat exchangers for radiators, intercoolers, evaporators, condensers, oil coolers and the like of automobiles. In such an Al alloy heat exchanger, it is usual to assemble by brazing a fin material made of an aluminum alloy to a tube or core plate or pipe through which a temperature medium (working fluid) such as water flows, In this case, the fin material is used as a brazing sheet, that is, as a laminated plate in which a skin material made of an aluminum alloy brazing material is pre-deposited on one or both sides of an aluminum alloy core material, or as a bare material as it is. Is being done. As a core material for such a brazing sheet of a fin material for a heat exchanger or a bare material, a conventional alloy such as 3003 alloy has been used.
An l-Mn alloy is often used.
【0003】[0003]
【発明が解決しようとする課題】前述のような自動車用
等の熱交換器フィン材については、コルゲート成形など
の成形時のフィン成形性が良好であるばかりでなく、板
厚が例えばブレージングシート芯材の場合0.16mm
程度と薄肉であるところから熱交換器組立時のフィンの
変形、座屈を招かないような強度が必要とされ、しかも
ろう付け時には600℃前後の高温に曝されるから、ろ
う付け時の高温によってフィンに座屈変形が生じないよ
うな耐熱性を有すること、すなわち耐高温座屈性を有す
ることが必要とされる。The heat exchanger fin material for automobiles as described above has not only good fin formability at the time of molding such as corrugated molding but also plate thickness such as brazing sheet core. 0.16 mm for wood
Because of its thinness and thinness, it is necessary to have strength that does not cause deformation or buckling of the fins when assembling the heat exchanger, and since it is exposed to a high temperature of around 600 ° C during brazing, the high temperature during brazing It is necessary that the fins have heat resistance such that buckling deformation does not occur, that is, high temperature buckling resistance.
【0004】ところで最近の自動車用の熱交換器におい
ては軽量、小型化が強く要求され、そこで熱交換器用フ
ィン材についても従来よりもさらに薄肉化すること、具
体的には0.03〜0.01mm程度まで薄肉化するこ
とが望まれている。そのためコルゲート成形等の成形時
における変形、座屈の発生を防止するべく、ろう付け前
の元板強度について従来よりも一層の高強度化を図ると
同時に、高温のろう付け時の座屈変形を防止するべく耐
熱性(耐高温座屈性)をさらに向上させることが望まれ
ている。By the way, recent heat exchangers for automobiles are strongly required to be lightweight and small in size, so that the fin material for the heat exchanger is required to be thinner than the conventional one, specifically 0.03 to 0. It is desired to reduce the thickness to about 01 mm. Therefore, in order to prevent deformation and buckling at the time of forming such as corrugated forming, the strength of the base plate before brazing is further strengthened than before, and at the same time buckling deformation at high temperature brazing is performed. It is desired to further improve heat resistance (high temperature buckling resistance) in order to prevent this.
【0005】しかしながら従来フィン材として使用され
ていた3003合金等では、0.03〜0.1mm程度
まで薄肉化した場合、高強度化を図ろうとすれば耐高温
座屈性が低下し、そのため熱交換器組立時におけるフィ
ン材の変形、座屈の発生防止とろう付け時の高温による
座屈の発生防止とを同時に図ることは困難であり、結局
0.03〜0.1mm程度までフィン材の薄肉化を図る
ことは、実際上困難とされていた。However, in the case of 3003 alloy or the like which has been conventionally used as a fin material, when the wall thickness is reduced to about 0.03 to 0.1 mm, the high temperature buckling resistance is lowered if an attempt is made to increase the strength, so that the heat It is difficult to prevent the deformation and buckling of the fin material when assembling the exchanger and the buckling of the fin material due to high temperature during brazing at the same time. It has been practically difficult to reduce the wall thickness.
【0006】この発明は以上の事情を背景としてなされ
たもので、ろう付け前の熱交換器組立時におけるフィン
材強度(元板強度)が高く、しかも耐高温座屈性が優れ
ていてろう付け時の高温による座屈変形も少ないアルミ
ニウム合金製フィン材を提供することを目的とするもの
である。The present invention has been made in view of the above circumstances and has a high fin material strength (base plate strength) at the time of assembling a heat exchanger before brazing, and is excellent in high temperature buckling resistance. It is an object of the present invention to provide an aluminum alloy fin material that causes less buckling deformation due to high temperature.
【0007】[0007]
【課題を解決するための手段】前述のような課題を解決
するため、本願発明者等が種々実験・検討を重ねた結
果、Al−Mn−Si系合金をベースとしてフィン材の
合金成分を適切に調整すると同時に、フィン材製造プロ
セスを適切に選択しかつ各工程の条件を適切に定めるこ
とによって、ろう付け前の強度が高くしかもろう付時の
高温による座屈変形も少なく、さらにはフィン材として
充分な犠牲陽極効果を有していて熱交換器に充分な耐食
性を与えることのできるフィン材が得られることを見出
し、この発明をなすに至った。[Means for Solving the Problems] In order to solve the above problems, the inventors of the present invention have conducted various experiments and studies, and as a result, based on an Al--Mn--Si alloy, the alloy component of the fin material is appropriately selected. At the same time, the fin material manufacturing process is appropriately selected and the conditions of each step are appropriately determined, so that the strength before brazing is high and the buckling deformation due to high temperature during brazing is small, and the fin material As a result, it was found that a fin material having a sufficient sacrificial anode effect and capable of imparting sufficient corrosion resistance to a heat exchanger can be obtained, and the present invention has been accomplished.
【0008】具体的には、請求項1の発明の熱交換器用
アルミニウム合金製高強度高耐熱性フィン材の製造方法
は、Mn1.0〜2.0%、Si0.2〜0.8%を含
有し、さらにZr0.03〜0.3%、Cr0.03〜
0.3%のうちの1種または2種を含有し、しかもFe
が0.2%未満に規制され、残部がAlおよび不可避的
不純物よりなる合金の鋳塊に対して400〜550℃で
1〜30時間均質化処理を施し、さらに熱間圧延を施す
にあたって、熱間圧延開始温度を400〜550℃とす
るとともに熱間圧延終了温度を300℃以下とし、熱間
圧延終了後90%以上の冷間圧延率で冷間圧延を行なっ
て0.03〜0.10mmの範囲内の板厚の冷延板と
し、さらに150〜320℃の範囲内の温度で最終焼鈍
を施して、引張強さが200N/mm2 以上のフィン材
を得ることを特徴とするものである。Specifically, in the method for producing a high-strength and high-heat-resistant fin material made of an aluminum alloy for a heat exchanger according to the invention of claim 1, Mn is 1.0 to 2.0% and Si is 0.2 to 0.8%. Contained, Zr 0.03 to 0.3%, Cr 0.03 to
It contains one or two of 0.3%, and Fe
Is regulated to less than 0.2%, and the balance is subjected to homogenization treatment at 400 to 550 ° C. for 1 to 30 hours on an ingot of an alloy composed of Al and unavoidable impurities, and when hot rolling is performed, heat treatment is performed. The hot rolling start temperature is set to 400 to 550 ° C., the hot rolling end temperature is set to 300 ° C. or less, and cold rolling is performed at a cold rolling rate of 90% or more after the hot rolling is finished to 0.03 to 0.10 mm. It is characterized in that it is a cold-rolled sheet having a thickness within the range of, and further subjected to final annealing at a temperature within the range of 150 to 320 ° C. to obtain a fin material having a tensile strength of 200 N / mm 2 or more. is there.
【0009】また請求項2の発明の熱交換器用アルミニ
ウム合金製高強度高耐熱性フィン材の製造方法は、Mn
1.0〜2.0%、Si0.2〜0.8%を含有し、さ
らにZr0.03〜0.3%、Cr0.03〜0.3%
のうちの1種または2種を含有し、しかもFeが0.2
%未満に規制され、残部がAlおよび不可避的不純物よ
りなる合金の鋳塊に対して400〜550℃で1〜30
時間均質化処理を施し、さらに熱間圧延を施すにあたっ
て、熱間圧延開始温度を400〜550℃とするととも
に熱間圧延終了温度を300℃以下とし、熱間圧延終了
後冷間圧延を施してからもしくは冷間圧延を施さずに、
320℃未満で中間焼鈍を施し、さらに50%を越える
冷間圧延率で冷間圧延を行なって0.03〜0.10m
mの範囲内の板厚の冷延板とし、さらに150〜320
℃の範囲内の温度で最終焼鈍を施して、引張強さが20
0N/mm2 以上のフィン材を得ることを特徴とするも
のである。The method for producing a high-strength and high-heat-resistant fin material made of an aluminum alloy for a heat exchanger according to a second aspect of the invention is Mn.
1.0-2.0%, Si 0.2-0.8% are contained, Zr 0.03-0.3%, Cr 0.03-0.3%
One or two of them, and Fe is 0.2
1 to 30 at 400 to 550 ° C. with respect to the ingot of the alloy which is regulated to less than 10% and the balance is Al and unavoidable impurities.
When the hot homogenization treatment is performed and the hot rolling is further performed, the hot rolling start temperature is set to 400 to 550 ° C., the hot rolling end temperature is set to 300 ° C. or lower, and the cold rolling is performed after the hot rolling is finished. Or without cold rolling,
0.03 to 0.10 m after intermediate annealing at less than 320 ° C. and cold rolling at a cold rolling rate of more than 50%.
Cold rolled sheet with a thickness within the range of m, and further 150 to 320
Final annealing at a temperature in the range of ℃, tensile strength of 20
The feature is that a fin material of 0 N / mm 2 or more is obtained.
【0010】さらに請求項3の発明の熱交換器用アルミ
ニウム合金製高強度高耐熱性フィン材の製造方法は、M
n1.0〜2.0%、Si0.2〜0.8%を含有し、
さらにZr0.03〜0.3%、Cr0.03〜0.3
%のうちの1種または2種を含有するとともに、Mg
0.05〜0.5%、Cu0.05〜0.3%のうちの
1種または2種を含有し、しかもFeが0.2%未満に
規制され、残部がAlおよび不可避的不純物よりなる合
金について、請求項1に記載されたプロセスと同一のプ
ロセスを適用して、引張強さが200N/mm2 以上の
フィン材を得るものである。Further, the method for producing a high-strength and high-heat-resistant fin material made of an aluminum alloy for a heat exchanger according to the invention of claim 3 is M
n1.0-2.0%, Si0.2-0.8% is contained,
Furthermore, Zr 0.03 to 0.3%, Cr 0.03 to 0.3
%, And 1% or 2% of
It contains one or two of 0.05 to 0.5% and Cu 0.05 to 0.3%, Fe is regulated to less than 0.2%, and the balance is Al and inevitable impurities. The same process as that described in claim 1 is applied to the alloy to obtain a fin material having a tensile strength of 200 N / mm 2 or more.
【0011】また請求項4の発明の熱交換器用アルミニ
ウム合金製高強度高耐熱性フィン材の製造方法は、Mn
1.0〜2.0%、Si0.2〜0.8%を含有し、さ
らにZr0.03〜0.3%、Cr0.03〜0.3%
のうちの1種または2種を含有するとともに、Mg0.
05〜0.5%、Cu0.05〜0.3%のうちの1種
または2種を含有し、しかもFeが0.2%未満に規制
され、残部がAlおよび不可避的不純物よりなる合金に
ついて、請求項2に記載されたプロセスと同一のプロセ
スを適用して、引張強さが200N/mm2 以上のフィ
ン材を得るものである。The method for producing a high-strength and high-heat-resistant fin material made of an aluminum alloy for a heat exchanger according to a fourth aspect of the invention is Mn.
1.0-2.0%, Si 0.2-0.8% are contained, Zr 0.03-0.3%, Cr 0.03-0.3%
1 or 2 of Mg0.
Alloys containing one or two of 0.05 to 0.5% and Cu 0.05 to 0.3%, Fe regulated to less than 0.2%, and balance Al and unavoidable impurities By applying the same process as that described in claim 2, a fin material having a tensile strength of 200 N / mm 2 or more is obtained.
【0012】さらに請求項5の発明の熱交換器用アルミ
ニウム合金製高強度高耐熱性フィン材の製造方法は、M
n1.0〜2.0%、Si0.2〜0.8%を含有し、
さらにZr0.03〜0.3%、Cr0.03〜0.3
%のうちの1種または2種を含有するとともに、Zn
0.2〜2.0%、Sn0.01〜0.1%、In0.
005〜0.1%、Ga0.005〜0.1%のうちの
1種または2種以上を含有し、しかもFeが0.2%未
満に規制され、残部がAlおよび不可避的不純物よりな
る合金について、請求項1に記載されたプロセスと同一
のプロセスを適用して、引張強さが200N/mm2 以
上のフィン材を得るものである。Furthermore, the method for producing a high-strength and high-heat-resistant fin material made of an aluminum alloy for a heat exchanger according to the fifth aspect of the invention is M
n1.0-2.0%, Si0.2-0.8% is contained,
Furthermore, Zr 0.03 to 0.3%, Cr 0.03 to 0.3
%, And one or two of
0.2-2.0%, Sn0.01-0.1%, In0.
Alloy containing 005 to 0.1% and one or more of 0.005 to 0.1% Ga, Fe regulated to less than 0.2%, and balance Al and unavoidable impurities Regarding the above, the same process as described in claim 1 is applied to obtain a fin material having a tensile strength of 200 N / mm 2 or more.
【0013】また請求項6の発明の熱交換器用アルミニ
ウム合金製高強度高耐熱性フィン材の製造方法は、Mn
1.0〜2.0%、Si0.2〜0.8%を含有し、さ
らにZr0.03〜0.3%、Cr0.03〜0.3%
のうちの1種または2種を含有するとともに、Zn0.
2〜2.0%、Sn0.01〜0.1%、In0.00
5〜0.1%、Ga0.005〜0.1%のうちの1種
または2種以上を含有し、しかもFeが0.2%未満に
規制され、残部がAlおよび不可避的不純物よりなる合
金について、請求項2に記載されたプロセスと同一のプ
ロセスを適用して、引張強さが200N/mm2 以上の
フィン材を得るものである。The method for producing a high-strength and high-heat-resistant fin material made of an aluminum alloy for a heat exchanger according to a sixth aspect of the invention is Mn.
1.0-2.0%, Si 0.2-0.8% are contained, Zr 0.03-0.3%, Cr 0.03-0.3%
1 or 2 of ZnO.
2 to 2.0%, Sn 0.01 to 0.1%, In 0.00
Alloy containing 5 to 0.1% and one or more of 0.005 to 0.1% Ga, Fe regulated to less than 0.2%, and balance Al and unavoidable impurities Regarding the above, the same process as that described in claim 2 is applied to obtain a fin material having a tensile strength of 200 N / mm 2 or more.
【0014】さらに請求項7の発明の熱交換器用アルミ
ニウム合金製高強度高耐熱性フィン材の製造方法は、M
n1.0〜2.0%、Si0.2〜0.8%を含有し、
さらにZr0.03〜0.3%、Cr0.03〜0.3
%のうちの1種または2種を含有するとともに、Mg
0.05〜0.5%、Cu0.05〜0.3%のうちの
1種または2種を含有し、かつZn0.2〜2.0%、
Sn0.01〜0.1%、In0.005〜0.1%、
Ga0.005〜0.1%のうちの1種または2種以上
を含有し、しかもFeが0.2%未満に規制され、残部
がAlおよび不可避的不純物よりなる合金について、請
求項1に記載されたプロセスと同一のプロセスを適用し
て、引張強さが200N/mm2 以上のフィン材を得る
ものである。Furthermore, the method for producing a high-strength and high-heat-resistant fin material made of an aluminum alloy for a heat exchanger according to the invention of claim 7 is M
n1.0-2.0%, Si0.2-0.8% is contained,
Furthermore, Zr 0.03 to 0.3%, Cr 0.03 to 0.3
%, And 1% or 2% of
0.05 to 0.5%, Cu containing one or two of 0.05 to 0.3%, and Zn 0.2 to 2.0%,
Sn 0.01-0.1%, In 0.005-0.1%,
The alloy containing 1 or 2 or more of Ga 0.005 to 0.1%, Fe regulated to less than 0.2%, and the balance being Al and inevitable impurities. A fin material having a tensile strength of 200 N / mm 2 or more is obtained by applying the same process as described above.
【0015】また請求項8の発明の熱交換器用アルミニ
ウム合金製高強度高耐熱性フィン材の製造方法は、Mn
1.0〜2.0%、Si0.2〜0.8%を含有し、さ
らにZr0.03〜0.3%、Cr0.03〜0.3%
のうちの1種または2種を含有するとともに、Mg0.
05〜0.5%、Cu0.05〜0.3%のうちの1種
または2種を含有し、かつZn0.2〜2.0%、Sn
0.01〜0.1%、In0.005〜0.1%、Ga
0.005〜0.1%のうちの1種または2種以上を含
有し、しかもFeが0.2%未満に規制され、残部がA
lおよび不可避的不純物よりなる合金について、請求項
2に記載されたプロセスと同一のプロセスを適用して、
引張強さが200N/mm2 以上のフィン材を得るもの
である。The method for producing a high-strength and high-heat-resistant fin material made of an aluminum alloy for a heat exchanger according to the invention of claim 8 is Mn.
1.0-2.0%, Si 0.2-0.8% are contained, Zr 0.03-0.3%, Cr 0.03-0.3%
1 or 2 of Mg0.
05 to 0.5%, Cu 0.05 to 0.3%, containing 1 or 2 kinds, and Zn 0.2 to 2.0%, Sn
0.01-0.1%, In 0.005-0.1%, Ga
It contains one or more of 0.005 to 0.1%, Fe is regulated to less than 0.2%, and the balance is A
Applying the same process as described in claim 2 for an alloy consisting of 1 and inevitable impurities,
A fin material having a tensile strength of 200 N / mm 2 or more is obtained.
【0016】[0016]
【発明の実施の形態】先ずこの発明における合金の成分
組成の限定理由について説明する。BEST MODE FOR CARRYING OUT THE INVENTION First, the reasons for limiting the composition of the alloy of the present invention will be explained.
【0017】Mn:Mnはこの発明で用いるフィン材合
金の基本的な合金成分であり、Al−Mn−Si系の微
細な金属間化合物の析出物を生成して、元板(ろう付け
前の板)の強度およびろう付け後の強度を向上させ、ま
た成形性も向上させるに有効である。またAl−Mn−
Si系の微細な金属間化合物は、ろう付け時の再結晶粒
を粗大化させることを通じて、耐高温座屈性の向上にも
寄与する。Mn量が1.0%未満ではこれらの効果が充
分ではなく、一方2.0%を越えれば鋳造時に粗大な金
属間化合物が生成されて、圧延性が劣化し、板材の製造
が困難となる。したがってMn量は1.0〜2.0%の
範囲内とした。Mn: Mn is a basic alloying component of the fin material alloy used in the present invention, and it forms Al-Mn-Si-based fine intermetallic compound precipitates, and the base plate (before brazing). It is effective for improving the strength of the plate) and the strength after brazing, and also for improving the formability. In addition, Al-Mn-
The Si-based fine intermetallic compound also contributes to the improvement of high temperature buckling resistance by coarsening the recrystallized grains during brazing. If the amount of Mn is less than 1.0%, these effects are not sufficient, while if it exceeds 2.0%, a coarse intermetallic compound is generated during casting, and the rolling property deteriorates, making it difficult to manufacture a plate material. . Therefore, the amount of Mn is set within the range of 1.0 to 2.0%.
【0018】Si:Siもこの発明で用いるフィン材合
金の基本的な合金成分であり、Al−Mn−Si系の微
細な金属間化合物の析出物を生成して、元板強度および
ろう付け後の強度を向上させるとともに、前述のように
ろう付け時の再結晶粒の粗大化を通じて耐高温座屈性を
向上させるために有効な元素である。またSiは、Mn
の固溶量を減少させて熱伝導性を向上させるとともに電
位を卑にしてフィン材による犠牲陽極効果を高めるため
に有効である。Si量が0.2%未満ではこれらの効果
が充分に得られず、一方0.8%を越えれば、ろう付け
時においてろう材成分、特にSiのフィン材中への侵入
(一般にはこれをエロージョンと称す)によるフィンの
溶損や耐食性低下が発生してしまうおそれがある。した
がってSi量は0.2〜0.8%の範囲内とした。Si: Si is also a basic alloying component of the fin material alloy used in the present invention, and it produces Al--Mn--Si based fine intermetallic compound precipitates, and after the original plate strength and brazing, It is an element effective for improving the strength of the alloy and improving the high temperature buckling resistance through the coarsening of recrystallized grains during brazing as described above. Si is Mn
It is effective to reduce the amount of solid solution of (1) to improve the thermal conductivity and to make the electric potential base to enhance the sacrificial anode effect of the fin material. If the Si content is less than 0.2%, these effects are not sufficiently obtained, while if it exceeds 0.8%, the brazing filler metal component, especially Si, penetrates into the fin material during brazing (generally, this There is a possibility that fins may be melted and corrosion resistance may be deteriorated due to erosion. Therefore, the amount of Si is set within the range of 0.2 to 0.8%.
【0019】Zr,Cr:ZrおよびCrは、いずれも
耐高温座屈性を向上させるのに有効な元素であり、いず
れか一方または双方が添加される。いずれもその添加量
が0.03%未満では耐高温座屈性の向上効果が充分に
得られず、一方0.3%を越えれば、鋳造時に粗大な金
属間化合物が生成されて圧延性が低下し、板材の製造が
困難となる。したがってZr,Crはいずれも0.03
〜0.3%の範囲内とした。Zr, Cr: Zr and Cr are both effective elements for improving the high temperature buckling resistance, and either one or both are added. In all cases, if the addition amount is less than 0.03%, the effect of improving the high temperature buckling resistance cannot be sufficiently obtained, while if it exceeds 0.3%, a coarse intermetallic compound is generated during casting and the rolling property is improved. And the plate material becomes difficult to manufacture. Therefore, Zr and Cr are both 0.03
Within the range of up to 0.3%.
【0020】Mg,Cu:Mg,Cuは元板強度および
ろう付け後の強度を向上させるのに有効な元素であり、
そこで請求項3、請求項4、請求項7、請求項8の発明
においていずれか一方または双方が添加される。これら
のうちMgは、ろう付け加熱後の冷却速度が通常の操業
ではかなり速いため、Siと共存することによって時効
硬化を生じ、強度向上に寄与する。Mg量が0.05%
未満ではこの効果が充分ではない。一方Mg量が0.5
%を越えれば、ろう付け時の再結晶粒が微細になって耐
高温座屈性が低下し、また弗化物系フラックスを用いた
ろう付けの場合、Mgとフラックスとが反応してろう付
け不良が生じ、一方真空ろう付けの場合、Mgの蒸発量
が多くなってろう付け炉が汚染されるためろう付け炉の
清掃頻度が高くなり、生産性が阻害される。したがって
Mg量は0.05〜0.5%の範囲内とした。一方Cu
は固溶強化を通じて強度向上に寄与するが、Cu量が
0.05%未満ではこれらの効果が少なく、一方0.3
%を越えて添加されればフィン材の電位が貴になってフ
ィン材による犠牲陽極効果が低下する。したがってCu
量は0.05〜0.3%の範囲内とした。Mg, Cu: Mg and Cu are effective elements for improving the strength of the base plate and the strength after brazing,
Therefore, in the inventions of claim 3, claim 4, claim 7, and claim 8, either or both of them are added. Among these, Mg has a considerably high cooling rate after brazing and heating in a normal operation, and therefore coexists with Si to cause age hardening and contributes to strength improvement. Mg amount is 0.05%
If less than this effect is not sufficient. On the other hand, the amount of Mg is 0.5
%, The recrystallized grains during brazing become fine and the high temperature buckling resistance deteriorates. In the case of brazing using a fluoride-based flux, Mg reacts with the flux to cause brazing failure. On the other hand, in the case of vacuum brazing, the evaporation amount of Mg increases and the brazing furnace is contaminated, so that the frequency of cleaning the brazing furnace becomes high and the productivity is impaired. Therefore, the amount of Mg is set within the range of 0.05 to 0.5%. On the other hand, Cu
Contributes to the strength improvement through solid solution strengthening, but if the Cu content is less than 0.05%, these effects are small, while 0.3
%, The fin material becomes noble and the sacrificial anode effect of the fin material deteriorates. Therefore Cu
The amount was in the range of 0.05 to 0.3%.
【0021】Zn,Sn,In,Ga:これらの元素は
フィン材の電位を卑にして、犠牲陽極効果を高めるため
に有効であり、そこで請求項5〜請求項8の発明におい
てこれらのうちの1種または2種以上が添加される。Z
n量が0.2%未満、Sn量が0.01%未満、In量
が0.005%未満、Ga量が0.005%未満では、
上述の効果が充分に得られず、一方Zn量が2.0%、
Sn量が0.1%、In量が0.1%、Ga量が0.1
%を越えれば自己耐食性および圧延加工性が低下するか
ら、Zn量は0.2〜2.0%、Sn量は0.01〜
0.1%、In量は0.005〜0.1%、Ga量は
0.005〜0.1%の範囲内とした。Zn, Sn, In, Ga: These elements are effective in making the potential of the fin material base and enhancing the sacrificial anode effect. Therefore, in the inventions of claims 5 to 8, among these elements, One kind or two or more kinds are added. Z
When the n content is less than 0.2%, the Sn content is less than 0.01%, the In content is less than 0.005%, and the Ga content is less than 0.005%,
The above effects are not sufficiently obtained, while the Zn content is 2.0%,
Sn amount 0.1%, In amount 0.1%, Ga amount 0.1
%, Zn content is 0.2 to 2.0% and Sn content is 0.01 to 0.01%.
0.1%, In content was 0.005-0.1%, and Ga content was 0.005-0.1%.
【0022】Fe:Feは通常のアルミニウム合金にお
いても不可避的不純物元素あるいは積極添加元素として
含有される元素であるが、0.2%以上含有されれば、
Al−Mn−Fe系の粗大な金属間化合物の晶出物を形
成して、ろう付け時の再結晶粒が微細になり過ぎ、耐高
温座屈性が著しく低下する。そこでこの発明の場合、F
eは不純物として0.2%未満に厳しく規制する必要が
ある。Fe: Fe is an element contained as an unavoidable impurity element or a positive addition element even in a normal aluminum alloy.
The Al-Mn-Fe-based coarse intermetallic compound crystallized product is formed, and the recrystallized grains during brazing become too fine, and the high temperature buckling resistance is significantly reduced. Therefore, in the case of this invention, F
It is necessary to strictly control e as an impurity to less than 0.2%.
【0023】以上の各元素のほかはAlおよびFe以外
の不可避的不純物とすれば良い。In addition to the above elements, inevitable impurities other than Al and Fe may be used.
【0024】次にこの発明における製造プロセスについ
て説明する。Next, the manufacturing process in the present invention will be described.
【0025】一般に熱交換器用フィン材は、溶解鋳造→
均質化処理→熱間圧延→冷間圧延→中間焼鈍→最終冷間
圧延のプロセスを適用して、H1nの硬質テンパー状
態、すなわち加工硬化だけで機械的性質を調整した状態
の製品として製造されるのが通常である。しかしながら
H1nテンパーでは、ろう付け前の元板強度、耐高温座
屈性の両者を同時に満たすことは困難であった。そこで
この発明では、合金の成分組成を前述のように調整する
と同時に、製造プロセスとして、溶解鋳造→均質化処理
→熱間圧延→冷間圧延(中間焼鈍のある場合とない場合
とを含む)→最終焼鈍のプロセスを適用し、かつその各
工程における条件を適切に設定することによって、元板
強度、耐高温座屈性をともに改善することができたので
ある。さらに具体的に各プロセスについて説明する。Fin materials for heat exchangers are generally melt-cast
By applying the process of homogenization → hot rolling → cold rolling → intermediate annealing → final cold rolling, it is manufactured as a H1n hard tempered state, that is, a product whose mechanical properties are adjusted only by work hardening. Is normal. However, it was difficult for the H1n temper to satisfy both the strength of the base plate before brazing and the high temperature buckling resistance at the same time. Therefore, in the present invention, while adjusting the component composition of the alloy as described above, at the same time as the manufacturing process, melt casting → homogenization treatment → hot rolling → cold rolling (including the case with intermediate annealing and without) → By applying the final annealing process and appropriately setting the conditions in each step, both the original plate strength and the high temperature buckling resistance could be improved. Each process will be described more specifically.
【0026】先ず溶解・鋳造工程は従来の通常の方法に
従ってDC鋳造法(半連続鋳造法)を適用すれば良い。First, in the melting / casting process, a DC casting method (semi-continuous casting method) may be applied according to a conventional ordinary method.
【0027】得られた鋳塊に対しては均質化処理(均熱
処理)を施す。この均質化処理は、単に鋳塊の組織の均
一化を図るためばかりでなく、Al−Mn系金属間化合
物(Al−Mn、Al−Mn−Fe、Al−Mn−Fe
−Si、Al−Mn−Si等)やAl−Zr系金属間化
合物、Al−Cr系金属間化合物を微細に析出させて、
ろう付け時における再結晶粒を粗大にし、もって耐高温
座屈性を改善するとともに、ろう付け後の強度を高める
ために必要な工程であり、耐高温座屈性向上、ろう付け
後強度の向上のためには均質化処理を400〜550℃
の範囲内で1〜30時間行なう必要がある。均質化処理
の温度が400℃未満では、Al−Mn系、Al−Zr
系、Al−Cr系の金属間化合物の析出が充分に行なわ
れないため、ろう付け時の再結晶粒が粗大になりにく
く、耐高温座屈性が低下してしまう。一方550℃を越
えれば、析出するAl−Mn系、Al−Zr系、Al−
Cr系の金属間化合物が粗大となってろう付け後強度が
低下し、また同時にろう付け時の再結晶粒が微細にな
り、著しく耐高温座屈性が低下する。また均質化処理の
時間が1時間未満では、Al−Mn系、Al−Zr系、
Al−Cr系の金属間化合物の析出が充分ではないた
め、耐高温座屈性やろう付け後強度の向上に及ぼす均質
化処理の効果が少ない。一方30時間を越えて均質化処
理を行なっても、前述のような効果が飽和し、消費エネ
ルギの点から不経済となるだけである。なおこの均質化
処理の後には後述するように熱間圧延を行なうが、必要
な熱間圧延開始温度を得るための加熱と兼ねて均質化処
理を行ない、均質化処理に引続いて直ちに熱間圧延を行
なっても良く、あるいは均質化処理後に一旦冷却し、改
めて熱間圧延開始温度に加熱して熱間圧延を行なっても
良い。The obtained ingot is subjected to homogenization treatment (soaking treatment). This homogenization treatment is not only for the purpose of homogenizing the structure of the ingot, but also for Al-Mn-based intermetallic compounds (Al-Mn, Al-Mn-Fe, Al-Mn-Fe).
-Si, Al-Mn-Si, etc.), Al-Zr-based intermetallic compound, and Al-Cr-based intermetallic compound are finely precipitated,
This process is necessary to make the recrystallized grains coarse during brazing, improve the high temperature buckling resistance, and increase the strength after brazing, improving the high temperature buckling resistance and the strength after brazing. For homogenization treatment at 400-550 ° C
Within the range of 1 to 30 hours. If the temperature of the homogenization treatment is less than 400 ° C, Al-Mn system, Al-Zr
Since the precipitation of the Al-Cr and Al-Cr intermetallic compounds is not sufficiently performed, the recrystallized grains during brazing are not likely to be coarse and the high temperature buckling resistance is reduced. On the other hand, if the temperature exceeds 550 ° C, Al-Mn-based, Al-Zr-based, Al-
The Cr-based intermetallic compound becomes coarse and the strength after brazing decreases, and at the same time, the recrystallized grains during brazing become fine, and the high temperature buckling resistance decreases significantly. If the homogenization time is less than 1 hour, Al-Mn-based, Al-Zr-based,
Since the precipitation of Al-Cr intermetallic compound is not sufficient, the effect of the homogenization treatment on the high temperature buckling resistance and the improvement of the strength after brazing is small. On the other hand, even if the homogenizing treatment is carried out for more than 30 hours, the above-mentioned effects are saturated, which is uneconomical in terms of energy consumption. After this homogenization treatment, hot rolling is performed as described later, but the homogenization treatment is performed in combination with heating to obtain the required hot rolling start temperature, and immediately after the homogenization treatment, hot rolling is performed. The rolling may be carried out, or after the homogenization treatment, the material may be once cooled and then heated to the hot rolling start temperature to carry out the hot rolling.
【0028】均質化処理後の熱間圧延は、良好な熱間圧
延性を得ると同時に良好な耐高温座屈性、ろう付け後強
度を得るために、その開始温度を400〜550℃の範
囲内とする必要がある。熱間圧延開始温度が400℃未
満では、熱間圧延時の耳割れが激しくなって圧延が困難
となり、一方熱間圧延開始温度が550℃を越えれば、
ろう付け後の強度が低下するとともに、ろう付け後の再
結晶粒が微細になって耐高温座屈性が低下する。さらに
この熱間圧延における終了温度は300℃以下とする必
要がある。熱間圧延終了温度が300℃を越える場合、
熱間圧延後の熱延コイルの冷却中にAl−Mn系、Al
−Zr系、Al−Cr系の析出物が析出して粗大化する
ため、ろう付け後の強度が低下しかつ耐高温座屈性が低
下してしまう。In the hot rolling after the homogenizing treatment, the starting temperature is in the range of 400 to 550 ° C. in order to obtain good hot rolling property as well as good high temperature buckling resistance and strength after brazing. Must be within. If the hot rolling start temperature is less than 400 ° C, the edge cracks during hot rolling become severe and rolling becomes difficult, while if the hot rolling start temperature exceeds 550 ° C,
The strength after brazing decreases, and the recrystallized grains after brazing become fine, so that the high temperature buckling resistance decreases. Further, the end temperature in this hot rolling needs to be 300 ° C. or lower. If the hot rolling finish temperature exceeds 300 ° C,
During cooling of the hot rolled coil after hot rolling, Al-Mn system, Al
Since -Zr-based and Al-Cr-based precipitates are deposited and coarsen, the strength after brazing is reduced and the high temperature buckling resistance is reduced.
【0029】熱間圧延後には冷間圧延を行なって0.0
3〜0.10mmの範囲内の最終板厚とするが、冷間圧
延の中途、あるいは熱間圧延と冷間圧延との間において
中間焼鈍を行なっても良い。中間焼鈍を行なわない場合
を規定したのが請求項1、請求項3、請求項5、請求項
7の各発明であり、また中間焼鈍を行なう場合を規定し
たのが請求項2、請求項4、請求項6、請求項8の各発
明である。After hot rolling, cold rolling is performed to 0.0
Although the final thickness is within the range of 3 to 0.10 mm, intermediate annealing may be performed during the cold rolling or between the hot rolling and the cold rolling. The inventions of claim 1, claim 3, claim 5, and claim 7 define the case where the intermediate annealing is not performed, and claim 2 and claim 4 specify the case where the intermediate annealing is performed. The inventions of claims 6 and 8 are:
【0030】中間焼鈍を行なう場合には、その中間焼鈍
によって材料を完全に再結晶させてしまわないように3
20℃未満の温度で焼鈍する必要がある。320℃以上
の高温で焼鈍すれば、再結晶が進行して耐高温座屈性が
低下してしまう。なお中間焼鈍温度の下限は特に限定し
ないが、冷間加工を容易にするという、さらなる中間焼
鈍の目的を考慮すれば、通常は100℃以上とすること
が好ましい。また中間焼鈍の保持時間も特に規定しない
が、通常は0.5時間以上10時間以下が好ましい。1
0時間を越えて保持しても徐々に軟化が進行するだけで
あって、耐高温座屈性向上に対する著しい寄与はなく、
したがって生産コストの上昇を招くだけであるから、1
0時間以下の保持とすることが好ましい。また0.5時
間未満では冷間圧延性の向上が充分に図れないおそれが
ある。なおこの中間焼鈍は、前述のように冷間圧延の前
に熱延上りで直ちに行なっても良く、あるいはある程度
冷間圧延を行なってから中間焼鈍を行ない、その後に最
終冷間圧延を施しても良い。When the intermediate annealing is performed, the material should not be completely recrystallized by the intermediate annealing.
It is necessary to anneal at temperatures below 20 ° C. If it is annealed at a high temperature of 320 ° C. or higher, recrystallization proceeds and the high temperature buckling resistance decreases. The lower limit of the intermediate annealing temperature is not particularly limited, but it is usually preferably 100 ° C. or higher in consideration of the purpose of the further intermediate annealing that facilitates cold working. Further, the holding time of the intermediate annealing is not particularly specified, but normally 0.5 hours or more and 10 hours or less is preferable. 1
Even if it is held for more than 0 hours, only softening gradually progresses, and there is no significant contribution to the improvement in high temperature buckling resistance.
Therefore, it only increases the production cost.
It is preferable that the holding time be 0 hours or less. If it is less than 0.5 hours, the cold rolling property may not be sufficiently improved. Note that this intermediate annealing may be carried out immediately by hot rolling before cold rolling as described above, or may be carried out after cold rolling to some extent and then intermediate annealing, followed by final cold rolling. good.
【0031】中間焼鈍を行なわない場合の冷間圧延率、
すなわち熱延上りから最終板厚までの冷間圧延率は90
%以上とする必要があり、また中間焼鈍を施す場合にお
ける中間焼鈍後の冷間圧延(最終冷間圧延)の圧延率は
50%以上とする必要がある。いずれも最終焼鈍後の元
板強度として200N/mm2 以上の値を達成するため
に必要な条件であり、中間焼鈍を行なわない場合の冷間
圧延率が90%未満、または中間焼鈍を行なった場合の
中間焼鈍後の冷間圧延率が50%未満では元板強度20
0N/mm2 以上を得ることが困難となる。Cold rolling rate without intermediate annealing,
That is, the cold rolling rate from hot rolling to the final strip thickness is 90.
%, And the rolling ratio of cold rolling (final cold rolling) after intermediate annealing in the case of performing intermediate annealing needs to be 50% or more. All of them are conditions necessary for achieving a value of 200 N / mm 2 or more as the strength of the base plate after the final annealing, and the cold rolling rate when the intermediate annealing is not performed is less than 90%, or the intermediate annealing is performed. If the cold rolling ratio after intermediate annealing is less than 50%, the base plate strength is 20
It becomes difficult to obtain 0 N / mm 2 or more.
【0032】冷間圧延により最終板厚に仕上げた後に
は、最終焼鈍を150〜320℃の範囲内の温度で行な
う。最終焼鈍温度が150℃未満では耐高温座屈性の改
善が充分ではなく、一方320℃を越える高温では徐々
に再結晶が発生して元板強度が200N/mm2 より低
くなり、コルゲート成形時におけるフィンの成形不良お
よび熱交換器の組立時のフィンの座屈が発生しやすくな
り、製品歩留りが低下してしまう。After finishing to the final plate thickness by cold rolling, final annealing is performed at a temperature within the range of 150 to 320 ° C. When the final annealing temperature is less than 150 ° C, the high temperature buckling resistance is not sufficiently improved, while at temperatures higher than 320 ° C, recrystallization gradually occurs and the strength of the base plate becomes lower than 200 N / mm 2, which causes corrugation molding. In this case, defective molding of the fins and buckling of the fins at the time of assembling the heat exchanger are likely to occur, resulting in a decrease in product yield.
【0033】以上のようにして得られたフィン材は、そ
のままベア材として熱交換器に用いても良く、あるいは
熱間圧延時ろう材とクラッドして同様な製法でブレージ
ングシートとして用いても良い。なおこの発明のフィン
材を用いて実際に熱交換器を組立てるにあたってのろう
付け法としては、真空ろう付けでも、あるいは非酸化性
雰囲気ろう付けのいずれを用いても良い。The fin material obtained as described above may be used as it is as a bare material in a heat exchanger, or may be clad with a brazing material during hot rolling and used as a brazing sheet by the same manufacturing method. . As a brazing method for actually assembling the heat exchanger using the fin material of the present invention, either vacuum brazing or non-oxidizing atmosphere brazing may be used.
【0034】[0034]
実施例1:表1の合金No.1〜No.23に示す成分
組成の各合金について、常法に従って溶解鋳造し、得ら
れた鋳塊に対して均質化処理(均熱処理)を行ない、熱
間圧延を施して板厚2〜0.8mmの熱延板を得た。そ
の後、中間焼鈍を施すことなく冷間圧延を施して板厚
0.10mmとし、さらに最終焼鈍を施してベア材のフ
ィン材とした。このような工程における均質化処理(均
熱処理)の温度、熱間圧延開始温度、熱間圧延終了温
度、冷間圧延率、最終焼鈍温度を表2の製造条件A〜I
に示す。なお、製造条件Cを除いて、いずれの場合も均
質化処理の加熱保持時間は10時間、最終焼鈍の加熱保
持時間は2時間とした。製造条件Cでは480℃で2時
間保持後直ちに熱間圧延を行ない、また最終焼鈍の加熱
保持時間は2時間とした。Example 1: Alloy No. 1 in Table 1. 1 to No. Each alloy having the composition shown in 23 was melt-cast according to a conventional method, the obtained ingot was subjected to homogenization treatment (soaking), and hot-rolled to obtain a sheet having a thickness of 2 to 0.8 mm. A rolled plate was obtained. After that, cold rolling was performed without intermediate annealing to a plate thickness of 0.10 mm, and final annealing was performed to obtain a bare fin material. The homogenizing treatment (soaking) temperature, the hot rolling start temperature, the hot rolling finish temperature, the cold rolling rate, and the final annealing temperature in these steps are shown in Table 2 as manufacturing conditions A to I.
Shown in In all cases, except for the production condition C, the heating and holding time for the homogenization treatment was 10 hours, and the heating and holding time for the final annealing was 2 hours. In manufacturing condition C, hot rolling was performed immediately after holding at 480 ° C. for 2 hours, and the heating holding time of the final annealing was set to 2 hours.
【0035】各成分組成の合金No.1〜No.23を
用いて、それぞれ製造条件A〜Jのいずれかによって製
造した各フィン材につき、引張試験を行なって元板強度
(引張強さ)を測定した。またろう付け後の強度を調べ
るため、弗化物系フラックスを各フィン材に塗布した
後、窒素ガス中で600℃×3分間のろう付けに相当す
る加熱処理を行ない、引張試験を行なってろう付け後相
当の引張強さを測定した。Alloy No. of each component composition 1 to No. 23, a tensile test was performed on each fin material manufactured under any of the manufacturing conditions A to J to measure the original plate strength (tensile strength). In addition, in order to check the strength after brazing, after applying a fluoride flux to each fin material, a heat treatment equivalent to brazing at 600 ° C for 3 minutes is performed in nitrogen gas, and a tensile test is performed to perform brazing. After that, the corresponding tensile strength was measured.
【0036】さらに熱交換器としての耐食性評価、特に
フィン材による犠牲陽極効果評価のために、各フィン材
の孔食電位を調べた。すなわち、一般にフィン材は温度
媒体(作動流体)流通用のチューブやコアプレートとろ
う付けされて、チューブやコアプレートに対して犠牲陽
極効果を作用させ、チューブやコアプレートを防食して
いるが、その場合のフィン材の犠牲陽極効果を発揮させ
るためには、チューブやコアプレートに対してフィン材
の孔食電位が30mV以上卑であることが必要である。
そして一般に熱交換器のチューブやフィン材としては、
3004合金や、Cuを0.2〜0.8%程度含有する
Al−Mn−Cu(−Ti)系合金が用いられている
が、前者の3003合金ではろう付け後の孔食電位が約
−700mV、後者のCuを0.2〜0.8%程度含有
するAl−Mn−Cu(−Ti)系合金では−660m
V程度であり、これらのいずれに対してもフィン材によ
る充分な犠牲陽極効果を発揮させるためには、フィン材
の孔食電位が−730mV以上の卑であることが必要と
なる。そこでこの実施例では、フィン材の孔食電位が−
730mV以上の卑であるか否かで熱交換器としての耐
食性を評価することができる。なお孔食電位の測定は、
2.67%AlCl3 水溶液中で行なった。Further, the pitting corrosion potential of each fin material was examined in order to evaluate the corrosion resistance as a heat exchanger, particularly the sacrificial anode effect of the fin material. That is, in general, the fin material is brazed to a tube or core plate for circulating a temperature medium (working fluid) to exert a sacrificial anode effect on the tube or core plate to protect the tube or core plate from corrosion. In order to exert the sacrificial anode effect of the fin material in that case, it is necessary that the pitting corrosion potential of the fin material is 30 mV or more base with respect to the tube and the core plate.
And as a tube or fin material for heat exchangers,
The 3004 alloy and the Al-Mn-Cu (-Ti) alloy containing 0.2 to 0.8% of Cu are used, but the former 3003 alloy has a pitting corrosion potential of about-after brazing. 700 mV, -660 m for the latter Al-Mn-Cu (-Ti) -based alloy containing 0.2 to 0.8% Cu.
It is about V, and in order to exert a sufficient sacrificial anode effect by the fin material against any of these, it is necessary that the pitting corrosion potential of the fin material is −730 mV or more. Therefore, in this embodiment, the pitting potential of the fin material is −
The corrosion resistance as a heat exchanger can be evaluated depending on whether it is 730 mV or more base. The measurement of pitting potential is
It was carried out in a 2.67% AlCl 3 aqueous solution.
【0037】さらに、ろう付け時における耐高温座屈性
能を評価するため、フィン材ろう付け時に相当する条件
でのサグ量を調べた。すなわち、試料を幅20mm、長
さ70mmに切断して弗化物系フラックスを塗布し、そ
の一端を治具で固定して60mmの長さに水平に突き出
し、窒素ガス雰囲気中で600℃×3分間の加熱を行な
い、突き出した先端の垂下量(サグ量)を測定した。Further, in order to evaluate the high temperature buckling resistance during brazing, the sag amount under the condition corresponding to brazing of the fin material was examined. That is, a sample is cut into a width of 20 mm and a length of 70 mm, a fluoride-based flux is applied, one end of the sample is fixed with a jig, and it is horizontally projected to a length of 60 mm, and the temperature is 600 ° C. for 3 minutes in a nitrogen gas atmosphere. Was heated, and the amount of sag of the protruding tip was measured.
【0038】また、フィン材をコルゲート加工して弗化
物系フラックスを塗布し、芯材として3003合金を用
いかつろう材とて4045合金を用いた厚さ0.6mm
のブレージングシート上に載置して、窒素ガス雰囲気中
で600℃×3分間のろう付け加熱を行なった後、ろう
付け状況をミクロ観察してろう付け時の溶融ろうによる
フィン材へのエロージョン性を調べた。Further, the fin material is corrugated and a fluoride-based flux is applied to it, and a 3003 alloy is used as a core material and a 4045 alloy is used as a brazing material.
After brazing and heating in a nitrogen gas atmosphere at 600 ° C for 3 minutes, the observing of the brazing condition is carried out microscopically and the erosion of the fin material by the molten brazing during brazing is performed. I checked.
【0039】以上の各調査結果を表3に示す。Table 3 shows the results of each of the above surveys.
【0040】[0040]
【表1】 [Table 1]
【0041】[0041]
【表2】 [Table 2]
【0042】[0042]
【表3】 [Table 3]
【0043】表3から、この発明で規定する成分組成条
件、製造プロセス条件を満たして得られたフィン材(本
発明例)では、元板の強度が目標強度の200N/mm
2 を大幅に越えるとともにろう付け後の強度も100N
/mm2 を確実に越え、しかもサグ量も10mm以下で
耐高温座屈性が優れ、さらに自然電位が−730mVよ
りも確実に卑であって犠牲陽極効果を充分に有してい
て、熱交換器としての耐食性にも優れており、さらにろ
う付け時のろう材のエロージョンもほとんどないことが
判明した。これに対し成分組成条件、製造プロセス条件
のいずれかがこの発明で規定する範囲を外れた比較例
は、上記のいずれかの性能が劣っていた。From Table 3, in the fin material (example of the present invention) obtained by satisfying the component composition conditions and manufacturing process conditions specified in the present invention, the strength of the base plate is 200 N / mm of the target strength.
Greatly exceeds 2 and the strength after brazing is 100N
/ Mm 2 and the sag amount is 10 mm or less, the high temperature buckling resistance is excellent, and the natural potential is certainly less than -730 mV and has a sufficient sacrificial anode effect, and heat exchange. It was found that it has excellent corrosion resistance as a container and that there is almost no erosion of the brazing material during brazing. On the other hand, in Comparative Examples in which either the component composition condition or the manufacturing process condition was out of the range defined by the present invention, any one of the above performances was inferior.
【0044】実施例2:実施例1と同様に、表1のN
o.1〜No.23に示す成分組成の各合金について、
常法に従って溶解鋳造し、得られた鋳塊に対して均質化
処理(均熱処理)を施し、熱間圧延を行なって厚さ2.
0mmの熱延板とした。その後、冷間圧延を行なってか
ら中間焼鈍を施し、さらに最終の冷間圧延を施して板厚
0.07mmとし、最終焼鈍を施してベア材のフィン材
とした。これらのプロセスにおける均質化処理の温度、
熱間圧延開始温度、熱間圧延終了温度、中間焼鈍時の板
厚、中間焼鈍温度、最終の冷間圧延圧下率、最終焼鈍温
度を表4の製造条件K〜Wに示す。なお、製造条件Mを
除いて、いずれの場合も均質化処理の加熱保持時間は1
0時間、中間焼鈍の加熱保持時間は5時間、最終焼鈍の
加熱保持時間は2時間とした。製造条件Mでは480℃
で2時間保持後直ちに熱間圧延を行なった。またその場
合の中間焼鈍及び最終焼鈍の保持時間はいずれも5時間
とした。Example 2: As in Example 1, N in Table 1
o. 1 to No. For each alloy having the composition shown in 23,
Melt casting according to a conventional method, homogenization treatment (soaking treatment) is performed on the obtained ingot, and hot rolling is performed to obtain a thickness of 2.
It was a 0 mm hot rolled plate. After that, cold rolling was performed, intermediate annealing was performed, and then final cold rolling was performed to a plate thickness of 0.07 mm, and final annealing was performed to obtain a bare fin material. The temperature of homogenization treatment in these processes,
The manufacturing conditions K to W in Table 4 show the hot rolling start temperature, the hot rolling end temperature, the plate thickness during intermediate annealing, the intermediate annealing temperature, the final cold rolling reduction, and the final annealing temperature. In all cases, except for the manufacturing condition M, the heating and holding time for the homogenization treatment was 1
The heating and holding time for the intermediate annealing was 5 hours, and the heating and holding time for the final annealing was 2 hours. 480 ° C under manufacturing condition M
After holding for 2 hours, hot rolling was performed immediately. In addition, the holding time of the intermediate annealing and the final annealing in that case was set to 5 hours.
【0045】各成分組成の合金No.1〜No.23に
ついて、それぞれ製造条件K〜Wのいずれかによって製
造した各フィン材について、前記実施例1と同様に諸性
能を調べた結果を表5および表6に示す。Alloy No. of each component composition 1 to No. Table 5 and Table 6 show the results of examining various performances of No. 23 for each fin material manufactured under any of the manufacturing conditions K to W in the same manner as in Example 1 above.
【0046】[0046]
【表4】 [Table 4]
【0047】[0047]
【表5】 [Table 5]
【0048】[0048]
【表6】 [Table 6]
【0049】表5、表6に示すように、実施例2の場合
は、実施例1の場合と比較して最終板厚が薄いため、サ
グ量が全般的に大きくなってはいるが、本発明例では比
較例と比べればサグ量は小さく、耐高温座屈性が優れて
いることが明らかである。本発明例によるフィン材のそ
のほかの性能は、表3に示される実施例1の場合と同様
に優れていた。As shown in Tables 5 and 6, in the case of Example 2, since the final plate thickness is smaller than that in Example 1, the sag amount is generally large. It is apparent that the sag amount of the invention example is smaller than that of the comparative example and the high temperature buckling resistance is excellent. The other properties of the fin material according to the example of the present invention were excellent as in the case of Example 1 shown in Table 3.
【0050】実施例3:表1の合金No.2に示す成分
組成の合金について、表2に示される製造条件符号Bの
条件によって実施例1の方法に従って中間焼鈍なしで板
厚0.07mmのベアフィン材を作製した(但し冷間圧
延率は製造条件符号Bの場合と異なり、93%)。また
同じく表1の合金No.9に示す成分組成の合金につい
て、表4に示される製造条件Lの条件にて実施例2の方
法に従って板厚0.07mmのベアフィン材を作製し
た。Example 3: Alloy No. 1 in Table 1 For the alloy having the composition shown in Table 2, a bare fin material having a plate thickness of 0.07 mm was manufactured according to the method of Example 1 under the conditions of manufacturing condition code B shown in Table 2 (however, the cold rolling ratio was Unlike the case of the condition code B, 93%). Similarly, alloy No. 1 in Table 1 is used. A bare fin material having a plate thickness of 0.07 mm was manufactured according to the method of Example 2 under the manufacturing condition L shown in Table 4 for the alloy having the component composition shown in Table 9.
【0051】各フィン材について、引張試験を行なって
元板強度(引張強さ)を測定するとともに、真空ろう付
け後の強度を調べるため5×10-5Torrの真空中で
600℃×3分間の真空ろう付けに相当する加熱処理を
行ない、引張試験によって真空ろう付け後相当の引張強
さを測定した。さらに熱交換器としての耐食性、特にフ
ィン材による犠牲陽極効果の評価のため、各フィン材の
孔食電位を実施例1と同様に測定した。そしてまた、真
空ろう付けにおける耐高温座屈性能を評価するため、フ
ィン材の試料を幅20mm、長さ70mmに切断してそ
の一端を治具で固定して60mmの長さに水平に突き出
し、5×50-5Torrの真空度の炉中にて600℃×
3分間加熱し、突き出した先端の垂下量(サグ量)を測
定した。さらに、フィン材をコルゲート加工し、芯材と
して3003合金を用いかつろう材として4104合金
を用いたブレージングシート上に載置して、5×10-5
Torrの真空雰囲気中で600℃×3分間のろう付け
加熱を行なった後、ろう付け状況をミクロ観察して真空
ろう付け時の溶融ろうによるフィン材へのエロージョン
性を調べた。これらの各調査結果を表7に示す。For each fin material, a tensile test is carried out to measure the strength of the base plate (tensile strength), and in order to examine the strength after vacuum brazing, 600 ° C. × 3 minutes in a vacuum of 5 × 10 −5 Torr. The heat treatment corresponding to the vacuum brazing was performed, and the tensile strength after vacuum brazing was measured by a tensile test. Further, in order to evaluate the corrosion resistance as a heat exchanger, particularly the sacrificial anode effect of the fin material, the pitting corrosion potential of each fin material was measured in the same manner as in Example 1. In addition, in order to evaluate the high temperature buckling resistance in vacuum brazing, a sample of the fin material is cut into a width of 20 mm and a length of 70 mm, one end of which is fixed by a jig and horizontally projected to a length of 60 mm, 600 ° C × in a furnace with a vacuum degree of 5 × 50 -5 Torr
After heating for 3 minutes, the amount of sag of the protruding tip was measured. Further, the fin material was corrugated and placed on a brazing sheet using 3003 alloy as a core material and 4104 alloy as a brazing material, and then 5 × 10 −5
After brazing and heating at 600 ° C. for 3 minutes in a vacuum atmosphere of Torr, the brazing condition was microscopically observed to examine the erosion property of the fin material by the molten brazing during vacuum brazing. Table 7 shows the results of each of these investigations.
【0052】[0052]
【表7】 [Table 7]
【0053】表7から判るように、真空ろう付けを行な
った実施例3の場合も、同じ板厚のフィン材について弗
化物フラックスを用いた窒素ガス雰囲気中でのろう付け
の場合(実施例2)とほぼ同等の結果が得られた。As can be seen from Table 7, in the case of Example 3 in which vacuum brazing was performed, the fin material having the same plate thickness was brazed in a nitrogen gas atmosphere using fluoride flux (Example 2). The result is almost the same.
【0054】[0054]
【発明の効果】前述の各実施例から明らかなように、こ
の発明の方法により得られた熱交換器用フィン材は、ろ
う付け前の強度(元板強度)が高く、板厚が0.1mm
以下と薄肉であっても、熱交換器組立時において変形、
座屈するおそれが極めて少なく、しかも耐高温座屈性も
優れていて、ろう付け時の高温によって座屈するおそれ
も少ない。そのほか、この発明の方法により得られたフ
ィン材は、ろう付け後の強度も高く、また熱交換器とし
てコアプレートやチューブとろう付けした後におけるこ
れらのチューブやコアプレートに対する犠牲陽極効果も
充分に発揮することができるとともにろう材によるエロ
ージョンも極めて少ない。したがってこの発明の方法に
よって得られたフィン材を熱交換器に用いれば、フィン
材や熱交換器自体に要求される諸性能を損なうことな
く、実際に0.1mm以下にフィン材を薄肉化して、熱
交換器の軽量化、低コスト化を図ることができる。As is apparent from the above-described embodiments, the fin material for the heat exchanger obtained by the method of the present invention has a high strength before brazing (base plate strength) and a plate thickness of 0.1 mm.
Even if it is thin as below, it will be deformed during heat exchanger assembly,
It is extremely unlikely to buckle, has excellent high temperature buckling resistance, and is unlikely to buckle due to the high temperature during brazing. In addition, the fin material obtained by the method of the present invention has a high strength after brazing, and also has a sufficient sacrificial anode effect on these tubes and core plates after brazing with the core plates and tubes as a heat exchanger. It can be demonstrated and has very little erosion due to brazing material. Therefore, if the fin material obtained by the method of the present invention is used for a heat exchanger, the fin material can be actually thinned to 0.1 mm or less without impairing the various performances required for the fin material and the heat exchanger itself. It is possible to reduce the weight and cost of the heat exchanger.
Claims (8)
じ)、Si0.2〜0.8%を含有し、さらにZr0.
03〜0.3%、Cr0.03〜0.3%のうちの1種
または2種を含有し、しかもFeが0.2%未満に規制
され、残部がAlおよび不可避的不純物よりなる合金の
鋳塊に対して400〜550℃で1〜30時間均質化処
理を施し、さらに熱間圧延を施すにあたって、熱間圧延
開始温度を400〜550℃とするとともに熱間圧延終
了温度を300℃以下とし、熱間圧延終了後90%以上
の冷間圧延率で冷間圧延を行なって0.03〜0.10
mmの範囲内の板厚の冷延板とし、さらに150〜32
0℃の範囲内の温度で最終焼鈍を施して、引張強さが2
00N/mm2 以上のフィン材を得ることを特徴とす
る、熱交換器用アルミニウム合金製高強度高耐熱性フィ
ン材の製造方法。1. Mn 1.0-2.0% (weight%, the same hereinafter), Si 0.2-0.8% are contained, and Zr0.
Of alloys containing one or two of 0.03 to 0.3% and 0.03 to 0.3% Cr, Fe regulated to less than 0.2%, and the balance being Al and inevitable impurities. The ingot is homogenized at 400 to 550 ° C. for 1 to 30 hours, and when hot rolling is performed, the hot rolling start temperature is set to 400 to 550 ° C. and the hot rolling end temperature is 300 ° C. or less. After the hot rolling is completed, cold rolling is performed at a cold rolling rate of 90% or more to 0.03 to 0.10.
Cold rolled sheet having a thickness within the range of mm, and further 150 to 32
Final annealing at a temperature in the range of 0 ° C gives a tensile strength of 2
A method for producing a high-strength, high-heat-resistant fin material made of an aluminum alloy for a heat exchanger, which comprises obtaining a fin material of 00 N / mm 2 or more.
0.8%を含有し、さらにZr0.03〜0.3%、C
r0.03〜0.3%のうちの1種または2種を含有
し、しかもFeが0.2%未満に規制され、残部がAl
および不可避的不純物よりなる合金の鋳塊に対して40
0〜550℃で1〜30時間均質化処理を施し、さらに
熱間圧延を施すにあたって、熱間圧延開始温度を400
〜550℃とするとともに熱間圧延終了温度を300℃
以下とし、熱間圧延終了後冷間圧延を施してからもしく
は冷間圧延を施さずに、320℃未満で中間焼鈍を施
し、さらに50%を越える冷間圧延率で冷間圧延を行な
って0.03〜0.10mmの範囲内の板厚の冷延板と
し、さらに150〜320℃の範囲内の温度で最終焼鈍
を施して、引張強さが200N/mm2 以上のフィン材
を得ることを特徴とする、熱交換器用アルミニウム合金
製高強度高耐熱性フィン材の製造方法。2. Mn 1.0 to 2.0%, Si 0.2 to
0.8%, Zr 0.03-0.3%, C
It contains one or two of r0.03 to 0.3%, Fe is regulated to less than 0.2%, and the balance is Al.
And 40 for ingots of alloys consisting of unavoidable impurities
The homogenizing treatment is performed at 0 to 550 ° C. for 1 to 30 hours, and when hot rolling is further performed, the hot rolling start temperature is set to 400.
~ 550 ° C and the hot rolling end temperature is 300 ° C
After the completion of hot rolling, cold rolling is performed or without cold rolling, intermediate annealing is performed at a temperature of less than 320 ° C., and cold rolling is performed at a cold rolling rate of more than 50%. A cold-rolled sheet having a thickness within the range of 0.03 to 0.10 mm and further subjected to final annealing at a temperature within the range of 150 to 320 ° C. to obtain a fin material having a tensile strength of 200 N / mm 2 or more. A method for producing a high-strength and high-heat-resistant fin material made of an aluminum alloy for a heat exchanger, the method comprising:
0.8%を含有し、さらにZr0.03〜0.3%、C
r0.03〜0.3%のうちの1種または2種を含有す
るとともに、Mg0.05〜0.5%、Cu0.05〜
0.3%のうちの1種または2種を含有し、しかもFe
が0.2%未満に規制され、残部がAlおよび不可避的
不純物よりなる合金の鋳塊に対して400〜550℃で
1〜30時間均質化処理を施し、さらに熱間圧延を施す
にあたって、熱間圧延開始温度を400〜550℃とす
るとともに熱間圧延終了温度を300℃以下とし、熱間
圧延終了後90%以上の冷間圧延率で冷間圧延を行なっ
て0.03〜0.10mmの範囲内の板厚の冷延板と
し、さらに150〜320℃の範囲内の温度で最終焼鈍
を施して、引張強さが200N/mm2 以上のフィン材
を得ることを特徴とする、熱交換器用アルミニウム合金
製高強度高耐熱性フィン材の製造方法。3. Mn 1.0 to 2.0%, Si 0.2 to
0.8%, Zr 0.03-0.3%, C
In addition to containing one or two of r0.03 to 0.3%, Mg0.05 to 0.5%, Cu0.05 to
It contains one or two of 0.3%, and Fe
Is regulated to less than 0.2%, and the balance is subjected to homogenization treatment at 400 to 550 ° C. for 1 to 30 hours on an ingot of an alloy composed of Al and unavoidable impurities, and when hot rolling is performed, heat treatment is performed. The hot rolling start temperature is set to 400 to 550 ° C., the hot rolling end temperature is set to 300 ° C. or less, and cold rolling is performed at a cold rolling rate of 90% or more after the hot rolling is finished to 0.03 to 0.10 mm. Cold-rolled sheet having a plate thickness within the range of, and further subjected to final annealing at a temperature within the range of 150 to 320 ° C. to obtain a fin material having a tensile strength of 200 N / mm 2 or more. A method for manufacturing a high-strength and high-heat-resistant fin material made of an aluminum alloy for a exchanger.
0.8%を含有し、さらにZr0.03〜0.3%、C
r0.03〜0.3%のうちの1種または2種を含有す
るとともに、Mg0.05〜0.5%、Cu0.05〜
0.3%のうちの1種または2種を含有し、しかもFe
が0.2%未満に規制され、残部がAlおよび不可避的
不純物よりなる合金の鋳塊に対して400〜550℃で
1〜30時間均質化処理を施し、さらに熱間圧延を施す
にあたって、熱間圧延開始温度を400〜550℃とす
るとともに熱間圧延終了温度を300℃以下とし、熱間
圧延終了後冷間圧延を施してからもしくは冷間圧延を施
さずに、320℃未満で中間焼鈍を施し、さらに50%
を越える冷間圧延率で冷間圧延を行なって0.03〜
0.10mmの範囲内の板厚の冷延板とし、さらに15
0〜320℃の範囲内の温度で最終焼鈍を施して、引張
強さが200N/mm2 以上のフィン材を得ることを特
徴とする、熱交換器用アルミニウム合金製高強度高耐熱
性フィン材の製造方法。4. Mn 1.0 to 2.0%, Si 0.2 to
0.8%, Zr 0.03-0.3%, C
In addition to containing one or two of r0.03 to 0.3%, Mg0.05 to 0.5%, Cu0.05 to
It contains one or two of 0.3%, and Fe
Is regulated to less than 0.2%, and the balance is subjected to homogenization treatment at 400 to 550 ° C. for 1 to 30 hours on an ingot of an alloy composed of Al and unavoidable impurities, and when hot rolling is performed, heat treatment is performed. The hot rolling start temperature is set to 400 to 550 ° C., the hot rolling end temperature is set to 300 ° C. or less, and after the hot rolling is completed, cold annealing is performed or not, and the intermediate annealing is performed at 320 ° C. or less. And further 50%
Cold rolling at a cold rolling ratio exceeding 0.03
Cold rolled plate with a thickness within the range of 0.10 mm, and further 15
A high strength and high heat resistance fin material made of aluminum alloy for heat exchanger, characterized by obtaining a fin material having a tensile strength of 200 N / mm 2 or more by performing final annealing at a temperature in the range of 0 to 320 ° C. Production method.
0.8%を含有し、さらにZr0.03〜0.3%、C
r0.03〜0.3%のうちの1種または2種を含有す
るとともに、Zn0.2〜2.0%、Sn0.01〜
0.1%、In0.005〜0.1%、Ga0.005
〜0.1%のうちの1種または2種以上を含有し、しか
もFeが0.2%未満に規制され、残部がAlおよび不
可避的不純物よりなる合金の鋳塊に対して400〜55
0℃で1〜30時間均質化処理を施し、さらに熱間圧延
を施すにあたって、熱間圧延開始温度を400〜550
℃とするとともに熱間圧延終了温度を300℃以下と
し、熱間圧延終了後90%以上の冷間圧延率で冷間圧延
を行なって0.03〜0.10mmの範囲内の板厚の冷
延板とし、さらに150〜320℃の範囲内の温度で最
終焼鈍を施して、引張強さが200N/mm2 以上のフ
ィン材を得ることを特徴とする、熱交換器用アルミニウ
ム合金製高強度高耐熱性フィン材の製造方法。5. Mn 1.0 to 2.0%, Si 0.2 to
0.8%, Zr 0.03-0.3%, C
In addition to containing one or two of r 0.03 to 0.3%, Zn 0.2 to 2.0%, Sn 0.01 to
0.1%, In 0.005-0.1%, Ga 0.005
To 0.1%, one or more of them are contained, Fe is regulated to less than 0.2%, and the balance is 400 to 55 with respect to the ingot of the alloy consisting of Al and unavoidable impurities.
When homogenizing treatment is performed at 0 ° C. for 1 to 30 hours and hot rolling is further performed, the hot rolling start temperature is 400 to 550.
C. and the hot rolling finish temperature is 300 ° C. or lower, and after the hot rolling is finished, cold rolling is performed at a cold rolling rate of 90% or more to cool the plate thickness within a range of 0.03 to 0.10 mm. Aluminum alloy for heat exchanger, which has a high strength and a high strength and is characterized in that it is a rolled sheet and further subjected to final annealing at a temperature in the range of 150 to 320 ° C. to obtain a fin material having a tensile strength of 200 N / mm 2 or more. Method for manufacturing heat-resistant fin material.
0.8%を含有し、さらにZr0.03〜0.3%、C
r0.03〜0.3%のうちの1種または2種を含有す
るとともに、Zn0.2〜2.0%、Sn0.01〜
0.1%、In0.005〜0.1%、Ga0.005
〜0.1%のうちの1種または2種以上を含有し、しか
もFeが0.2%未満に規制され、残部がAlおよび不
可避的不純物よりなる合金の鋳塊に対して400〜55
0℃で1〜30時間均質化処理を施し、さらに熱間圧延
を施すにあたって、熱間圧延開始温度を400〜550
℃とするとともに熱間圧延終了温度を300℃以下と
し、熱間圧延終了後冷間圧延を施してからもしくは冷間
圧延を施さずに、320℃未満で中間焼鈍を施し、さら
に50%を越える冷間圧延率で冷間圧延を行なって0.
03〜0.10mmの範囲内の板厚の冷延板とし、さら
に150〜320℃の範囲内の温度で最終焼鈍を施し
て、引張強さが200N/mm2 以上のフィン材を得る
ことを特徴とする、熱交換器用アルミニウム合金製高強
度高耐熱性フィン材の製造方法。6. Mn 1.0 to 2.0%, Si 0.2 to
0.8%, Zr 0.03-0.3%, C
In addition to containing one or two of r 0.03 to 0.3%, Zn 0.2 to 2.0%, Sn 0.01 to
0.1%, In 0.005-0.1%, Ga 0.005
To 0.1%, one or more of them are contained, Fe is regulated to less than 0.2%, and the balance is 400 to 55 with respect to the ingot of the alloy consisting of Al and unavoidable impurities.
When homogenizing treatment is performed at 0 ° C. for 1 to 30 hours and hot rolling is further performed, the hot rolling start temperature is 400 to 550.
C. and the hot rolling finish temperature is 300.degree. C. or less, and after the hot rolling is finished, cold rolling is performed or without cold rolling, intermediate annealing is performed at less than 320.degree. C., and further exceeds 50%. Cold rolling was performed at a cold rolling rate of 0.
A cold-rolled sheet having a thickness within the range of 03 to 0.10 mm and further subjected to final annealing at a temperature within the range of 150 to 320 ° C. to obtain a fin material having a tensile strength of 200 N / mm 2 or more. A method for producing a high-strength and high-heat-resistant fin material made of an aluminum alloy for a heat exchanger, which is characterized.
0.8%を含有し、さらにZr0.03〜0.3%、C
r0.03〜0.3%のうちの1種または2種を含有す
るとともに、Mg0.05〜0.5%、Cu0.05〜
0.3%のうちの1種または2種を含有し、かつZn
0.2〜2.0%、Sn0.01〜0.1%、In0.
005〜0.1%、Ga0.005〜0.1%のうちの
1種または2種以上を含有し、しかもFeが0.2%未
満に規制され、残部がAlおよび不可避的不純物よりな
る合金の鋳塊に対して400〜550℃で1〜30時間
均質化処理を施し、さらに熱間圧延を施すにあたって、
熱間圧延開始温度を400〜550℃とするとともに熱
間圧延終了温度を300℃以下とし、熱間圧延終了後9
0%以上の冷間圧延率で冷間圧延を行なって0.03〜
0.10mmの範囲内の板厚の冷延板とし、さらに15
0〜320℃の範囲内の温度で最終焼鈍を施して、引張
強さが200N/mm2 以上のフィン材を得ることを特
徴とする、熱交換器用アルミニウム合金製高強度高耐熱
性フィン材の製造方法。7. Mn 1.0 to 2.0%, Si 0.2 to
0.8%, Zr 0.03-0.3%, C
In addition to containing one or two of r0.03 to 0.3%, Mg0.05 to 0.5%, Cu0.05 to
1% or 2% of 0.3% and Zn
0.2-2.0%, Sn0.01-0.1%, In0.
Alloy containing 005 to 0.1% and one or more of 0.005 to 0.1% Ga, Fe regulated to less than 0.2%, and balance Al and unavoidable impurities In the case of performing homogenization treatment at 400 to 550 ° C. for 1 to 30 hours on the ingot, and further performing hot rolling,
After the hot rolling start temperature is set to 400 to 550 ° C. and the hot rolling end temperature is set to 300 ° C. or less, 9
Cold rolling is performed at a cold rolling ratio of 0% or more to 0.03 to
Cold rolled plate with a thickness within the range of 0.10 mm, and further 15
A high strength and high heat resistance fin material made of aluminum alloy for heat exchanger, characterized by obtaining a fin material having a tensile strength of 200 N / mm 2 or more by performing final annealing at a temperature in the range of 0 to 320 ° C. Production method.
0.8%を含有し、さらにZr0.03〜0.3%、C
r0.03〜0.3%のうちの1種または2種を含有す
るとともに、Mg0.05〜0.5%、Cu0.05〜
0.3%のうちの1種または2種を含有し、かつZn
0.2〜2.0%、Sn0.01〜0.1%、In0.
005〜0.1%、Ga0.005〜0.1%のうちの
1種または2種以上を含有し、しかもFeが0.2%未
満に規制され、残部がAlおよび不可避的不純物よりな
る合金の鋳塊に対して400〜550℃で1〜30時間
均質化処理を施し、さらに熱間圧延を施すにあたって、
熱間圧延開始温度を400〜550℃とするとともに熱
間圧延終了温度を300℃以下とし、熱間圧延終了後冷
間圧延を施してからもしくは冷間圧延を施さずに、32
0℃未満で中間焼鈍を施し、さらに50%を越える冷間
圧延率で冷間圧延を行なって0.03〜0.10mmの
範囲内の板厚の冷延板とし、さらに150〜320℃の
範囲内の温度で最終焼鈍を施して、引張強さが200N
/mm2 以上のフィン材を得ることを特徴とする、熱交
換器用アルミニウム合金製高強度高耐熱性フィン材の製
造方法。8. Mn 1.0 to 2.0%, Si 0.2 to
0.8%, Zr 0.03-0.3%, C
In addition to containing one or two of r0.03 to 0.3%, Mg0.05 to 0.5%, Cu0.05 to
1% or 2% of 0.3% and Zn
0.2-2.0%, Sn0.01-0.1%, In0.
Alloy containing 005 to 0.1% and one or more of 0.005 to 0.1% Ga, Fe regulated to less than 0.2%, and balance Al and unavoidable impurities In the case of performing homogenization treatment at 400 to 550 ° C. for 1 to 30 hours on the ingot, and further performing hot rolling,
The hot rolling start temperature is set to 400 to 550 ° C., the hot rolling end temperature is set to 300 ° C. or less, and after the hot rolling is finished, cold rolling is performed or not, 32
Intermediate annealing is performed at a temperature of less than 0 ° C, and cold rolling is performed at a cold rolling rate of more than 50% to obtain a cold-rolled sheet having a plate thickness in the range of 0.03 to 0.10 mm, and further 150 to 320 ° C. Final annealing at a temperature within the range, tensile strength of 200N
A method for producing a high-strength and high-heat-resistant fin material made of an aluminum alloy for a heat exchanger, which comprises obtaining a fin material having a thickness of at least 1 / mm 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20286995A JPH0931614A (en) | 1995-07-17 | 1995-07-17 | Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20286995A JPH0931614A (en) | 1995-07-17 | 1995-07-17 | Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0931614A true JPH0931614A (en) | 1997-02-04 |
Family
ID=16464549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20286995A Pending JPH0931614A (en) | 1995-07-17 | 1995-07-17 | Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0931614A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015092023A (en) * | 2013-11-06 | 2015-05-14 | エアバス デーエス ゲーエムベーハーAirbus DS GmbH | Solar cell interconnector and manufacturing method thereof |
JP2015525287A (en) * | 2012-05-23 | 2015-09-03 | グランジェス・スウェーデン・アーべー | Super sag resistant and melt resistant fin material with very high strength |
US10378088B2 (en) | 2015-02-10 | 2019-08-13 | Mitsubishi Aluminum Co., Ltd. | Aluminum alloy fin material and heat exchanger |
CN113025852A (en) * | 2021-03-03 | 2021-06-25 | 江苏鼎胜新能源材料股份有限公司 | Brazing inner fin material for intercooler and manufacturing method thereof |
-
1995
- 1995-07-17 JP JP20286995A patent/JPH0931614A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015525287A (en) * | 2012-05-23 | 2015-09-03 | グランジェス・スウェーデン・アーべー | Super sag resistant and melt resistant fin material with very high strength |
JP2015092023A (en) * | 2013-11-06 | 2015-05-14 | エアバス デーエス ゲーエムベーハーAirbus DS GmbH | Solar cell interconnector and manufacturing method thereof |
US10378088B2 (en) | 2015-02-10 | 2019-08-13 | Mitsubishi Aluminum Co., Ltd. | Aluminum alloy fin material and heat exchanger |
CN113025852A (en) * | 2021-03-03 | 2021-06-25 | 江苏鼎胜新能源材料股份有限公司 | Brazing inner fin material for intercooler and manufacturing method thereof |
CN113025852B (en) * | 2021-03-03 | 2023-09-29 | 江苏鼎胜新能源材料股份有限公司 | Brazing inner fin material for intercooler and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4053793B2 (en) | Manufacturing method of aluminum alloy composite for heat exchanger and aluminum alloy composite | |
JP4408567B2 (en) | Method of manufacturing aluminum alloy fin material | |
US4072542A (en) | Alloy sheet metal for fins of heat exchanger and process for preparation thereof | |
JPH0790520A (en) | Production of high-strength cu alloy sheet bar | |
JP3801017B2 (en) | Method for producing high-strength aluminum alloy brazing sheet for heat exchangers with excellent brazeability, formability and erosion resistance | |
JPH01195263A (en) | Manufacture of al-alloy fin material for heat exchanger | |
JPH11241136A (en) | High corrosion resistant aluminum alloy, clad material thereof, and its production | |
JPH0931614A (en) | Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger | |
JP3683443B2 (en) | Aluminum alloy composite material for heat exchanger and manufacturing method thereof | |
JP3801016B2 (en) | Method for producing high-strength aluminum alloy brazing sheet for heat exchangers with excellent brazeability, formability and erosion resistance | |
JP3735700B2 (en) | Aluminum alloy fin material for heat exchanger and method for producing the same | |
JP3253823B2 (en) | Method for producing high strength and high heat resistant fin material made of aluminum alloy for heat exchanger | |
JPH058087A (en) | Production of high-strength aluminum brazing sheet | |
JPH0931613A (en) | Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger | |
JPH03197652A (en) | Production of aluminum alloy fin material for brazing | |
JPH05305307A (en) | Manufacture of high strength aluminum alloy clad fin stock for heat exchanger | |
JPH08291377A (en) | Production of high strength and high heat resistant fin material for heat exchanger | |
JPH0313550A (en) | Production of high strength aluminum alloy fin material for heat exchanger | |
KR20060030910A (en) | Resistant alloy for heat exchanger | |
JPS6358217B2 (en) | ||
JPH059672A (en) | Manufacture of al alloy brazing sheet strip for flat tube excelent in cuttability | |
JPH07286250A (en) | Production of aluminum alloy brazing sheet for heat exchanger | |
JP2002256403A (en) | Method of producing fin material for use in heat exchanger | |
JPS61104042A (en) | Aluminum-alloy fin material for heat exchanger | |
JPH059671A (en) | Manufacture of al alloy brazing sheet strip for flat tube excellent in cuttability |