Nothing Special   »   [go: up one dir, main page]

JPH09314650A - Biaxially stretching blow molding method - Google Patents

Biaxially stretching blow molding method

Info

Publication number
JPH09314650A
JPH09314650A JP9024374A JP2437497A JPH09314650A JP H09314650 A JPH09314650 A JP H09314650A JP 9024374 A JP9024374 A JP 9024374A JP 2437497 A JP2437497 A JP 2437497A JP H09314650 A JPH09314650 A JP H09314650A
Authority
JP
Japan
Prior art keywords
blow molding
primary
temperature
intermediate molded
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9024374A
Other languages
Japanese (ja)
Other versions
JP2963904B2 (en
Inventor
Hiroaki Sugiura
弘章 杉浦
Fuminori Tanaka
文典 田中
Daisuke Uesugi
大輔 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Kogyosho Co Ltd
Original Assignee
Yoshino Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshino Kogyosho Co Ltd filed Critical Yoshino Kogyosho Co Ltd
Priority to JP2437497A priority Critical patent/JP2963904B2/en
Publication of JPH09314650A publication Critical patent/JPH09314650A/en
Application granted granted Critical
Publication of JP2963904B2 publication Critical patent/JP2963904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0861Other specified values, e.g. values or ranges
    • B29C2949/0862Crystallinity

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a bottle, which shows extremely high heat resistance against heat shrinkage by a method wherein a secondary intermediate molded article, which is obtained by heat-shrinking a biaxially stretching blow-molded primary intermediate molded article at a higher temperature, is secondarily blow-molded at a temperature, which is higher than a maximum usable temperature by several degrees. SOLUTION: Primarily biaxially stretching blow-molding is applied to a primarily intermediate molded article 4 with a primarily blowing mold under the state that a main body part, which is obtained by biaxially stretching blow-molding a perform formed in advance in desired form, is heated up to the blow-moldable temperature range of 90-130 deg.C, which includes the temperature value of 120 deg.C or the temperature just before the heat crystallization temperature of PET and can produce stretching effect. By heating the resultant primarily intermediate molded article 4, which has been biaxially stretching blow-molded, up to the temperature higher than the temperature of a primarily blow mold or 170-255 deg.C and the secondarily blow mold up to the temperature higher than the highest temperature of the atmosphere, under which a molded bottle 6 is used, by 5-10 deg.C, blow molding is applied to the primarily intermediate molded article 4 so as to obtain the bottle 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリエチレンテレ
フタレート樹脂製の2軸延伸ブロー成形方法に関するも
ので、さらに詳言すれば、高い透明性を維持したまま熱
収縮に対する耐熱性が高いポリエチレンテレフタレート
樹脂製の2軸延伸ブロー成形した壜体の成形形方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biaxial stretch blow molding method made of polyethylene terephthalate resin, and more specifically, it is made of polyethylene terephthalate resin having high heat resistance against heat shrinkage while maintaining high transparency. The present invention relates to a method for forming a biaxially stretch blow molded bottle body.

【0002】[0002]

【従来の技術】ポリエチレンテレフタレート樹脂(以
下、単にPET樹脂と記す)は、安定した物性、無公害
性、優れた透明性、そして高い機械的強度等を有するこ
とから、2軸延伸ブロー成形した壜体等の容器として各
方面で多量に使用されており、特に食品用の壜体として
極めて有用なものとなっている。
2. Description of the Related Art Polyethylene terephthalate resin (hereinafter simply referred to as PET resin) has stable physical properties, no pollution, excellent transparency, and high mechanical strength. It is used in a large amount in various fields as a container for the body and the like, and is extremely useful as a bottle for foods.

【0003】このようにPET樹脂製の壜体は、優れた
多数の特性を効果的に発揮するものであるが、適切な熱
処理を施していないPET製の2軸延伸ブロー成形壜体
は、熱に対して弱く、70℃以上の高温下での加熱充填で
は著しく変形する。そのために、120 ℃の条件下で30分
間放置して加熱処理するレトルト食品とか、果汁飲料そ
の他の加熱処理される食品の収納容器としては利用する
ことができず、熱収縮に対する耐熱性の高いPET樹脂
製の壜体の出現が強く望まれているのが現状である。
As described above, the PET resin bottle effectively exhibits a number of excellent characteristics. However, the PET biaxially stretch-blow molded bottle which has not been appropriately heat-treated is It is weak against, and is significantly deformed by heating and filling at a high temperature of 70 ° C or higher. Therefore, PET cannot be used as a container for retort foods that are left to heat for 30 minutes at 120 ° C, or as a container for fruit drinks and other foods that are heat-treated, and PET has high heat resistance against heat shrinkage. At present, the appearance of resin bottles is strongly desired.

【0004】このようなPET樹脂製の壜体に熱収縮に
対する耐熱性を与える方法としては、従来から、(1) P
ET樹脂製壜体の密度を上げるために、ブロー成形時の
ブロー金型の型温を、目標耐熱温度より高温度に加熱し
てブロー成形する方法、(2)一次ブロー成形品である中
間成形品を作り、これを再加熱(110 ℃程度)してから
再度ブロー成形し、完成品を作る方法等がある。
As a method of imparting heat resistance to heat shrinkage to such a bottle made of PET resin, there is a conventional method (1) P
To increase the density of ET resin bottles, blow molding is performed by heating the mold temperature of the blow mold during blow molding to a temperature higher than the target heat-resistant temperature. (2) Intermediate blow molding that is a primary blow molding product There is a method of making a finished product, reheating it (about 110 ° C) and then blow-molding it again to make a finished product.

【0005】[0005]

【発明が解決しようとする課題】これらの方法のうち、
(1) の方法は、金型温度が上昇するほど、賦形性が悪く
なり、従来は、85℃充填程度の熱収縮に対する耐熱性が
限度であるので、現在用いられているのように、これよ
りはるかに高い95℃程度の温度で熱処理される食品に対
して利用することは、全く不可能であった。また、上記
したPET樹脂製壜体に熱収縮に対する耐熱性を与える
方法の(2)は、(1) に示した方法以上の熱収縮に対する
耐熱性を望めないので問題外であった。
SUMMARY OF THE INVENTION Among these methods,
In the method of (1), as the mold temperature rises, the moldability deteriorates, and conventionally, the heat resistance to heat shrinkage of about 85 ° C. is the limit, so as used now, It could not be used for foods that are heat-treated at a temperature much higher than 95 ° C. Further, the above method (2) of imparting heat resistance to heat shrinkage to the PET resin bottle was out of the problem because heat resistance to heat shrinkage higher than the method shown in (1) cannot be expected.

【0006】本発明は、上記した従来例における問題点
および不満点を解消すると共に、従来からの要望を満た
すべく創案されたもので、予め所望形状に形成されたプ
リフォームを2軸延伸ブロー成形して一次中間成形品に
成形し、この一次中間成形品を加熱処理して強制的に熱
収縮変形させて二次中間成形品に成形し、この二次中間
成形品を完成品である壜体にブロー成形することによっ
て、極めて高い熱収縮に対する耐熱性を発揮する壜体を
得ることを目的としたものである。
The present invention was devised to solve the above-mentioned problems and dissatisfactions in the conventional example, and to meet the conventional demands. Biaxial stretch blow molding of a preform formed in a desired shape in advance. Then, it is molded into a primary intermediate molded product, and this primary intermediate molded product is subjected to heat treatment to forcibly undergo heat shrinkage deformation to be molded into a secondary intermediate molded product, and this secondary intermediate molded product is a finished bottle The purpose is to obtain a bottle that exhibits extremely high heat resistance against heat shrinkage by blow molding.

【0007】[0007]

【課題を解決するための手段】本発明は、PET製壜体
の2軸延伸ブロー成形方法であって、予め所望形状に成
形されたプリフォーム1の2軸延伸ブロー成形される本
体部2をPETの熱結晶化寸前の温度値120 ℃を含む延
伸効果の現出できるブロー成形可能な温度範囲である90
℃〜130 ℃に加熱した状態で一次ブロー金型により一次
中間成形品4に一次2軸延伸ブロー成形し、この2軸延
伸ブロー成形された一次中間成形品4を、一次ブロー金
型の型温よりも高い温度である170 ℃〜255 ℃に加熱す
ると共に、二次ブロー金型の型温を、成形された壜体6
の使用される雰囲気の最高温度よりも数度高い温度(5
〜10℃程度)に加熱した状態で壜体6にブロー成形する
ものである。である120 ℃〜150 ℃
DISCLOSURE OF THE INVENTION The present invention is a method for biaxially stretch blow molding a bottle made of PET, wherein a preform 1 molded in a desired shape in advance has a main body 2 which is biaxially stretch blow molded. A temperature range of 120 ° C. on the verge of thermal crystallization of PET, which is a temperature range in which blow molding can be performed in which the stretching effect can be exhibited 90
C. to 130.degree. C., primary biaxial stretch blow molding is performed on the primary intermediate molded product 4 by the primary blow mold, and the biaxially stretch blow molded primary intermediate molded product 4 is heated to the mold temperature of the primary blow mold. It is heated to a higher temperature of 170 ℃ ~ 255 ℃, and the mold temperature of the secondary blow mold is changed to the molded bottle body 6.
A few degrees higher than the maximum temperature of the atmosphere used (5
The bottle 6 is blow-molded while being heated to about 10 ° C. 120 ℃ ~ 150 ℃

【0008】[0008]

【発明の実施の形態】本発明の2軸延伸ブロー成形方法
を、本発明の一実施例を示す図面を参照しながら以下に
具体的に説明する。本発明によるブロー成形方法は、プ
リフォーム1を予め所望形状に射出成形等を使用して成
形する第1の工程と、延伸変形することなく前記第1の
工程成形時の形状のまま最終成形品、すなわち壜体6の
一部を構成する口部を、熱変形しないように熱結晶させ
る第2の工程と、そして本発明方法の要旨であるブロー
成形操作の第3の工程とから構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION The biaxial stretch blow molding method of the present invention will be specifically described below with reference to the drawings showing one embodiment of the present invention. The blow molding method according to the present invention includes a first step of molding the preform 1 into a desired shape in advance by using injection molding or the like, and a final molded article having the shape at the time of the first step molding without stretching deformation. That is, it comprises a second step of thermally crystallizing the mouth part forming a part of the bottle body 6 so as not to be thermally deformed, and a third step of the blow molding operation which is the gist of the method of the present invention. There is.

【0009】第1の工程、すなわちプリフォーム1の成
形操作は、多くの場合、通常の射出成形によって達成さ
れるのであるが、成形されるプリフォーム1はその形状
が特定されることはなく、第1図に実線図示した如く、
皿形状となっていても良いし、あるいは、有底の細長筒
形状をしていても良い。このようなプリフォーム1は、
ブロー成形金型への組付き部分となる口部3と、延伸成
形される壜体6の底部を含めた胴部となる本体部2とか
ら構成されていて、この本体部2が高い一次ブロー金型
の型温にもかかわらず、白化することなく一次中間成形
品4に成形されるための適当な延伸量は、多くの実験を
重ねた結果によると、面積倍率(プリフォーム1の本体
部2の表面積S1 、一次中間成形品4の表面積S2 とし
たときS2 /S1 )で表すとほぼ5〜13倍程度である。
The first step, that is, the molding operation of the preform 1 is often accomplished by ordinary injection molding, but the shape of the preform 1 to be molded is not specified. As shown by the solid line in FIG.
It may have a dish shape, or may have an elongated tubular shape with a bottom. Such a preform 1 is
It comprises a mouth part 3 which is an assembly part to a blow molding die, and a main body part 2 which is a body part including a bottom part of a bottle body 6 to be stretch-molded. Despite the mold temperature, the appropriate stretching amount for molding into the primary intermediate molded product 4 without whitening is that the area magnification (main part of the preform 1 is surface area S 1 of 2, is approximately 5 to 13 times is represented by S 2 / S 1) when the surface area S 2 of the primary intermediate product 4.

【0010】延伸面積倍率が5倍以下であると、一次中
間成形品4を加熱して二次中間成形品5への強制的な加
熱収縮成形時の加熱温度によって白化する恐れがあり、
また、反対に延伸面積倍率が13以上であると、ボイドが
発生して延伸成形はできるが白濁して賦形性が悪くな
る。従って、実施例に於けるプリフォーム1の本体部2
は、一次中間成形品4の加熱時に熱結晶化、すなわち白
化しないように一次中間成形品4を、前記した如く、延
伸面積倍率(S2 /S1 )が5〜13倍程度になるように
成形すると、配向した結晶化密度を約1.350 〔g/cm
3 〕以上とすることができるように皿形状となっている
のである。
If the stretched area ratio is 5 times or less, the primary intermediate molded product 4 may be heated and the secondary intermediate molded product 5 may be whitened by the heating temperature during the forced heat shrink molding.
On the other hand, when the stretching area ratio is 13 or more, voids are generated and the stretch molding can be performed, but it becomes cloudy and the shapeability is deteriorated. Therefore, the main body portion 2 of the preform 1 in the embodiment
In order to prevent thermal crystallization, that is, whitening, during heating of the primary intermediate molded product 4, the stretched area ratio (S 2 / S 1 ) of the primary intermediate molded product 4 is set to about 5 to 13 times as described above. When molded, it has an oriented crystallization density of about 1.350 [g / cm
3 ] It has a dish shape so that the above can be done.

【0011】また、上記プリフォーム1の本体部2の口
部3との接続部分である周端部および中央部は、本体部
2の他の部分よりも延伸作用を受け難く、白化し易い部
分であるので、これらの部分は、他の部分よりも、その
肉厚を比較的薄くして、延伸し易いように構成しておく
のが良い。このように、所望の形状に成形されたプリフ
ォーム1は、一次中間成形品4への2軸延伸ブロー成形
操作に先立って、その口部3の熱結晶化操作による口部
3の白化処理を行う。
Further, the peripheral end portion and the central portion of the preform 1 which are the connecting portions with the mouth portion 3 of the main body portion 2 are less subject to the stretching action than the other portions of the main body portion 2 and are easily whitened. Therefore, it is preferable that the thickness of these portions is made relatively thin as compared with the other portions so that they can be easily stretched. As described above, the preform 1 molded into a desired shape is subjected to the whitening treatment of the mouth portion 3 by the thermal crystallization operation of the mouth portion 3 prior to the biaxial stretch blow molding operation for the primary intermediate molded product 4. To do.

【0012】上記のような口部3の白化は、口部3を充
分に加熱した状態から徐冷すれば良く、ただ、この口部
3の白化処理に際して注意すべきことは、この白化処理
によって口部3が不都合な形態に変形しないようにする
ことである。特に、変形によって口部3の真円程度が劣
化するのは、成形品である壜体6の容器としての機能を
大幅に低下させることになるので、極めて厳重に防止す
る必要がある。
To whiten the mouth 3 as described above, it is sufficient to cool the mouth 3 from a sufficiently heated state. However, what should be noted in the whitening treatment of the mouth 3 is the whitening treatment. This is to prevent the mouth portion 3 from being deformed into an inconvenient form. In particular, the deformation of the roundness of the mouth portion 3 due to the deformation significantly deteriorates the function of the bottle body 6 which is a molded product as a container, and therefore must be strictly prevented.

【0013】このようにして、プリフォーム1の口部3
が白化が達成されたならば、このプリフォーム1を第3
の工程であるブロー成形工程によって壜体6に成形する
のであるが、このブロー成形工程は、プリフォーム1を
一次中間成形品4に一次の2軸延伸ブロー成形する工程
と、この一次中間成形品4を加熱して強制的に熱収縮さ
せて二次中間成形品5に成形する工程と、最後に、この
二次中間成形品5を壜体6に二次ブロー成形する工程と
から成っている。プリフォーム1を一次中間成形品4に
2軸延伸ブロー成形する一次2軸延伸ブロー成形工程
は、このプリフォーム1を、正確にはプリフォーム1の
本体部2を、成形合成樹脂材料であるPET樹脂の熱結
晶化寸前の温度値120 ℃を含む延伸効果の現出できるブ
ロー成形可能な温度範囲である90℃〜130 ℃に加熱した
状態で達成される。
In this way, the mouth portion 3 of the preform 1
If whitening is achieved, this preform 1
The bottle body 6 is molded by the blow molding process, which is a process of the first step, and the blow molding process includes a step of performing the primary biaxial stretch blow molding of the preform 1 into the primary intermediate molded product 4 and the primary intermediate molded product. 4 is heated to forcibly heat-shrink to form a secondary intermediate molded product 5, and finally, this secondary intermediate molded product 5 is subjected to secondary blow molding into a bottle body 6. . In the primary biaxial stretch blow molding step of biaxially stretch blow molding the preform 1 into the primary intermediate molded product 4, the preform 1, to be precise, the main body portion 2 of the preform 1 is formed of PET which is a synthetic resin material. It is achieved in a state where the resin is heated to a temperature range of 90 ° C to 130 ° C, which is a temperature range in which blow molding can be performed, in which a stretching effect including a temperature value of 120 ° C just before thermal crystallization is exhibited.

【0014】上記の一次2軸延伸ブロー成形工程におけ
る、前記した二次ブロー成形時の加熱によって熱結晶化
しない状態で延伸成形ができるようにする具体的な手段
としては、前記した如く、一次中間成形品4の底部を含
む胴部、すなわち本体部2を延伸ブロー成形した部分が
配向結晶していることは云うまでもないが、その密度が
1.350 〔g/cm3 〕以上となるようにするには、プリフ
ォーム1から一次中間成形品4への延伸倍率を、面積倍
率で5〜13倍に設定するのが良い。
In the above-mentioned primary biaxial stretch blow molding step, as a concrete means for enabling the stretch molding to be performed in the state where it is not thermally crystallized by the heating at the time of the secondary blow molding, as described above, the primary intermediate It goes without saying that the body including the bottom of the molded product 4, that is, the portion where the main body 2 is stretch-blow-molded has oriented crystals, but its density is
In order to obtain 1.350 [g / cm 3 ] or more, it is preferable to set the stretch ratio from the preform 1 to the primary intermediate molded product 4 to 5 to 13 times in area ratio.

【0015】次に、一次中間成形品4を加熱して強制的
に熱収縮させて二次中間成形品5に成形する工程は、2
軸延伸ブロー成形品内に生じる内部残留応力を強制的に
素早く消滅させるためのもので、一次ブロー金型を使用
して2軸延伸ブロー成形された一次中間成形品4の各延
伸成形部分内に発生している内部残留応力に従って、こ
の一次中間成形品4の各延伸成形部分を自由に変形さ
せ、もって前記した内部残留応力を強制的に消滅させる
のである。
Next, the step of heating the primary intermediate molded product 4 to forcibly heat-shrink it to mold it into the secondary intermediate molded product 5 includes 2 steps.
The purpose is to forcibly and quickly eliminate the internal residual stress generated in the axial stretch blow-molded product, and in each stretch-molded part of the primary intermediate-molded product 4 biaxially stretch-blow molded using the primary blow mold. According to the generated internal residual stress, each stretch-molded portion of the primary intermediate molded product 4 is freely deformed, so that the internal residual stress described above is forcibly eliminated.

【0016】このように一次中間成形品4の各延伸成形
部分内に発生している内部残留応力に従った変形は、当
然のことながら収縮変形となるが、この収縮変形により
成形された二次中間成形品5の延伸成形部分、すなわ
ち、底部を含んだ胴部である本体部2は、第2図に示す
ように、成形目的物である壜体6の延伸成形部分である
底部を含んだ胴部とほぼ同じわずかに小さい大きさとな
るように、プリフォーム1から一次中間成形品4への延
伸成形の倍率、および一次中間品4の寸法が設定されて
いる。
The deformation according to the internal residual stress generated in each stretch-molded portion of the primary intermediate molded product 4 as described above naturally becomes the contractive deformation, but the secondary molded by this contractive deformation. As shown in FIG. 2, the stretch-molded portion of the intermediate molded product 5, that is, the body portion 2 which is the body portion including the bottom portion, includes the bottom portion which is the stretch-molded portion of the bottle body 6 as the molding target. The draw ratio of the stretch molding from the preform 1 to the primary intermediate molded product 4 and the size of the primary intermediate product 4 are set so that the size is slightly smaller than the body part.

【0017】そして、二次中間成形品5を壜体6にブロ
ー成形する工程は、前記した工程で、一次ブロー金型の
型温よりも高い温度である170 ℃〜255 ℃に加熱されて
熱収縮した二次中間成形品5を、成形目的物である壜体
6が使用される使用雰囲気最高温度よりも数度高い温度
である120 ℃〜150 ℃に加熱された二次ブロー金型によ
って壜体6にブロー成形するのである。この二次中間成
形品5の壜体6へのブロー成形工程において、前記した
如く、二次中間成形品5のブロー成形部分である底部を
含んだ胴部である本体部2は、壜体6の対応する底部を
含んだ胴部とほぼ等しいかもしくはわずかに小さいだけ
であるので、二次中間成形品5から壜体6への延伸成形
時における延伸量は極めて少なく、それゆえこの二次中
間成形品5から壜体6への延伸成形によって、成形され
た壜体6の延伸成形部分内には、ほとんど延伸成形によ
る内部残留応力を発生することがない。
The step of blow molding the secondary intermediate molded product 5 into the bottle body 6 is carried out by heating to 170 ° C. to 255 ° C. which is a temperature higher than the mold temperature of the primary blow mold in the above-mentioned step. The contracted secondary intermediate molded product 5 is heated by a secondary blow mold heated to 120 ° C. to 150 ° C., which is a temperature several degrees higher than the maximum temperature of the atmosphere in which the bottle body 6 which is the molding target is used. The body 6 is blow-molded. In the blow molding process of the secondary intermediate molded product 5 into the bottle 6, as described above, the main body 2 which is the body including the bottom which is the blow molded portion of the secondary intermediate molded product 5 is Since it is almost equal to or slightly smaller than the body including the corresponding bottom, the amount of stretching during the stretch forming from the secondary intermediate molded product 5 to the bottle body 6 is extremely small, and therefore, the secondary intermediate By the stretch molding from the molded product 5 to the bottle 6, almost no internal residual stress due to the stretch molding is generated in the stretch-molded portion of the molded bottle 6.

【0018】また、壜体6は、その使用雰囲気の最高温
度よりも高い温度となった二次ブロー金型によってブロ
ー成形されるので、該二次ブロー金型によりヒートセッ
トされることになり、もって内部残留応力のない、そし
て熱収縮に対する耐熱性の高い壜体6を得ることができ
ることになるのである。このように、本発明による2軸
延伸ブロー成形方法は、熱収縮に対する耐熱性の極めて
優れた壜体6を成形することができるのであるが、一次
中間成形品4から加熱収縮成形される二次中間成形品5
の収縮程度をより正確に制御し、もって内部残留応力の
より少ないそして寸法精度の高いかつ適正肉厚分布の壜
体6を得るには、一次ブロー金型の型温を成形される一
次中間成形品4の熱収縮量をコントロールできるように
110 ℃〜230 ℃に設定するのが良い。そして、上記一次
ブロー金型の型温は、延伸成形される一次中間成形品4
の延伸面積倍率に従って設定されるべきものであり、延
伸面積倍率の増大に従ってその温度値を大きく設定する
のが良い。
Further, since the bottle body 6 is blow-molded by the secondary blow mold whose temperature is higher than the maximum temperature of the atmosphere in which it is used, it is heat set by the secondary blow mold. Therefore, it is possible to obtain the bottle body 6 having no internal residual stress and having high heat resistance against heat shrinkage. As described above, the biaxial stretch blow molding method according to the present invention can mold the bottle 6 having extremely excellent heat resistance against heat shrinkage. Intermediate molded product 5
In order to obtain a bottle body 6 with more accurate control of the degree of shrinkage, less internal residual stress, high dimensional accuracy, and proper wall thickness distribution, the primary intermediate molding in which the mold temperature of the primary blow mold is molded To be able to control the amount of heat shrinkage of item 4
It is better to set it to 110-230 ℃. The mold temperature of the primary blow mold is the same as that of the primary intermediate molded product 4 to be stretch-molded.
It should be set according to the stretching area ratio, and the temperature value should be set larger as the stretching area ratio increases.

【0019】[0019]

【実施例】次に、本発明の成形方法に於ける実施例を以
下に記す。射出成形により予備成形したプリフォーム1
の加熱温度115 ℃、一次ブロー金型の型温180 ℃、ブロ
ー圧25kg/cm2 、そしてブロー時間1.4 秒で、プリフォ
ーム1から一次中間成形品4への一次2軸延伸ブロー成
形を行った。次いで、金型を開いて、前記一次中間成形
品4に対して加熱温度225 ℃で一次中間成形品4から二
次中間成形品5への熱収縮変形を行った後、二次ブロー
金型の型温140 ℃、ブロー圧30kg/cm2 、そしてブロー
時間4.4 秒で、前記二次中間成形品5を壜体6に成形し
た。
EXAMPLES Next, examples of the molding method of the present invention will be described below. Preform 1 preformed by injection molding
At a heating temperature of 115 ° C., a mold temperature of the primary blow mold of 180 ° C., a blow pressure of 25 kg / cm 2 , and a blow time of 1.4 seconds, the primary biaxial stretch blow molding was performed from the preform 1 to the primary intermediate molded product 4. . Next, the mold is opened, and the primary intermediate molded product 4 is subjected to heat shrinkage deformation from the primary intermediate molded product 4 to the secondary intermediate molded product 5 at a heating temperature of 225 ° C. The secondary intermediate molded product 5 was molded into a bottle body 6 at a mold temperature of 140 ° C., a blow pressure of 30 kg / cm 2 , and a blow time of 4.4 seconds.

【0020】このようにして成形された壜体6を、収納
槽内の120 ℃に加熱したグリセリン内に、キャップなし
の状態で、30分間浸漬位置させて加熱し、この壜体6を
前記グリセリン内から取出して、水冷して加熱前との変
化を求めたところ、この壜体6の容積変化率は、0.33%
となり、このことから充分に熱収縮に対する耐熱性の高
いPETボトルを成形することのできることが明らかと
なった。上記のようにして成形した壜体に、80℃の内容
液を充填してキャッピングし、レトルト殺菌処理した場
合、レトルト殺菌処理温度120 ℃、F値(滅菌時間値)
6〜10(分)で変化がなく容量変化率は0.5 %以下であ
った。
The bottle body 6 thus formed is immersed in glycerin heated to 120 ° C. in a storage tank for 30 minutes without being capped and heated to heat the bottle body 6 to the above-mentioned glycerin. The volume change rate of this bottle 6 was 0.33% when it was taken out from the inside, cooled with water and the change from before heating was obtained.
From this, it became clear that a PET bottle having sufficiently high heat resistance against heat shrinkage can be molded. When the bottle body molded as described above is filled with the content liquid at 80 ° C and capped and subjected to retort sterilization treatment, the retort sterilization treatment temperature is 120 ° C and the F value (sterilization time value).
There was no change in 6 to 10 (minutes), and the rate of change in capacity was 0.5% or less.

【0021】また、壜体6を成形するためのPET樹脂
材料中には、全く添加剤が混入されておらず、極めて優
れた透明性を発揮することができたものとなり、また、
その結晶化した密度が1.3853〜1.3918〔g/cm3 〕とな
り(これは二次中間成形品5の表面積S3 、壜体6の表
面積S4 とすると、延伸面積倍率S4 /S3 で1.5 倍程
度である)、従来の熱処理を施さないこの種の壜体の結
晶化度が約16%であり、従来の熱固定処理を施した壜体
の結晶化度が約33%であるのに対し、前記した本発明に
より成形された壜体6の結晶化度は約49%を得ることが
できた。
Further, no additives were mixed in the PET resin material for molding the bottle 6, and it was possible to exhibit extremely excellent transparency.
Its crystallized density is 1.3853 to 1.3918 [g / cm 3 ] (where this is the surface area S 3 of the secondary intermediate molded product 5 and the surface area S 4 of the bottle body 6, the stretching area ratio S 4 / S 3 is 1.5. Although the crystallinity of this type of bottle without conventional heat treatment is about 16%, the crystallinity of the bottle with conventional heat setting is about 33%. On the other hand, the crystallinity of the bottle body 6 molded according to the present invention was about 49%.

【0022】このように本願発明は、充分に高い密度を
得ることができ、かつ、高い成形性を得られるので、減
圧強度等の機械的強度も大幅に向上させることができ
た。さらに、壜体6の内部残留応力を測定してみたとこ
ろ、加熱温度が110 ℃を越えたところで内部残留応力を
発現し始め、加熱温度の上昇に従って徐々にその値は上
昇したが、150 ℃まで加熱してみたところ、この発現し
た内部残留応力の最大値は0.22〔kg/mm2 〕と極めて小
さな値であった。従って、壜体の使用雰囲気の温度とし
て95℃程度での熱充填に耐え得るものが成形可能とな
り、それには二次ブロー金型の型温は100 ℃〜105 ℃に
して二次ブロー成形を行えば良い。なお、上記した各実
施例における壜体6を観察したところ、壜体6底部の中
心部付近にわずかに白濁が認められたが、これは他の部
分に比べて前記した壜体6底部中心部に対する延伸が必
ずしも充分に与えることができないためと思われる。
As described above, according to the present invention, a sufficiently high density can be obtained and a high moldability can be obtained, so that the mechanical strength such as the reduced pressure strength can be greatly improved. Furthermore, when the internal residual stress of the bottle 6 was measured, the internal residual stress began to appear when the heating temperature exceeded 110 ° C, and gradually increased as the heating temperature increased, but up to 150 ° C. Upon heating, the maximum value of the internal residual stress developed was 0.22 [kg / mm 2 ] which was a very small value. Therefore, it becomes possible to mold a bottle that can withstand hot filling at a temperature of about 95 ° C as the atmosphere in which the bottle is used, and the secondary blow mold is performed at a mold temperature of 100 ° C to 105 ° C. I'm fine. As a result of observing the bottle 6 in each of the above-mentioned examples, a slight white turbidity was observed in the vicinity of the center of the bottom of the bottle 6, but this was compared with the other parts, which was the center of the bottom of the bottle 6 described above. It seems that the stretching cannot always be performed sufficiently.

【0023】[0023]

【発明の効果】以上の説明から明らかな如く、本発明に
よるPET製壜体の成形方法は、内部残留応力のない極
めて熱収縮に対する耐熱性の高い壜体を成形することが
でき、また壜体各部の密度を充分に大きくすることがで
きるので、減圧強度等の機械的強度の大きい壜体に成形
することができ、さらに従来からプリフォームの加熱に
用いている遠赤外線加熱装置等の加熱手段とブロー成形
手段とを適当に組合わせて実施することができるので、
その実施が容易であると共に、高い透明性を維持するこ
とができる等多くの優れた効果を発揮するものである。
As is apparent from the above description, the method for forming a PET bottle according to the present invention can form a bottle having no internal residual stress and having a high heat resistance against heat shrinkage. Since the density of each part can be made sufficiently large, it can be molded into a bottle having high mechanical strength such as decompression strength, and a heating means such as a far infrared heating device conventionally used for heating a preform. Since it can be carried out by appropriately combining the blow molding means and the blow molding means,
It is easy to carry out, and exhibits many excellent effects such as maintaining high transparency.

【図面の簡単な説明】[Brief description of drawings]

【図1】プリフォームの一次ブロー成形操作状態の縦断
面図である
FIG. 1 is a vertical cross-sectional view of a preform primary blow molding operation state.

【図2】一次中間成形品の強制熱収縮変形を示す縦断面
図である
FIG. 2 is a vertical cross-sectional view showing forced heat shrinkage deformation of a primary intermediate molded product.

【図3】二次中間成形品の二次ブロー成形操作状態の縦
断面図である
FIG. 3 is a vertical cross-sectional view of a secondary blow molding operation state of a secondary intermediate molded product.

【符号の説明】[Explanation of symbols]

1 プリフォーム 2 本体部 3 口部 4 一次中間成形品 5 二次中間成形品6 壜体 1 Preform 2 Body part 3 Mouth part 4 Primary intermediate molded product 5 Secondary intermediate molded product 6 Bottle

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 予め所望形状に成形されたポリエチレン
テレフタレート樹脂からなるプリフォームを、熱結晶化
寸前の温度値120 ℃を含む効果的な2軸延伸ブロー成形
が可能な温度範囲である90℃〜130 ℃に加熱した状態
で、前記プリフォームの延伸される部分の延伸面積倍率
を5〜13倍に設定した一次ブロー成形金型により一次中
間成形品に一次2軸延伸ブロー成形した後、前記一次ブ
ロー成形金型を開いて、前記2軸延伸ブロー成形された
一次中間成形品を、一次ブロー成形金型の型温よりも高
い温度に加熱して熱収縮させて二次中間成形品となし、
該二次中間成形品を、製品となった壜体が使用される雰
囲気の最高温度よりも数度高い温度に加熱してなる二次
ブロー成形金型により壜体に二次ブロー成形して熱固定
することを特徴とする2軸延伸ブロー成形方法。
1. A preform formed of a polyethylene terephthalate resin which has been molded in a desired shape in advance is capable of effective biaxial stretch blow molding including a temperature value of 120 ° C. immediately before thermal crystallization, which is a temperature range of 90 ° C. In a state of being heated to 130 ° C., primary biaxial stretch blow molding was performed on a primary intermediate molded product using a primary blow molding die in which a stretching area ratio of a stretched portion of the preform was set to 5 to 13 times, and then the primary The blow molding die is opened, and the biaxially stretch blow molded primary intermediate molded article is heated to a temperature higher than the mold temperature of the primary blow molding die to be heat-shrinked to form a secondary intermediate molded article.
The secondary intermediate molded product is secondarily blow molded into a bottle by a secondary blow molding die which is heated to a temperature several degrees higher than the maximum temperature of the atmosphere in which the bottle as a product is used. A biaxial stretch blow molding method characterized by fixing.
【請求項2】 予め所望形状に成形されたポリエチレン
テレフタレート樹脂からなるプリフォームを、熱結晶化
寸前の温度値120 ℃を含む効果的な2軸延伸ブロー成形
が可能な温度範囲である90℃〜130 ℃に加熱した状態
で、前記プリフォームの延伸される部分の延伸面積倍率
を5〜13倍に設定した一次ブロー成形金型により一次中
間成形品に一次2軸延伸ブロー成形した後、前記一次ブ
ロー成形金型を開いて、前記2軸延伸ブロー成形された
一次中間成形品を、一次ブロー成形金型の型温よりも高
い温度に加熱して熱収縮させて二次中間成形品となし、
該二次中間成形品を、製品となった壜体が使用される雰
囲気の最高温度よりも数度高い温度に加熱してなる二次
ブロー成形金型により壜体に二次ブロー成形する2軸延
伸ブロー成形方法に於いて、前記一次中間成形品が170
℃〜255 ℃に再加熱して二次中間成形品に収縮させる際
に、該一次中間成形品が延伸ブロー成形される各部の寸
法を、前記壜体の対応する各部の寸法と等しいかもしく
はわずかに小さくなる値に設定したことを特徴とする2
軸延伸ブロー成形方法。
2. A preform formed of a polyethylene terephthalate resin which has been molded into a desired shape in advance is capable of effective biaxial stretch blow molding including a temperature value of 120 ° C. immediately before thermal crystallization, which is a temperature range of 90 ° C. In a state of being heated to 130 ° C., primary biaxial stretch blow molding was performed on a primary intermediate molded product using a primary blow molding die in which a stretching area ratio of a stretched portion of the preform was set to 5 to 13 times, and then the primary The blow molding die is opened, and the biaxially stretch blow molded primary intermediate molded article is heated to a temperature higher than the mold temperature of the primary blow molding die to be heat-shrinked to form a secondary intermediate molded article.
A twin-screw for secondary blow molding of a bottle into a bottle by a secondary blow molding die obtained by heating the secondary intermediate molded product to a temperature that is several degrees higher than the maximum temperature of the atmosphere in which the bottle that is the product is used. In the stretch blow molding method, the primary intermediate molded product is 170
When reheated to ℃ ~ 255 ℃ to shrink to the secondary intermediate molded product, the size of each part where the primary intermediate molded product is stretch blow molded is equal to or less than the size of each corresponding part of the bottle. Is set to a value that is smaller than 2
Axial stretch blow molding method.
【請求項3】 予め所望形状に成形されたポリエチレン
テレフタレート樹脂からなるプリフォームを、熱結晶化
寸前の温度値120 ℃を含む効果的な2軸延伸ブロー成形
が可能な温度範囲である90℃〜130 ℃に加熱すると共
に、前記プリフォームの延伸される部分の延伸面積倍率
を5〜13倍に設定した一次ブロー成形金型を、二次ブロ
ー成形時の加熱により熱結晶化しないで延伸成形ができ
るように110 ℃〜230 ℃に加熱した状態で一次中間成形
品に一次2軸延伸ブロー成形した後、前記一次ブロー成
形金型を開いて、前記2軸延伸ブロー成形された一次中
間成形品を、一次ブロー成形金型の型温よりも高い温度
に加熱して熱収縮させて二次中間成形品となし、該二次
中間成形品を、製品となった壜体が使用される雰囲気の
最高温度よりも数度高い温度に加熱してなる二次ブロー
成形金型により壜体に二次ブロー成形することを特徴と
する2軸延伸ブロー成形方法。
3. A temperature range of 90 ° C., which is a temperature range of 120 ° C. on the verge of thermal crystallization, in which a preform made of a polyethylene terephthalate resin molded in a desired shape can be effectively biaxially stretch blow molded. While being heated to 130 ° C, the primary blow molding die in which the stretching area ratio of the stretched portion of the preform is set to 5 to 13 times can be stretch-molded without being thermally crystallized by heating during the secondary blow molding. After performing primary biaxial stretch blow molding on the primary intermediate molded product while heating it to 110 ° C to 230 ° C as much as possible, open the primary blow molding die to obtain the biaxial stretch blow molded primary intermediate molded product. , The primary blow molding die is heated to a temperature higher than that of the mold to be heat-shrinked to form a secondary intermediate molded product, and the secondary intermediate molded product is the highest in the atmosphere in which the bottle body is used. A few degrees higher than the temperature Biaxial stretch blow molding method, characterized in that the secondary blow molded bottle body by heating the secondary blow molding mold comprising.
【請求項4】 予め所望形状に成形されたポリエチレン
テレフタレート樹脂からなるプリフォームを、熱結晶化
寸前の温度値120 ℃を含む効果的な2軸延伸ブロー成形
が可能な温度範囲である90℃〜130 ℃に加熱すると共
に、前記プリフォームの延伸される部分の延伸面積倍率
を5〜13倍に設定した一次ブロー成形金型の型温を、二
次ブロー成形時の加熱により熱結晶化しない状態で延伸
成形ができるように110 ℃〜230 ℃に加熱した状態で一
次中間成形品に一次2軸延伸ブロー成形した後、前記一
次ブロー成形金型を開いて、該2軸延伸ブロー成形され
た一次中間成形品を、一次ブロー成形金型の型温よりも
高い温度で加熱して熱収縮させて二次中間成形品とな
し、該二次中間成形品を、製品となった壜体が使用され
る雰囲気の最高温度よりも数度高い温度に加熱してなる
二次ブロー成形金型により壜体に二次ブロー成形する2
軸延伸ブロー成形方法に於いて、前記一次中間成形品を
一次ブロー成形金型の型温よりも高い温度に再加熱して
二次中間成形品に収縮させる際に、前記一次中間成形品
が延伸ブロー成形される各部の寸法を、前記壜体の対応
する各部の寸法と等しいかもしくはわずかに小さくなる
値に設定したことを特徴とする2軸延伸ブロー成形方
法。
4. A temperature range of 90.degree. C., which is a temperature range of 120.degree. C. on the verge of thermal crystallization, in which a preform made of a polyethylene terephthalate resin molded in a desired shape can be effectively biaxially stretch blow molded. A state in which the mold temperature of the primary blow molding die, which is heated to 130 ° C. and the stretching area ratio of the stretched portion of the preform is set to 5 to 13 times, is not thermally crystallized by the heating during the secondary blow molding. After the primary biaxial stretch blow molding is performed on the primary intermediate molded product in a state of being heated to 110 ° C to 230 ° C so that the primary biaxial stretch blow molding is performed, the primary blow molding die is opened. The intermediate molded product is heated at a temperature higher than the mold temperature of the primary blow molding die to be heat-shrinked to form a secondary intermediate molded product, and the secondary intermediate molded product is used as a product bottle. A few degrees higher than the maximum temperature of the atmosphere 2 to the secondary blow molding the bottle body by There secondary blow molding mold comprising heating to a temperature
In the axial stretch blow molding method, when the primary intermediate molded product is reheated to a temperature higher than the mold temperature of the primary blow molding die to shrink into the secondary intermediate molded product, the primary intermediate molded product is stretched. A biaxial stretch blow molding method, characterized in that the dimensions of each part to be blow molded are set to values equal to or slightly smaller than the dimensions of the corresponding parts of the bottle.
【請求項5】 前記特許請求の範囲第1乃至第4項に記
載した2軸延伸ブロー成形方法に於いて、前記二次中間
成形品を、製品となった壜体が使用される雰囲気の最高
温度よりも数度高い温度である100 ℃〜150 ℃に加熱し
てなる二次ブロー成形金型により壜体に二次ブロー成形
することを特徴とする2軸延伸ブロー成形方法。
5. The biaxial stretch blow molding method according to any one of claims 1 to 4, wherein the secondary intermediate molded product is the highest in the atmosphere in which the bottle is used. A biaxially stretch blow-molding method, characterized in that the bottle is subjected to secondary blow-molding by a secondary blow-molding die which is heated to 100 ° C to 150 ° C which is several degrees higher than the temperature.
【請求項6】 前記特許請求の範囲第1乃至第4項に記
載した2軸延伸ブロー成形方法に於いて、一次中間成形
品を一次ブロー成形金型の型温よりも高い温度に加熱し
て熱収縮させて二次中間成形品となすのに、金型を開い
て170 ℃〜255 ℃の加熱温度により一次中間成形品を加
熱して二次中間成形品に収縮させることを特徴とする2
軸延伸ブロー成形方法。
6. The biaxial stretch blow molding method according to any one of claims 1 to 4, wherein the primary intermediate molded product is heated to a temperature higher than the mold temperature of the primary blow molding die. In order to form a secondary intermediate molded product by heat-shrinking, the mold is opened and the primary intermediate molded product is heated at a heating temperature of 170 ° C to 255 ° C to shrink the secondary intermediate molded product.
Axial stretch blow molding method.
【請求項7】 前記特許請求の範囲第4項に記載した2
軸延伸ブロー成形方法に於いて、前記一次中間成形品を
一次ブロー成形金型の型温よりも高い温度の170 ℃〜25
5 ℃に再加熱して収縮させた二次中間成形品を、延伸面
積倍率が1.0〜1.5 倍なるように二次延伸ブロー成形し
て壜体に成形することを特徴とする2軸延伸ブロー成形
方法。
7. The method according to claim 4, wherein
In the axial stretch blow molding method, the primary intermediate molded product is heated to a temperature higher than the mold temperature of the primary blow molding mold at 170 ° C to 25 ° C.
Biaxial stretch blow molding, characterized in that the secondary intermediate molded product that has been reheated to 5 ° C and contracted is subjected to secondary stretch blow molding so that the stretched area ratio is 1.0 to 1.5 times, and molded into a bottle. Method.
JP2437497A 1997-01-23 1997-01-23 Biaxial stretch blow molding method Expired - Lifetime JP2963904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2437497A JP2963904B2 (en) 1997-01-23 1997-01-23 Biaxial stretch blow molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2437497A JP2963904B2 (en) 1997-01-23 1997-01-23 Biaxial stretch blow molding method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17011685A Division JPH0622860B2 (en) 1985-08-01 1985-08-01 Biaxial stretching blow molding method

Publications (2)

Publication Number Publication Date
JPH09314650A true JPH09314650A (en) 1997-12-09
JP2963904B2 JP2963904B2 (en) 1999-10-18

Family

ID=12136428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2437497A Expired - Lifetime JP2963904B2 (en) 1997-01-23 1997-01-23 Biaxial stretch blow molding method

Country Status (1)

Country Link
JP (1) JP2963904B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094511A (en) * 2001-09-25 2003-04-03 Frontier:Kk Method for molding biaxially stretched blow molded wide-mouthed container having heat resistance
US7083407B2 (en) 2001-12-28 2006-08-01 Yoshino Kogyosho Co., Ltd. Preform holding jig for biaxial orientation blow molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094511A (en) * 2001-09-25 2003-04-03 Frontier:Kk Method for molding biaxially stretched blow molded wide-mouthed container having heat resistance
US7083407B2 (en) 2001-12-28 2006-08-01 Yoshino Kogyosho Co., Ltd. Preform holding jig for biaxial orientation blow molding

Also Published As

Publication number Publication date
JP2963904B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
US4589559A (en) Blow-molded bottle-shaped container of biaxially oriented polyethylene terephthalate resin and method of molding the same
JPH0456734B2 (en)
US5562960A (en) Double-blown PET bottle shaped container having essentially no residual stress and superior heat resistance
JPH0413216B2 (en)
US5248533A (en) Biaxially oriented polyethylene terephthalate resin bottle-shaped container
US5445784A (en) Method of blow-molding biaxially-oriented polyethylene terephthalate resin bottle-shaped container
JP3922727B2 (en) Improved multi-layer container and preform
JPS6356104B2 (en)
JP2001206336A (en) Polyester resin laminated container and its holding method
US6562279B2 (en) Multi-layer container and preform and process for obtaining same
US6413600B1 (en) Multi-layer container and preform and process for obtaining same
JPH0767732B2 (en) Biaxial stretch blow molding method
JP2777790B2 (en) Biaxial stretch blow molding method
JPH0622860B2 (en) Biaxial stretching blow molding method
JPH09314650A (en) Biaxially stretching blow molding method
JP2001150524A (en) Heat-resistant polyester resin laminated container and method for molding the same
JP3727834B2 (en) Manufacturing method of heat-resistant neck bend container
JPS6230018A (en) Bottle molded by biaxially oriented blow molding
JPH01157828A (en) Heat-setting polyester orientation molding container
JPS63185620A (en) Production of thermally set polyester stretched molded container
JPH0443498B2 (en)
JP2003103609A (en) Two-stage blow molding method for heat-resistant bottle
JP2005028681A (en) Two-stage blow molding method of heat-resistant bottle
WO2000023252A1 (en) Injection stretch blow molding method
EP0515702B1 (en) Method of blow-moulding a biaxially oriented polyethylene terephthalate resin bottle-shaped container

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term