Nothing Special   »   [go: up one dir, main page]

JPH09286681A - Metal-ceramic composite substrate - Google Patents

Metal-ceramic composite substrate

Info

Publication number
JPH09286681A
JPH09286681A JP12389596A JP12389596A JPH09286681A JP H09286681 A JPH09286681 A JP H09286681A JP 12389596 A JP12389596 A JP 12389596A JP 12389596 A JP12389596 A JP 12389596A JP H09286681 A JPH09286681 A JP H09286681A
Authority
JP
Japan
Prior art keywords
substrate
composite substrate
heat sink
bending strength
sink body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12389596A
Other languages
Japanese (ja)
Inventor
Masahiro Furo
正博 風呂
Mitsuru Ota
充 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP12389596A priority Critical patent/JPH09286681A/en
Publication of JPH09286681A publication Critical patent/JPH09286681A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the composite substrate which has excellent heat cycle endurance and also resisting strength to vibration and is useful for mounting electronic parts by joining a specific metallic material to a ceramic substrate to form a composite substrate having specified bending strength. SOLUTION: This composite substrate is formed by joining an aluminum material to at least one surface of a ceramic substrate (such as aluminum nitride substrate) with e.g. a molten metal joining method, so that the resulting composite substrate has >=20kg/mm<2> bending strength when the distance between two supporting points is 30mm, at the time of applying a three-point bending load to the composite substrate. That is, the composite substrate is provided with a metallic part for mounting electronic parts and on the other hand, a heat radiation plate is joined to the lower surface of the substrate and further, a heat sink body is soldered to the radiation plate. In order to allow the heat sink body to tightly adhere to the fin material, the heat sink body is formed into a U-shape and its both ends are fastened by bolts. Therefore, at the time of fastening the heat sink body with bolts, unless the substrate has bending strength higher than a certain level, the adhesion between the heat sink body and the fin material is deteriorated and the heat radiation properties of the composite substrate is lowered and also, resisting strength to external force such as vibration is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、パワーモジュール
等の大電力電子部品の実装に好適な金属−セラミックス
複合基板に関し、更に詳しくは特に優れたヒートサイク
ル耐量が要求される自動車又は電車用電子部品の実装に
好適な複合基板を提供することを目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-ceramic composite substrate suitable for mounting high-power electronic components such as power modules, and more particularly to automobile or train electronic components that require particularly excellent heat cycle resistance. An object of the present invention is to provide a composite substrate suitable for mounting.

【0002】[0002]

【従来の技術】従来、パワーモジュールのような大電力
電子部品の実装に使用する基板として、セラミックス基
板の表面に銅板を接合して作製された銅張りセラミック
ス複合基板が使用されている。この複合基板は更に、使
用するセラミックス基板の種類やその製造法によって、
銅/アルミナ直接接合基板、銅/窒化アルミニウム直接
接合基板、銅/アルミナろう接基板、及び銅/窒化アル
ミニウムろう接基板に分けられている。
2. Description of the Related Art Conventionally, as a substrate used for mounting a high-power electronic component such as a power module, a copper-clad ceramic composite substrate produced by bonding a copper plate to a surface of a ceramic substrate has been used. This composite substrate further depends on the type of ceramic substrate used and its manufacturing method.
It is divided into a copper / alumina direct bonding substrate, a copper / aluminum nitride direct bonding substrate, a copper / alumina brazing substrate, and a copper / aluminum nitride brazing substrate.

【0003】このうち、銅/アルミナ直接接合基板は、
特開昭52−37914号公報に開示されるように、酸
素を含有する銅板を使用するか、無酸素銅板を使用して
酸化性雰囲気中で加熱することによって無酸素銅板の表
面に酸化銅を発生させてから、銅板とアルミナ基板を重
ねて不活性雰囲気中で加熱し、銅板とアルミナ基板との
界面に銅とアルミニウムとの複合酸化物を生成させ銅板
とアルミナ基板とを接合するものである。
Of these, the copper / alumina direct bonding substrate is:
As disclosed in JP-A-52-37914, copper oxide is used on the surface of an oxygen-free copper plate by using a copper plate containing oxygen or by using an oxygen-free copper plate and heating in an oxidizing atmosphere. After the generation, the copper plate and the alumina substrate are superposed and heated in an inert atmosphere to generate a composite oxide of copper and aluminum at the interface between the copper plate and the alumina substrate and join the copper plate and the alumina substrate. .

【0004】一方、銅/窒化アルミニウム直接接合基板
の場合には、予め窒化アルミニウム基板の表面に酸化物
を形成する必要がある。例えば特開平3−93687号
公報に開示するように、予め空気中において、約100
0℃の温度で窒化アルミニウム基板を処理し、表面に酸
化物を生成させてから、この酸化物層を介して上述の方
法により銅板と窒化アルミニウム基板とを接合してい
る。
On the other hand, in the case of a copper / aluminum nitride direct bonding substrate, it is necessary to previously form an oxide on the surface of the aluminum nitride substrate. For example, as disclosed in Japanese Patent Application Laid-Open No. 3-93687, about 100
After treating the aluminum nitride substrate at a temperature of 0 ° C. to generate an oxide on the surface, the copper plate and the aluminum nitride substrate are joined via the oxide layer by the above-described method.

【0005】また銅/アルミナろう接基板及び銅/窒化
アルミニウムろう接基板は、銅板とセラミックス基板と
の間に低融点のろう材を用いて接合するが、この場合、
使用するろう材に銅の他、融点を下げる為の合金元素及
びセラミックスとの濡れを良くする為の合金元素が添加
され、一例としてAg−Cu−Ti系のような活性金属
ろう材はよく使用されている。
Further, the copper / alumina brazing substrate and the copper / aluminum nitride brazing substrate are joined together by using a brazing material having a low melting point between the copper plate and the ceramic substrate.
In addition to copper, an alloying element for lowering the melting point and an alloying element for improving the wettability with ceramics are added to the brazing material to be used. For example, active metal brazing materials such as Ag-Cu-Ti are often used. Have been.

【0006】上述のように銅/セラミックス複合基板は
広く使用されるにもかかわらず、製造中及び実用上幾つ
かの問題点がある。その中で最も重大な問題点は、電子
部品の実装及び使用中にセラミックス基板の内部にクラ
ックが形成し、基板の表裏間を電気的に導通することに
よる故障である。
Although the copper / ceramic composite substrate is widely used as described above, there are some problems during manufacturing and practically. The most serious problem among them is a failure due to the formation of cracks inside the ceramic substrate during the mounting and use of electronic components, and electrical conduction between the front and back of the substrate.

【0007】これは銅の熱膨張係数がセラミックスの係
数より約一桁大きいことに起因するが、接合の場合、セ
ラミックス基板と銅が1000℃近くまで加熱され、接
合温度から室温に冷却する時に、熱膨張係数の違いによ
り複合基板の内部に多大の熱応力が発生する。
This is due to the fact that the coefficient of thermal expansion of copper is about one order of magnitude greater than that of ceramics. In the case of joining, when the ceramic substrate and copper are heated to nearly 1000 ° C. and cooled from the joining temperature to room temperature, A great deal of thermal stress is generated inside the composite substrate due to the difference in thermal expansion coefficient.

【0008】近年、電気自動車又は電車用パワーモジュ
ールの開発により、ヒートサイクル耐量の優れた複合基
板への要望が特に高まっており、例えば電気自動車の様
に温度変化が激しく、振動が大きい使用条件の場合、複
合基板のヒートサイクル耐量が500回以上必要である
と言われているが現在使用されている銅・セラミックス
複合基板では、このような要望に対応できない。
In recent years, with the development of power modules for electric vehicles or electric trains, the demand for composite substrates having excellent heat cycle resistance has been particularly increased. For example, electric vehicles are subject to severe temperature changes and large vibration. In this case, it is said that the heat resistance of the composite substrate needs to be 500 times or more, but the copper / ceramic composite substrate currently used cannot meet such a demand.

【0009】銅と同じような優れた電気と熱伝導性を有
するアルミニウムを導電回路材料として使う構想は以前
からあり、例えば特開昭59−121890号公報にこ
のような構想が記述されている。アルミニウムとセラミ
ックスとの接合に一般的にろう接法は使用され、特開平
3−125463号公報、特開平4−12554号公報
及び特開平4−18746号公報にろう接法で作製した
アルミニウム−セラミックス基板を開示している。これ
によると、作製したアルミニウム−セラミックス基板の
ヒートサイクル耐量は約200回であり、上述のように
高いヒートサイクル耐量が要求される用途には、依然と
して充分対応できないものであった。
There has been a concept of using aluminum as a conductive circuit material having excellent electric and thermal conductivity similar to that of copper, and such a concept is described in, for example, Japanese Patent Laid-Open No. 59-121890. A brazing method is generally used for joining aluminum and ceramics, and aluminum-ceramics produced by the brazing method in Japanese Patent Laid-Open Nos. 3-125463, 4-12554 and 4-18746. A substrate is disclosed. According to this, the heat cycle resistance of the produced aluminum-ceramic substrate was about 200 times, and it was still not sufficiently applicable to the use requiring the high heat cycle resistance as described above.

【0010】しかも、この方法の場合、接合は真空中で
行わなければならないし、また非酸化物セラミックスの
場合、あらかじめ予備処理を施し、セラミックスの表面
に酸化物を形成しなければならない、製造コストおよび
熱伝導性の面においても満足できないところがあった。
Moreover, in the case of this method, the joining must be performed in vacuum, and in the case of non-oxide ceramics, pretreatment must be performed in advance to form an oxide on the surface of the ceramics. Also, there were some points that were not satisfactory in terms of thermal conductivity.

【0011】[0011]

【発明が解決しようとする課題】上述の製造法によって
得られた複合基板は、通常回路上に電子部品搭載のため
の金属部分3を設け、その上に半導体チップを搭載し、
逆に下面には放熱板5を接合し、更にヒートシンク体と
半田付けされている。このヒートシンク材をフィン材と
密着させるためにU字状にして両端をボルト止めしてい
る。
In the composite substrate obtained by the above-mentioned manufacturing method, a metal portion 3 for mounting an electronic component is usually provided on a circuit, and a semiconductor chip is mounted on the metal portion 3.
On the contrary, the heat sink 5 is joined to the lower surface and further soldered to the heat sink. The heat sink material is U-shaped so that the heat sink material and the fin material are in close contact with each other and bolted at both ends.

【0012】この場合、上記複合基板にある程度以上の
抗折強度がないとボルト止めをした場合、ヒートシンク
体とフィン材との密着が悪いため放熱性が低下したり、
また、これらを実装した時に振動等の外力に対して弱い
ためセラミックス基板にクラックを発生するという問題
を有していた。
In this case, if the composite substrate does not have a bending strength of a certain degree or more and is bolted, the heat radiation is deteriorated due to poor adhesion between the heat sink and the fin material.
Further, when these are mounted, there is a problem that cracks are generated in the ceramic substrate because they are weak against external force such as vibration.

【0013】[0013]

【課題を解決するための手段】上記の問題点を解決する
ために鋭意研究したところ、従来の銅張り接合基板に比
べ、アルミニウム溶湯をセラミックス基板に接合して凝
固させた金属−セラミックス複合基板を用いると適正な
抗折強度を有し、尚且つヒートサイクル耐性に優れてい
ることを見い出し本発明を提供することができた。
[Means for Solving the Problems] As a result of intensive research to solve the above-mentioned problems, a metal-ceramic composite substrate obtained by joining molten aluminum to a ceramic substrate and solidifying it was compared with a conventional copper-clad substrate. It was found that when used, it has appropriate bending strength and is excellent in heat cycle resistance, and was able to provide the present invention.

【0014】即ち、本発明はセラミックス基板と、この
セラミックス基板の少なくとも一面以上にアルミニウム
材を接合せしめたセラミックス複合基板において、該複
合基板に3点曲げ荷重を加えた際に、支点間距離が30
mmの場合の抗折強度が20kg/mm2 以上であるこ
とを特徴とする金属−セラミックス複合基板に関する。
That is, according to the present invention, a ceramic substrate and a ceramic composite substrate in which an aluminum material is bonded to at least one surface of the ceramic substrate have a fulcrum distance of 30 when a three-point bending load is applied to the composite substrate.
The invention relates to a metal-ceramic composite substrate having a bending strength of 20 kg / mm 2 or more.

【0015】[0015]

【作用】本発明において使用する基板としては、アルミ
ナ、窒化アルミニウム、炭化硅素、ジルコニア等のセラ
ミックス基板やガラス等であり、この場合、高純度の素
材であれば尚更に好ましい。
The substrate used in the present invention is a ceramic substrate made of alumina, aluminum nitride, silicon carbide, zirconia or the like, glass or the like. In this case, a high-purity material is even more preferable.

【0016】また、本発明でベースとして用いる金属は
アルミニウム又はアルミニウム合金であるが、これによ
り導電性が向上し、且つ、軟らかさを得るものである。
この場合、純度が高い程導電性が向上するが、逆に価格
が高くなるため本発明では99.9%(3N)の純アル
ミニウムを使用した。
The metal used as the base in the present invention is aluminum or an aluminum alloy, which improves conductivity and obtains softness.
In this case, the higher the purity, the higher the conductivity, but on the contrary, the price becomes higher, so 99.9% (3N) of pure aluminum was used in the present invention.

【0017】この金属とセラミックス基板との接合は溶
湯接合法で行ない、これにより高い接合強度と未接欠陥
の少ない複合基板が得られる。また、接合雰囲気として
窒素雰囲気下で行なうことができるため、従来法のよう
に真空下で行なう必要がなく製造コストが安くなり、更
に、窒化アルミニウム基板や炭化硅素基板にも、表面改
質することなく直接に接合することができる。
The metal and the ceramic substrate are joined by the melt joining method, whereby a composite substrate having high joining strength and few uncontacted defects can be obtained. In addition, since the bonding can be performed in a nitrogen atmosphere, it is not necessary to perform the process in a vacuum as in the conventional method, so that the manufacturing cost is reduced. Further, the surface of aluminum nitride substrates and silicon carbide substrates can be modified. It can be directly joined without using.

【0018】セラミックス基板の厚さとアルミニウム金
属の厚さとの関係においては、従来の銅張りのセラミッ
クス複合基板に比べ、金属の厚さを更に厚くする一方、
セラミックス基板の厚さを逆に薄くすることができるた
め、金属/セラミックスの厚さの比は従来品より更に大
きくすることができる。この結果、本発明複合基板の放
熱性及び流れる電流の量は増大することが容易に考えら
れる。
Regarding the relationship between the thickness of the ceramic substrate and the thickness of the aluminum metal, the thickness of the metal is further increased as compared with the conventional copper-clad ceramic composite substrate.
On the contrary, the thickness of the ceramic substrate can be reduced, so that the metal / ceramic thickness ratio can be further increased as compared with the conventional product. As a result, it is easily conceivable that the heat dissipation of the composite substrate of the present invention and the amount of flowing current increase.

【0019】上記溶湯接合法で得られた金属−セラミッ
クス複合基板の一主面にエッチングレジストを加熱圧着
し、遮光、現像処理を行なって所望のパターンを形成し
た後、塩化第2鉄溶液にてエッチングを行なって回路4
を形成する。
An etching resist is thermocompression-bonded to one main surface of the metal-ceramic composite substrate obtained by the above-mentioned molten metal joining method, and after light-shielding and developing treatment is performed to form a desired pattern, a ferric chloride solution is used. Circuit 4 after etching
To form

【0020】このようにして得た金属−セラミックス複
合基板の抗折強度を20kg/mm2 以上(支点間距離
30mmの場合)としたものを用いたパワーモジュール
体を実装してもクラックが発生しない上、ヒートサイク
ル耐性も従来では得られなかった1000回以上のヒー
トサイクル特性を有することを確認した。
No crack is generated even when a power module body using the thus obtained metal-ceramic composite substrate having a bending strength of 20 kg / mm 2 or more (when the distance between fulcrums is 30 mm) is mounted. Furthermore, it was confirmed that the heat cycle resistance also has a heat cycle characteristic of 1000 times or more, which has not been obtained in the past.

【0021】この場合、抗折強度を測定するには図2に
示すようにセラミックス基板下面の放熱板5を上向きと
し、回路面を下向きにして2点で支持し、上方よりクロ
スヘッド・スピード0.5mm/minの押力をかけて
測定するものであるが、本発明のアルミニウム−セラミ
ックス複合基板の場合においては、抗折強度が20kg
/mm2 以下ではフィン材との密着性が悪く、また、振
動等の外力に対する抵抗力が低いという問題を有してい
た。
In this case, in order to measure the bending strength, as shown in FIG. 2, the heat dissipation plate 5 on the lower surface of the ceramic substrate is directed upward, the circuit surface is directed downward, and the circuit board is supported at two points. It is measured by applying a pressing force of 0.5 mm / min. In the case of the aluminum-ceramic composite substrate of the present invention, the bending strength is 20 kg.
If it is less than / mm 2 , the adhesion to the fin material is poor, and the resistance to external force such as vibration is low.

【0022】[0022]

【発明の実施の形態】以下、図面を参照して本発明複合
基板(以下、金属−セラミックス直接接合基板という)
について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A composite substrate of the present invention (hereinafter referred to as a metal-ceramics direct bonding substrate) will be described below with reference to the drawings.
Will be described in detail.

【0023】(実施例1)(Example 1)

【0024】図4は本発明のアルミニウム−セラミック
ス直接接合基板を製造するための設備の原理図である。
純度99.9%のアルミニウム2をルツボ6にセットし
てから蓋9をしめて、ケース8の内部に窒素ガスを充填
する。ルツボ6をヒーターで750℃に加熱し、アルミ
ニウムを溶融してから、ルツボ内に設けたガイド一体型
ダイス10の左側入口からセラミックス基板1として3
6mm×52mm×0.635mmのAlN基板を順番
に挿入した。ルツボ内に入った該AlN基板にアルミニ
ウム溶湯を接触させ、次いで出口側において凝固させる
ことによって、厚さ0.5mmのアルミニウム板が両面
に接合された金属−セラミックス直接接合基板を得た。
FIG. 4 is a principle diagram of equipment for manufacturing the aluminum-ceramics direct bonding substrate of the present invention.
The aluminum 2 having a purity of 99.9% is set in the crucible 6, the lid 9 is closed, and the inside of the case 8 is filled with nitrogen gas. The crucible 6 is heated to 750 ° C. by a heater to melt the aluminum, and then the ceramic substrate 1 is formed from the left inlet of the guide integrated die 10 provided in the crucible.
A 6 mm × 52 mm × 0.635 mm AlN substrate was inserted in order. A molten aluminum was brought into contact with the AlN substrate contained in the crucible and then solidified on the outlet side to obtain a metal-ceramics direct bonding substrate in which aluminum plates having a thickness of 0.5 mm were bonded to both surfaces.

【0025】次いで、該複合基板上のアルミニウム部に
エッチングレジストを加熱圧着し、遮光、現像処理を行
なって所望のパターンを形成した後、塩化第2鉄溶液に
てエッチングを行なって回路を形成して、図1a,図1
bに示す金属−セラミックス直接接合基板を得、この基
板の抗折強度を図2に示す式により求めたところ54.
6kg/mm2 であり、図3にその測定値を示した。
Then, an etching resist is thermocompression-bonded to the aluminum portion on the composite substrate, shielded from light and developed to form a desired pattern, and then etched with a ferric chloride solution to form a circuit. 1a and 1
The metal-ceramics direct bonding substrate shown in FIG. 2b was obtained, and the bending strength of this substrate was determined by the equation shown in FIG.
It was 6 kg / mm 2 , and the measured value is shown in FIG.

【0026】得られた上記接合基板を炉内雰囲気をH2
/N2 =1:1に、ピーク温度を360℃に調整した炉
内を5分で通炉させた後の抗折強度を測定したところ5
1.8kg/mm2 となった。これらの測定値を図3に
示すと共に参考として0.635mm厚のAlN基板の
抗折強度を測定したところ42.8kg/mm2 であ
り、この単一基板の抗折強度よりアルミニウム接合基板
の方が高いことが判明した。
The obtained bonded substrate is placed in a furnace atmosphere under H 2 atmosphere.
/ N 2 = 1: 1, and the bending strength was measured after passing through the furnace with the peak temperature adjusted to 360 ° C. for 5 minutes.
It became 1.8 kg / mm 2 . The measured bending strength of an AlN substrate having a thickness of 0.635 mm is 42.8 kg / mm 2 as shown in FIG. 3 for reference, and the bending strength of an aluminum bonded substrate is better than that of a single substrate. Was found to be high.

【0027】(比較例1)(Comparative Example 1)

【0028】比較のため実施例1に示すAlN基板を用
い、該基板の両面に厚さ0.3mmの銅板をAg−Cu
−Ti活性金属ろう材を介して780℃で加熱接合して
得た複合基板にエッチング処理して図1aに示したもの
と同一の回路を有する銅張り複合基板を得、これらの抗
折強度を実施例1と同様に測定したところ、図3に示す
ように29.5kg/mm2 であり、また通炉後の抗折
強度は15.3kg/mm2 と実施例1に比べ相当に低
いものであった。
For comparison, the AlN substrate shown in Example 1 was used, and a copper plate having a thickness of 0.3 mm was Ag-Cu on both surfaces of the substrate.
The composite substrate obtained by heat bonding at 780 ° C. through a Ti-active metal brazing material was etched to obtain a copper-clad composite substrate having the same circuit as shown in FIG. 1a. When measured in the same manner as in Example 1, it was 29.5 kg / mm 2 as shown in FIG. 3, and the bending strength after passing through the furnace was 15.3 kg / mm 2 , which is considerably lower than that in Example 1. Met.

【0029】(実施例2)(Example 2)

【0030】セラミックス基板として実施例1に示すA
lN基板に代え、同一の大きさであるアルミナ基板を用
いた他は、実施例1と同一の条件で目的とする金属−セ
ラミックス直接接合基板を得てこれらの抗折強度を測定
したところ、図3に示すようにアルミナ基板単独では5
0.8kg/mm2 、本接合基板では62.0kg/m
2 であり、更に、通炉された後は51.0kg/mm
2 の抗折強度であった。
A shown in Example 1 as a ceramic substrate
When a target metal-ceramics direct bonding substrate was obtained under the same conditions as in Example 1 except that an alumina substrate having the same size was used instead of the 1N substrate and the bending strength of these was measured. As shown in 3, the alumina substrate alone is 5
0.8 kg / mm 2 , 62.0 kg / m for this bonded substrate
m 2 and 51.0 kg / mm after passing through the furnace
The bending strength was 2 .

【0031】(比較例2)(Comparative Example 2)

【0032】比較のため実施例2に示すアルミナ基板を
用い、該基板の両面に銅板を1063℃の炉中で接合さ
せて得たものをエッチング処理して図1aに示したもの
と同一の回路を有する銅張り複合基板を得、これらの抗
折強度を測定したところ37.8kg/mm2 であり、
通炉させた後は28.3kg/mm2 となり、いずれも
本発明直接接合基板より抗折強度が少なかった。
For comparison, the alumina substrate shown in Example 2 was used, and a copper plate was joined to both surfaces of the alumina substrate in a furnace at 1063 ° C. to obtain a substrate, which was subjected to etching treatment to obtain the same circuit as shown in FIG. 1a. A copper-clad composite substrate having the following characteristics was obtained, and the bending strength of these was measured to be 37.8 kg / mm 2 .
After passing through the furnace, the pressure was 28.3 kg / mm 2 , and the bending strength was lower than that of the directly bonded substrate of the present invention.

【0033】(実施例3)(Example 3)

【0034】セラミックス基板として実施例1に示すA
lN基板に代え36mm×52mm×0.4mm厚の薄
板状アルミナ基板を用いた他は実施例1と同一の条件で
目的とする金属−セラミックス直接接合基板を得てこれ
らの抗折強度を測定したところ、図3に示すように7
4.6kg/mm2 であり、これをさらに通炉させた後
も同様に55.4kg/mm2 の抗折強度であった。
A shown in Example 1 as a ceramic substrate
Under the same conditions as in Example 1 except that a 36 mm × 52 mm × 0.4 mm thick thin alumina substrate was used in place of the 1N substrate, the desired metal-ceramic direct bonding substrate was obtained and the bending strength of these was measured. However, as shown in FIG.
Was 4.6 kg / mm 2, was also the bending strength of 55.4kg / mm 2 in the same manner after which was further passages through furnace.

【0035】なお、実施例1〜実施例3に示す本発明直
接接合基板を用いてヒートサイクル耐量を求めた。これ
は基板を−40℃から125℃まで繰り返し、加熱・冷
却する際の熱応力によって基板にクラックが発生するま
での循環回数で示しているが、本発明基板は1000回
以上でもクラックが発生しなかったのに対して、比較例
の銅張りの基板は数十〜百回前後でクラックの発生をみ
た。
The heat cycle resistance was determined using the direct bonding substrates of the present invention shown in Examples 1 to 3. This is indicated by the number of cycles until the substrate is repeatedly cracked from -40 ° C to 125 ° C and due to thermal stress during heating / cooling, but the substrate of the present invention does not crack even after 1000 times. On the other hand, in the copper-clad substrate of the comparative example, cracks were observed about tens to hundreds of times.

【0036】[0036]

【発明の効果】上述のように本発明直接接合基板は、ア
ルミニウム材特有の軟らかさを生かし熱応力を低減すこ
とができることから従来の銅張り複合基板より抗折強度
の数値が大きく、このことからヒートシンク体とフィン
材との密着性が向上して最終的にヒートサイクル耐量向
上に寄与するものである。
As described above, since the direct bonding substrate of the present invention can reduce the thermal stress by utilizing the softness peculiar to the aluminum material, it has a larger bending strength value than the conventional copper-clad composite substrate. Therefore, the adhesion between the heat sink body and the fin material is improved, and finally the heat cycle resistance is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1a】本発明に係る金属−セラミックス複合基板の
模式平面図である。
FIG. 1a is a schematic plan view of a metal-ceramic composite substrate according to the present invention.

【図1b】本発明に係る金属−セラミックス複合基板の
模式底面図である。
FIG. 1b is a schematic bottom view of a metal-ceramic composite substrate according to the present invention.

【図2】本発明基板の抗折強度測定の状態を示す概略図
である。
FIG. 2 is a schematic view showing a state of bending strength measurement of the substrate of the present invention.

【図3】AlN基板、アルミナ基板、薄アルミナ基板を
用いて得た本発明基板の抗折強度変化を示す測定図であ
る。
FIG. 3 is a measurement diagram showing a change in bending strength of a substrate of the present invention obtained by using an AlN substrate, an alumina substrate, and a thin alumina substrate.

【図4】本発明基板の製造装置の原理図である。FIG. 4 is a principle view of a substrate manufacturing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 セラミックス基板 2 アルミニウム 3 金属部分 4 回路 5 放熱板 6 ルツボ 7 ヒーター 8 ケース 9 蓋 10 ガイド一体型ダイス 1 Ceramics substrate 2 Aluminum 3 Metal part 4 Circuit 5 Heat sink 6 Crucible 7 Heater 8 Case 9 Lid 10 Guide integrated die

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス基板と、このセラミックス
基板の少なくとも一面以上にアルミニウム材を接合せし
めたセラミックス複合基板において、該複合基板の抗折
強度が20kg/mm2 以上の範囲であることを特徴と
する金属−セラミックス複合基板。
1. A ceramics substrate and a ceramics composite substrate in which an aluminum material is bonded to at least one surface of the ceramics substrate, and the bending strength of the composite substrate is in the range of 20 kg / mm 2 or more. Metal-ceramic composite substrate.
JP12389596A 1996-04-23 1996-04-23 Metal-ceramic composite substrate Pending JPH09286681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12389596A JPH09286681A (en) 1996-04-23 1996-04-23 Metal-ceramic composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12389596A JPH09286681A (en) 1996-04-23 1996-04-23 Metal-ceramic composite substrate

Publications (1)

Publication Number Publication Date
JPH09286681A true JPH09286681A (en) 1997-11-04

Family

ID=14872002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12389596A Pending JPH09286681A (en) 1996-04-23 1996-04-23 Metal-ceramic composite substrate

Country Status (1)

Country Link
JP (1) JPH09286681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283210A (en) * 2008-07-14 2008-11-20 Dowa Holdings Co Ltd Manufacturing method of metal-ceramic circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283210A (en) * 2008-07-14 2008-11-20 Dowa Holdings Co Ltd Manufacturing method of metal-ceramic circuit board

Similar Documents

Publication Publication Date Title
JP4756200B2 (en) Metal ceramic circuit board
JP4133170B2 (en) Aluminum-ceramic bonded body
EP1345480B1 (en) Ceramic circuit board
US7926543B2 (en) Method for producing metal/ceramic bonding substrate
US6485816B2 (en) Laminated radiation member, power semiconductor apparatus, and method for producing the same
KR100611814B1 (en) Insulating substrate boards for semiconductor and power modules
JP2642574B2 (en) Manufacturing method of ceramic electronic circuit board
EP1518847B1 (en) Aluminum/ceramic bonding substrate and method for producing same
JPH09234826A (en) Metal-ceramic composite base plate and manufacture thereof
JP4124497B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JP3613759B2 (en) Metal-ceramic composite substrate
JP3383892B2 (en) Method for manufacturing semiconductor mounting structure
JPH09315875A (en) Aluminum-ceramic composite substrate and its production
JPH09286681A (en) Metal-ceramic composite substrate
JP3430348B2 (en) Metal-ceramic composite substrate
JP4543275B2 (en) Aluminum-ceramic bonding substrate and manufacturing method thereof
JPH09286680A (en) Metal-ceramic composite substrate
JP2001203299A (en) Aluminium board and ceramics circuit board using the same
JP3890540B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JPH107480A (en) Composite metal-ceramic substrate and its production
JP2000256081A (en) Reforming of insulating substrate for mounting semiconductor
US20220033317A1 (en) Aluminum/ceramic bonding substrate and method for producing same
JPH09315874A (en) Aluminum-ceramic composite substrate
JP4862196B2 (en) Method for manufacturing metal ceramic circuit board
JP2006028018A (en) Aluminum-ceramic compound substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060110

A131 Notification of reasons for refusal

Effective date: 20060411

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060612

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060912

Free format text: JAPANESE INTERMEDIATE CODE: A02