Nothing Special   »   [go: up one dir, main page]

JPH09277226A - Manufacture of solid electrolyte type fuel cell - Google Patents

Manufacture of solid electrolyte type fuel cell

Info

Publication number
JPH09277226A
JPH09277226A JP9258096A JP9258096A JPH09277226A JP H09277226 A JPH09277226 A JP H09277226A JP 9258096 A JP9258096 A JP 9258096A JP 9258096 A JP9258096 A JP 9258096A JP H09277226 A JPH09277226 A JP H09277226A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel cell
electrode
pyrolyzed
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9258096A
Other languages
Japanese (ja)
Inventor
Osamu Chikagawa
修 近川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP9258096A priority Critical patent/JPH09277226A/en
Publication of JPH09277226A publication Critical patent/JPH09277226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a solid electrolyte type fuel cell, with which the roughening of the surface of a solid electrolyte film can easily be performed at a low cost and the effective electrode area can be expanded and consequently the bonding power between poles can be enhanced. SOLUTION: In this manufacturing method of a solid electrolyte type fuel cell, a mixed slurry of a solid electrolyte material and a thermal decomposition substance is prepared so as to form the mixed slurry into a formed body in order to arrange the formed body as surface layers on the surface of a solid electrolyte ceramic formed body for lamination. By firing the resultant laminate in order to thermally decompose the thermal decomposition substance, a solid electrolyte ceramic with roughened surface 2 is produced. Further, after fuel poles or air poles are arranged and laminated to the surface of the solid electrolyte ceramic 2, the resultant laminate is further fired. The thickness of each of the surface layers 2a and 2b excluding the projecting part developed by the thermal decomposition substance are respectively 20-50μm. As the thermal decomposition substance, carbon can be employed under the condition that its particle diameter is two times or more as much as the thickness of each of the surface layers 2a and 2b of the solid electrolyte ceramic formed body and 100μm or less excluding the projecting part developed by the thermal decomposition substance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は固体電解質型燃料電
池の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a solid oxide fuel cell.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、燃料極、固体
電解質膜及び空気極の各層を互いに配置、積層して3層
を構成し、これを燃料電池の発電部とし、外部から燃料
極に燃料ガスを供給し、空気極に空気を供給して電気を
発生させるものである。なお、空気極を酸素極と呼んで
これに酸素ガスを供給することもある。
2. Description of the Related Art In a solid oxide fuel cell, each layer of a fuel electrode, a solid electrolyte membrane, and an air electrode is arranged and laminated on each other to form three layers. Fuel gas is supplied and air is supplied to the air electrode to generate electricity. The air electrode may be referred to as an oxygen electrode and oxygen gas may be supplied thereto.

【0003】前記固体電解質膜は、イットリア安定化ジ
ルコニア(YSZ)等を材料とし、このスラリーからテ
ープキャスティング法等により成形体を作製し、この成
形体を焼成することにより得られる。そして、この固体
電解質膜の表面に、例えば、燃料極は酸化ニッケルとイ
ットリア安定化ジルコニアの混合物、また、空気極はラ
ンタンマンガナイトの各電極材料を塗布印刷して焼き付
け、電極を形成する。
The solid electrolyte membrane can be obtained by using a material such as yttria-stabilized zirconia (YSZ) as a material to prepare a molded body by a tape casting method or the like, and firing the molded body. Then, for example, a mixture of nickel oxide and yttria-stabilized zirconia for the fuel electrode and a lanthanum manganite electrode material for the air electrode are applied and printed on the surface of the solid electrolyte membrane to form electrodes.

【0004】[0004]

【発明が解決しようとする課題】この固体電解質型燃料
電池における電極反応は、固体電解質と電極と気相との
三相界面で起こると考えられており、固体電解質型燃料
電池の発電性能を向上させるためには、三相界面の面積
を広くするとともに、固体電解質と電極との接合を強固
なものとすることが必要である。
The electrode reaction in this solid oxide fuel cell is considered to occur at the three-phase interface between the solid electrolyte, the electrode, and the gas phase, which improves the power generation performance of the solid oxide fuel cell. In order to do so, it is necessary to widen the area of the three-phase interface and to strengthen the bond between the solid electrolyte and the electrode.

【0005】しかしながら、従来の固体電解質膜の表面
は平坦であるため、この固体電解質膜とその表面上に形
成される電極との接合界面は平坦なものとなり、電極と
固体電解質膜との強固な接合は困難であった。
However, since the surface of the conventional solid electrolyte membrane is flat, the bonding interface between this solid electrolyte membrane and the electrode formed on the surface becomes flat, and the solid interface between the electrode and the solid electrolyte membrane is strong. Joining was difficult.

【0006】そのため、このような固体電解質型燃料電
池を長期間使用すると、電極と固体電解質膜との接合が
劣化し、熱衝撃によって固体電解質膜から電極が剥離し
て、実効電極面積も減少し、発電特性が劣化するという
問題があった。
Therefore, when such a solid oxide fuel cell is used for a long period of time, the bonding between the electrode and the solid electrolyte membrane deteriorates, the electrode is separated from the solid electrolyte membrane due to thermal shock, and the effective electrode area also decreases. However, there is a problem that the power generation characteristics are deteriorated.

【0007】このため、上記の問題点を解決するため
に、電極と固体電解質膜との接合界面を粗面化して実効
電極面積を広げると同時に、接合力を高める種々の対策
が講じられている。
Therefore, in order to solve the above-mentioned problems, various measures have been taken to increase the bonding force while increasing the effective electrode area by roughening the bonding interface between the electrode and the solid electrolyte membrane. .

【0008】すなわち、固体電解質膜の表面に対し、酸
を用いてエッチング処理を施したり(特開平3−147
268号公報)、サンドブラスト処理を施したり(特開
平3−95864号公報)、また、プラズマ溶射を施す
(特開平3−285266号公報)等の方法であり、い
ずれも、固体電解質膜の表面を粗面化して実効電極面積
を広げ、電極との接合力を高めようとするものである。
That is, the surface of the solid electrolyte membrane is subjected to an etching treatment with an acid (Japanese Patent Laid-Open No. 3-147).
No. 268), sandblasting (Japanese Patent Application Laid-Open No. 3-95864), and plasma spraying (Japanese Patent Application Laid-Open No. 3-285266). It is intended to increase the effective electrode area by roughening the surface to increase the bonding force with the electrode.

【0009】しかしながら、酸を用いたエッチング処理
の場合には、固体電解質膜の内部まで腐食が浸透してそ
の強度を低下させるだけでなく、廃液の処理などが問題
となる。また、サンドブラスト処理やプラズマ溶射は高
価な設備を必要とするため、コスト的に問題となる。
However, in the case of etching treatment using an acid, not only the corrosion penetrates into the solid electrolyte membrane to reduce its strength, but also the treatment of waste liquid becomes a problem. In addition, sandblasting and plasma spraying require expensive equipment, which is a cost problem.

【0010】そこで本発明の目的は、固体電解質膜表面
の粗面化を容易かつ安価に行い、実効電極面積を広げて
接合力を高めることができる固体電解質型燃料電池の製
造方法を提供することにある。
Therefore, an object of the present invention is to provide a method for manufacturing a solid oxide fuel cell, which can easily and inexpensively roughen the surface of a solid electrolyte membrane and widen the effective electrode area to enhance the bonding strength. It is in.

【0011】[0011]

【課題を解決するための手段】本発明は、請求項1にお
いて、固体電解質型燃料電池の製造方法は、固体電解質
材料と熱分解物質との混合スラリーを準備し、該混合ス
ラリーを成形し、この成形体を表面層として固体電解質
セラミック成形体の表面に配置して積層し、これを焼成
して前記熱分解物質を熱分解させ、表面を粗面化した固
体電解質セラミックとすることを特徴とする。
According to a first aspect of the present invention, in a method for producing a solid oxide fuel cell, a mixed slurry of a solid electrolyte material and a pyrolysis substance is prepared, and the mixed slurry is molded, This molded body is disposed as a surface layer on the surface of a solid electrolyte ceramic molded body and laminated, and this is fired to thermally decompose the pyrolyzed substance to obtain a solid electrolyte ceramic having a roughened surface. To do.

【0012】また、請求項2において、固体電解質型燃
料電池の製造方法は、固体電解質材料と熱分解物質との
混合スラリーを準備し、該混合スラリーを成形し、この
成形体を表面層として固体電解質セラミック成形体の表
面に配置して積層し、これを焼成して前記熱分解物質を
熱分解させ、表面を粗面化した固体電解質セラミックと
し、該粗面化した固体電解質セラミックの表面に燃料極
または空気極を配置して積層し、この積層体をさらに焼
成することを特徴とする。
According to a second aspect of the present invention, in the method for producing a solid oxide fuel cell, a mixed slurry of a solid electrolyte material and a pyrolyzed substance is prepared, the mixed slurry is molded, and the molded body is used as a surface layer to form a solid. The electrolyte ceramic molded body is disposed on the surface of the molded body and laminated, and the pyrolyzed substance is pyrolyzed by firing to form a solid electrolyte ceramic having a roughened surface, and a fuel is applied to the surface of the roughened solid electrolyte ceramic. It is characterized in that an electrode or an air electrode is arranged and laminated, and this laminated body is further fired.

【0013】また、請求項3において、前記表面層は熱
分解物質による凸部を除く厚みが20μm以上50μm
以下であることを特徴とする。
Further, in claim 3, the surface layer has a thickness of 20 μm or more and 50 μm or more excluding the protrusions formed by the pyrolyzed substance.
It is characterized by the following.

【0014】また、請求項4において、前記熱分解物質
はカーボンであることを特徴とする。
Further, in claim 4, the thermally decomposing substance is carbon.

【0015】また、請求項5において、前記熱分解物質
はその粒径が固体電解質セラミック成形体の前記表面層
の熱分解物質による凸部を除く厚みの2倍以上100μ
m以下であることを特徴とする。
Further, in claim 5, the particle size of the pyrolyzed substance is at least twice as large as the thickness of the surface layer of the solid electrolyte ceramic molded body excluding protrusions by the pyrolyzed substance and 100 μm.
m or less.

【0016】このようにすることにより、固体電解質膜
表面の粗面化を容易かつ安価に行うことができ、実効電
極面積を広くすることができる。したがって、電極と固
体電解質膜の接合力を高めて、固体電解質膜から電極が
剥離するのを防ぐことができる。また、熱分解物質の材
質を選択したり、表面層の厚みを一定範囲にし、熱分解
物質の粒径をコントロールすることによって、実効電極
面積をより広げて電極と固体電解質膜との接合力をより
一層高めることができる。
By doing so, the surface of the solid electrolyte membrane can be roughened easily and inexpensively, and the effective electrode area can be widened. Therefore, the bonding force between the electrode and the solid electrolyte membrane can be increased to prevent the electrode from peeling off from the solid electrolyte membrane. In addition, by selecting the material of the pyrolyzed substance, by controlling the thickness of the surface layer to a certain range, and controlling the particle size of the pyrolyzed substance, the effective electrode area can be further expanded and the bonding force between the electrode and the solid electrolyte membrane It can be further enhanced.

【0017】[0017]

【発明の実施の形態】以下、本発明にかかる固体電解質
型燃料電池の製造方法の実施例につき説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a method for manufacturing a solid oxide fuel cell according to the present invention will be described below.

【0018】(実施例1)この実施例は、通常の固体電
解質スラリーと、固体電解質材料と球状の熱分解物質と
の混合スラリーを準備して、前記熱分解物質を含む表面
層を有する固体電解質セラミック成形体を作製し、これ
を焼成して表面が粗面化された固体電解質セラミックを
作製した例である。
Example 1 In this example, an ordinary solid electrolyte slurry and a mixed slurry of a solid electrolyte material and a spherical pyrolyzed substance were prepared, and a solid electrolyte having a surface layer containing the pyrolyzed substance was prepared. This is an example of producing a ceramic molded body and firing it to produce a solid electrolyte ceramic having a roughened surface.

【0019】まず、固体電解質セラミック成形体である
固体電解質セラミックグリーンシートの製造方法につい
て説明する。
First, a method for producing a solid electrolyte ceramic green sheet, which is a solid electrolyte ceramic molded body, will be described.

【0020】粉末状のイットリア安定化ジルコニアに対
して、結合材(例えば、ポリビニルブチラール系バイン
ダー)と溶剤(エタノール及びトルエン)を所定量加え
て混合し、これをスラリーとした後、ドクターブレード
法でセラミック成形体として厚さ50〜60μmの固体
電解質セラミックグリーンシートを作製した。
A predetermined amount of a binder (for example, polyvinyl butyral binder) and a solvent (ethanol and toluene) are added to and mixed with powdery yttria-stabilized zirconia, and the mixture is made into a slurry, which is then subjected to a doctor blade method. A solid electrolyte ceramic green sheet having a thickness of 50 to 60 μm was produced as a ceramic molded body.

【0021】一方、上記と同じ組成の固体電解質のスラ
リーを別に準備し、このスラリーに熱分解物質として、
平均粒径100μmの球状カーボンを所定量混合して分
散させ、このスラリーからドクターブレード法により、
図1の断面図に示すように、表面に突出した球状カーボ
ン1aの凸部tを除く厚さ40μmの固体電解質セラミ
ックグリーンシート1bを作製した。
On the other hand, a slurry of a solid electrolyte having the same composition as the above is prepared separately, and this slurry is used as a pyrolyzed substance.
A predetermined amount of spherical carbon having an average particle diameter of 100 μm is mixed and dispersed, and from this slurry, a doctor blade method is used.
As shown in the cross-sectional view of FIG. 1, a solid electrolyte ceramic green sheet 1b having a thickness of 40 μm excluding the convex portion t of the spherical carbon 1a protruding on the surface was produced.

【0022】続いて、先に準備した厚さ50〜60μm
の固体電解質セラミックグリーンシートの上に、表面層
として、前記球状カーボンの凸部を除く厚さ40μmの
固体電解質セラミックグリーンシートを、球状カーボン
の凸部を外側にして重ね合わせて一対とした2層構造の
固体電解質セラミックグリーンシート層を2組用意し
た。
Then, the thickness of 50 to 60 μm prepared above is prepared.
A solid electrolyte ceramic green sheet having a thickness of 40 μm excluding the convex portion of the spherical carbon as a surface layer on the solid electrolytic ceramic green sheet of (1) is superposed with the convex portion of the spherical carbon as an outer layer to form a pair. Two sets of solid electrolyte ceramic green sheet layers having a structure were prepared.

【0023】そして、この2組の固体電解質セラミック
グリーンシート層を、球状カーボンを含む表面層がそれ
ぞれ外側になるようにして互いに配置し、かつ両表面層
の間の固体電解質の厚みが約400μmになるように、
球状カーボンを含まない厚さ50〜60μmの追加の固
体電解質セラミックグリーンシートを数枚挿入し、重ね
合わせた。
The two sets of solid electrolyte ceramic green sheet layers are arranged so that the surface layers containing spherical carbon are on the outside, and the thickness of the solid electrolyte between the two surface layers is about 400 μm. So that
Several additional solid electrolyte ceramic green sheets having a thickness of 50 to 60 μm and containing no spherical carbon were inserted and superposed.

【0024】このようにして得られた固体電解質セラミ
ックグリーンシートの積層体を、プラスチック製の袋に
入れた後、袋の中を真空状態にし、温間静水圧プレス機
を用いて圧着し、固体電解質セラミックの積層成形体を
得た。
The laminate of the solid electrolyte ceramic green sheets thus obtained was put in a plastic bag, the inside of the bag was evacuated, and the mixture was pressure-bonded using a warm isostatic press to obtain a solid. A laminated molded body of electrolyte ceramic was obtained.

【0025】次に、この固体電解質セラミックの積層成
形体を1400℃で焼成する(脱脂工程含む)ことによ
って、固体電解質セラミックを得た。
Next, the solid electrolyte ceramic laminate was fired at 1400 ° C. (including the degreasing step) to obtain a solid electrolyte ceramic.

【0026】得られた固体電解質セラミックの断面を走
査型電子顕微鏡(以下、SEMという。)で観察したと
ころ、図2に示すように、固体電解質セラミック2は、
表面層2a、2b及びその間の固体電解質層2cからな
り、その表面は、焼成時に表面層2a,2bから熱分解
した球状カーボンの形状に沿って、凹部1c、1dが形
成され粗面化されていた。しかし、固体電解質セラミッ
ク2の内部でクローズドポアになっているものは見当た
らなかった。
The cross section of the obtained solid electrolyte ceramic was observed with a scanning electron microscope (hereinafter referred to as SEM). As a result, as shown in FIG.
It is composed of surface layers 2a and 2b and a solid electrolyte layer 2c between them, and the surface thereof is roughened by forming concave portions 1c and 1d along the shape of spherical carbon thermally decomposed from the surface layers 2a and 2b during firing. It was However, no closed pores were found inside the solid electrolyte ceramic 2.

【0027】一方、比較例として、熱分解物質に平均粒
径30μmの球状カーボンを用いたこと以外は、実施例
1と同様の方法で固体電解質セラミックを作製し、SE
Mで観察したその断面を図3に示す。
On the other hand, as a comparative example, a solid electrolyte ceramic was prepared in the same manner as in Example 1 except that spherical carbon having an average particle size of 30 μm was used as the pyrolyzed substance, and SE was prepared.
The cross section observed at M is shown in FIG.

【0028】この場合、固体電解質セラミック3は、表
面層3a、3b及びその間の固体電解質層3cからな
り、その表面は焼成時に表面層3a,3bから熱分解し
た球状カーボンにより、凹部4a、4bが形成され粗面
化されていたが、表面層3a,3bの内部にはクローズ
ドポア4cが発生していた。また、クローズドポアでは
ないが、固体電解質セラミック3の表面に電極ペースト
を塗布印刷した際に、電極ペーストが入り込みにくい凹
部4dが発生していた。
In this case, the solid electrolyte ceramic 3 is composed of surface layers 3a and 3b and a solid electrolyte layer 3c between them, and the surface thereof has concave portions 4a and 4b due to spherical carbon thermally decomposed from the surface layers 3a and 3b during firing. Although formed and roughened, closed pores 4c were formed inside the surface layers 3a and 3b. Although not a closed pore, when the electrode paste was applied and printed on the surface of the solid electrolyte ceramic 3, a recess 4d in which the electrode paste was difficult to enter was generated.

【0029】(実施例2)この実施例は、実施例1と同
様にして得た表面が粗面化された固体電解質セラミック
の両面に、燃料極及び空気極をそれぞれ配置して積層
し、この積層体を焼成して固体電解質型燃料電池を作製
した例である。
(Example 2) In this example, a fuel electrode and an air electrode were arranged and laminated on both sides of a solid electrolyte ceramic having a roughened surface obtained in the same manner as in Example 1, respectively. It is an example of producing a solid oxide fuel cell by firing the laminate.

【0030】始めに、実施例1と同様にして、球状カー
ボンを混合しない固体電解質スラリーと、固体電解質材
料と平均粒径100μmの球状カーボンとを混合したス
ラリーを準備し、これらをそれぞれ成形して前記球状カ
ーボンを含む表面層を有する固体電解質セラミック成形
体を得、これを焼成して表面が粗面化された固体電解質
セラミックを得た。
First, in the same manner as in Example 1, a solid electrolyte slurry in which spherical carbon is not mixed and a slurry in which a solid electrolyte material and spherical carbon having an average particle size of 100 μm are mixed are prepared, and these are molded respectively. A solid electrolyte ceramic compact having a surface layer containing the spherical carbon was obtained and fired to obtain a solid electrolyte ceramic having a roughened surface.

【0031】次に、燃料極を作製するために、粉末状の
酸化ニッケルとイットリア安定化ジルコニアの混合物
に、結合剤(例えば、ポリビニルブチラール系バイン
ダ)及び溶剤(エタノール及びトルエン)を所定量加え
てスラリー化した。そして、前記固体電解質セラミック
の一方の表面に、燃料極として準備した前記ニッケル−
ジルコニアサーメット系スラリーをスクリーン印刷で塗
布した後、これを1400℃で焼成して燃料極を形成し
た。
Next, in order to prepare a fuel electrode, a binder (for example, polyvinyl butyral binder) and a solvent (ethanol and toluene) are added in a predetermined amount to a mixture of powdered nickel oxide and yttria-stabilized zirconia. It was made into a slurry. Then, on one surface of the solid electrolyte ceramic, the nickel-prepared as a fuel electrode
A zirconia cermet-based slurry was applied by screen printing and then fired at 1400 ° C. to form a fuel electrode.

【0032】続いて、空気極を作製するために、粉末状
のランタンマンガナイトに結合剤(例えば、ポリビニル
ブチラール系バインダ)及び溶剤(エタノール及びトル
エン)を所定量加えてスラリー化した。そして、先に燃
料極をその一方の表面に形成した固体電解質セラミック
の他方の表面に、空気極として準備した前記ランタンマ
ンガナイト系スラリーを、同じくスクリーン印刷で塗布
し、これを1200℃で焼成して空気極を形成し、燃料
極、固体電解質膜及び空気極の3層膜からなる固体電解
質型燃料電池を得た。
Subsequently, in order to produce an air electrode, a binder (for example, polyvinyl butyral binder) and a predetermined amount of solvent (ethanol and toluene) were added to powdered lanthanum manganite to form a slurry. Then, the lanthanum manganite-based slurry prepared as an air electrode was similarly applied by screen printing to the other surface of the solid electrolyte ceramic having the fuel electrode formed on its one surface in advance, and this was baked at 1200 ° C. To form an air electrode to obtain a solid electrolyte fuel cell comprising a three-layer film including a fuel electrode, a solid electrolyte membrane and an air electrode.

【0033】図4に、この固体電解質型燃料電池をSE
Mで観察した断面を示す。
FIG. 4 shows this solid oxide fuel cell SE
The cross section observed by M is shown.

【0034】これからわかるように、固体電解質型燃料
電池5のうち、固体電解質セラミック6は表面層6a、
6b及びその間の固体電解質層6cからなり、一方の表
面には、表面層6aから熱分解した球状カーボンにより
形成された凹部7aに沿って燃料極8が形成されてい
た。また、固体電解質セラミック6の他方の表面には、
表面層6bから熱分解した球状カーボンにより形成され
た凹部7bに沿って空気極9が形成されていた。そし
て、粗面化された固体電解質セラミック6の表面の凹部
7a、7bの形状や大きさのばらつきも少なく、燃料極
8及び空気極9の各電極と固体電解質セラミック6は、
安定した粗面を界面として接合されていた。
As can be seen from the above, in the solid oxide fuel cell 5, the solid electrolyte ceramic 6 is the surface layer 6a,
6b and a solid electrolyte layer 6c in between, and a fuel electrode 8 was formed on one surface along a recess 7a formed by spherical carbon pyrolyzed from the surface layer 6a. Further, on the other surface of the solid electrolyte ceramic 6,
The air electrode 9 was formed along the concave portion 7b formed by the spherical carbon thermally decomposed from the surface layer 6b. The recesses 7a and 7b on the surface of the roughened solid electrolyte ceramic 6 have little variation in shape and size, and the electrodes of the fuel electrode 8 and the air electrode 9 and the solid electrolyte ceramic 6 are
It was bonded with a stable rough surface as an interface.

【0035】このようにして作製した固体電解質型燃料
電池に対して、比較のために、従来のように表面を粗面
化していない固体電解質膜に、実施例2と同じ各電極材
料と方法で燃料極と空気極を形成して3層膜の固体電解
質型燃料電池を作製し、これを実施例2で得られた固体
電解質型燃料電池とともに、それぞれ図5に示すように
結線し発電特性を測定した。
For comparison, the solid electrolyte fuel cell thus produced was subjected to the same electrode material and method as in Example 2 on a solid electrolyte membrane whose surface was not roughened as in the conventional case. A fuel cell and an air electrode were formed to prepare a three-layer membrane solid oxide fuel cell, which was connected together with the solid oxide fuel cell obtained in Example 2 as shown in FIG. It was measured.

【0036】図5において、5は固体電解質型燃料電
池、6dは固体電解質膜、8は燃料極、9は空気極であ
る。また、11は燃料ガス供給管、12は空気供給管、
13は白金線、14は可変抵抗器、15はオシロスコー
プ、16は電流計、17は水銀スイッチである。
In FIG. 5, 5 is a solid oxide fuel cell, 6d is a solid electrolyte membrane, 8 is a fuel electrode, and 9 is an air electrode. 11 is a fuel gas supply pipe, 12 is an air supply pipe,
13 is a platinum wire, 14 is a variable resistor, 15 is an oscilloscope, 16 is an ammeter, and 17 is a mercury switch.

【0037】そして、固体電解質型燃料電池5を100
0℃の温度に保持しながら、燃料ガス供給管11と空気
供給管12を通して、燃料ガスと空気をそれぞれ燃料極
8、空気極9に供給し、固体電解質膜6dを介して電極
反応を起こさせた。そして、電流計16で観察しなが
ら、300mA/cm2 の電流が流れる状態における燃
料極8と空気極9の分極による電圧降下を、カレントイ
ンターラプト法によりオシロスコープ15で測定した。
この測定結果を表1に示す。
Then, the solid oxide fuel cell 5 is set to 100
Fuel gas and air are supplied to the fuel electrode 8 and the air electrode 9 respectively through the fuel gas supply pipe 11 and the air supply pipe 12 while maintaining the temperature at 0 ° C., and the electrode reaction is caused to occur through the solid electrolyte membrane 6d. It was Then, while observing with the ammeter 16, the voltage drop due to the polarization of the fuel electrode 8 and the air electrode 9 in the state where the current of 300 mA / cm 2 flows was measured with the oscilloscope 15 by the current interrupt method.
Table 1 shows the measurement results.

【0038】[0038]

【表1】 [Table 1]

【0039】次に、この測定結果について考察する。こ
の分極による電圧降下の値が小さいほど、電極の実効面
積が広く、かつ、燃料電池としての性能も優れているこ
とになる。表1によれば、実施例品が比較例品よりも分
極による電圧降下の値が小さいことが示され、したがっ
て、実施例品が比較例品よりも実効電極面積が広いこと
がわかる。
Next, the measurement results will be considered. The smaller the value of the voltage drop due to the polarization, the wider the effective area of the electrode and the better the performance as a fuel cell. Table 1 shows that the example product has a smaller value of voltage drop due to polarization than the comparative example product. Therefore, it is understood that the example product has a larger effective electrode area than the comparative example product.

【0040】そして、比較例品及び実施例品について、
燃料極と固体電解質膜の界面をSEMで観察したとこ
ろ、比較例品ではかなり燃料極の収縮が見られ、部分的
には固体電解質膜との界面で剥がれが生じていた。
Then, regarding the comparative example product and the example product,
When the interface between the fuel electrode and the solid electrolyte membrane was observed by SEM, the comparative example product showed considerable shrinkage of the fuel electrode, and peeling occurred partially at the interface with the solid electrolyte membrane.

【0041】これに対して、本発明の実施例品では燃料
極の収縮や固体電解質膜との界面における剥がれは見ら
れなかった。これは固体電解質膜表面の粗面化による凹
凸が、高温還元雰囲気中での運転による、固体電解質膜
と燃料極の界面方向の収縮を抑制する方向に働いたため
と考えられる。
On the other hand, in the products of Examples of the present invention, neither shrinkage of the fuel electrode nor peeling at the interface with the solid electrolyte membrane was observed. It is considered that this is because the unevenness due to the roughening of the surface of the solid electrolyte membrane acts to suppress the contraction in the interface direction between the solid electrolyte membrane and the fuel electrode due to the operation in the high temperature reducing atmosphere.

【0042】また、空気極については比較例品のものよ
りも結合性が良好に保たれていた。
Further, the air electrode had better bondability than that of the comparative example.

【0043】なお、本発明の固体電解質セラミック成形
体の表面層は、熱分解物質による凸部を除く厚みが20
μmを下回ると、薄くなり過ぎて取り扱いにくくなる。
一方、熱分解物質による凸部を除く表面層の厚みが50
μmを超えると、熱分解物質と組み合わせて凹凸を形成
したとき、固体電解質膜表面を粗面化して実効電極面積
を広げ、接合力を高める効果が小さくなる。したがっ
て、表面層は熱分解物質による凸部を除く厚みが20μ
m以上50μm以下であることが好ましい。
The surface layer of the solid electrolyte ceramic molded body of the present invention has a thickness of 20 excluding the protrusions due to the pyrolyzed substance.
If it is less than μm, it becomes too thin and difficult to handle.
On the other hand, the thickness of the surface layer excluding the protrusions due to the pyrolyzed substance is 50
When the thickness exceeds μm, when the unevenness is formed by combining with the pyrolyzed substance, the effect of increasing the bonding force by roughening the surface of the solid electrolyte membrane to widen the effective electrode area becomes small. Therefore, the surface layer has a thickness of 20μ excluding the protrusions due to pyrolyzed substances.
It is preferably at least m and at most 50 μm.

【0044】また、熱分解物質にはカーボンを用いるの
が好ましく、とりわけ球状カーボンを用いるのが最も好
ましいが、その他に例えば、セルロース、ポリスチレ
ン、ポリエチレンでもよく、固体電解質の焼結に合わせ
て固体電解質膜表面から熱分解し、固体電解質膜表面に
凹凸を形成して粗面化できる材質のものであれば、これ
に限らず用いることができる。
Further, it is preferable to use carbon as the pyrolytic substance, and most preferable to use spherical carbon, but other than that, for example, cellulose, polystyrene, polyethylene may be used, and the solid electrolyte may be used in accordance with the sintering of the solid electrolyte. Any material can be used as long as it is a material that can be thermally decomposed from the membrane surface to form irregularities on the surface of the solid electrolyte membrane to roughen the surface.

【0045】また、この熱分解物質の粒径は、固体電解
質セラミック成形体の表面層の熱分解物質による凸部を
除く厚みの2倍を下回ると、この熱分解物質により形成
される凹部の開口部がその内部より狭くなったり、凹部
の開口部が崩れたり、また凹凸が不揃いになったりす
る。したがって、電極スラリーを塗布印刷したときに、
この凹凸面に沿った電極形成が十分にできなくなる。ま
た、クローズドポアが発生して、発電特性に影響するこ
とがある。一方、熱分解物質の粒径が100μmを超え
ると、固体電解質膜の表面層の熱分解物質による凸部を
除く厚みの制限条件から、実効電極面積を拡大して電極
との接合力を高める効果的な粗面を形成するように働か
ない。したがって、熱分解物質の粒径は固体電解質セラ
ミック成形体の表面層の熱分解物質による凸部を除く厚
みの2倍以上100μm以下であることが好ましい。
If the particle size of the pyrolyzed substance is less than twice the thickness of the surface layer of the solid electrolyte ceramic molded body excluding the protrusions by the pyrolyzed substance, the opening of the recess formed by the pyrolyzed substance is opened. The part becomes narrower than the inside, the opening part of the recess collapses, and the unevenness becomes uneven. Therefore, when the electrode slurry is applied and printed,
It becomes impossible to sufficiently form electrodes along the uneven surface. In addition, closed pores may occur, affecting the power generation characteristics. On the other hand, when the particle size of the pyrolyzed substance exceeds 100 μm, the effect of increasing the effective electrode area and increasing the bonding force with the electrode due to the condition of limiting the thickness of the surface layer of the solid electrolyte membrane excluding the protrusion due to the pyrolyzed substance Does not work to form a rough surface. Therefore, the particle size of the pyrolyzed substance is preferably not less than twice the thickness of the surface layer of the solid electrolyte ceramic molded body excluding the protrusions due to the pyrolyzed substance and 100 μm or less.

【0046】[0046]

【発明の効果】本発明によれば、固体電解質型燃料電池
において、固体電解質膜と電極が接触する界面の粗面化
を容易かつ安価に行うことができ、固体電解質膜と電極
との界面の実効電極面積を拡大して接合力を高めること
ができる。
EFFECTS OF THE INVENTION According to the present invention, in a solid oxide fuel cell, it is possible to easily and inexpensively roughen the interface at which the solid electrolyte membrane and the electrode contact each other, and the interface between the solid electrolyte membrane and the electrode is easily formed. The effective electrode area can be increased to enhance the bonding force.

【0047】したがって、このように界面を粗面化する
ことにより、ニッケル−ジルコニアサーメットからなる
燃料極が、高温還元雰囲気中での運転により界面方向に
収縮することを抑制できるなど、長期運転における固体
電解質型燃料電池の発電特性の改善が達成される。
Therefore, by roughening the interface in this way, it is possible to prevent the fuel electrode made of nickel-zirconia cermet from shrinking toward the interface due to the operation in the high temperature reducing atmosphere. The improvement of the power generation characteristics of the electrolyte fuel cell is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すもので、平均粒径10
0μmの球状カーボンが表面に突出した固体電解質セラ
ミックグリーンシートの断面図である。
FIG. 1 shows an example of the present invention in which the average particle size is 10
FIG. 3 is a cross-sectional view of a solid electrolyte ceramic green sheet with 0 μm spherical carbon protruding on the surface.

【図2】本発明の一実施例を示すもので、平均粒径10
0μmの球状カーボンを用いて表面を粗面化した固体電
解質セラミックの断面図である。
FIG. 2 shows an example of the present invention in which the average particle size is 10
FIG. 3 is a cross-sectional view of a solid electrolyte ceramic whose surface is roughened by using 0 μm spherical carbon.

【図3】比較例の平均粒径30μmの球状カーボンを用
いて表面を粗面化した固体電解質セラミックの断面図で
ある。
FIG. 3 is a cross-sectional view of a solid electrolyte ceramic of Comparative Example whose surface is roughened using spherical carbon having an average particle diameter of 30 μm.

【図4】本発明の一実施例を示すもので、電極と固体電
解質膜が粗面化された積層界面を有する固体電解質型燃
料電池の3層膜の断面図である。
FIG. 4 shows an embodiment of the present invention and is a cross-sectional view of a three-layer membrane of a solid oxide fuel cell having a laminated interface in which an electrode and a solid electrolyte membrane are roughened.

【図5】固体電解質型燃料電池の発電特性を測定するた
めの結線図である。
FIG. 5 is a connection diagram for measuring power generation characteristics of a solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

2,3,6 固体電解質セラ
ミック 2a,2b,3a,3b,6a,6b 表面層 5 固体電解質型燃
料電池 8 燃料極 9 空気極 t 凸部
2,3,6 Solid electrolyte ceramics 2a, 2b, 3a, 3b, 6a, 6b Surface layer 5 Solid electrolyte fuel cell 8 Fuel electrode 9 Air electrode t Convex part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質材料と熱分解物質との混合ス
ラリーを準備し、該混合スラリーを成形し、この成形体
を表面層として固体電解質セラミック成形体の表面に配
置して積層し、これを焼成して前記熱分解物質を熱分解
させ、表面を粗面化した固体電解質セラミックとするこ
とを特徴とする固体電解質型燃料電池の製造方法。
1. A mixed slurry of a solid electrolyte material and a pyrolyzed substance is prepared, the mixed slurry is molded, and the molded body is placed as a surface layer on the surface of the solid electrolyte ceramic molded body and laminated. A method for producing a solid oxide fuel cell, which comprises firing to thermally decompose the pyrolyzed substance to obtain a solid electrolyte ceramic having a roughened surface.
【請求項2】 固体電解質材料と熱分解物質との混合ス
ラリーを準備し、該混合スラリーを成形し、この成形体
を表面層として固体電解質セラミック成形体の表面に配
置して積層し、これを焼成して前記熱分解物質を熱分解
させ、表面を粗面化した固体電解質セラミックとし、該
粗面化した固体電解質セラミックの表面に燃料極または
空気極を配置して積層し、この積層体をさらに焼成する
ことを特徴とする固体電解質型燃料電池の製造方法。
2. A mixed slurry of a solid electrolyte material and a pyrolyzed substance is prepared, the mixed slurry is molded, and the molded body is placed as a surface layer on the surface of the solid electrolyte ceramic molded body and laminated. The pyrolyzed material is pyrolyzed by pyrolysis to obtain a solid electrolyte ceramic having a roughened surface, and a fuel electrode or an air electrode is disposed on the surface of the roughened solid electrolyte ceramic and laminated, and this laminated body is formed. A method for producing a solid oxide fuel cell, which is characterized by further firing.
【請求項3】 前記表面層は熱分解物質による凸部を除
く厚みが20μm以上50μm以下であることを特徴と
する請求項1または2記載の固体電解質型燃料電池の製
造方法。
3. The method for producing a solid oxide fuel cell according to claim 1, wherein the surface layer has a thickness of 20 μm or more and 50 μm or less excluding protrusions due to a pyrolyzed substance.
【請求項4】 前記熱分解物質はカーボンであることを
特徴とする請求項1または2記載の固体電解質型燃料電
池の製造方法。
4. The method for producing a solid oxide fuel cell according to claim 1, wherein the pyrolytic substance is carbon.
【請求項5】 前記熱分解物質はその粒径が固体電解質
セラミック成形体の前記表面層の熱分解物質による凸部
を除く厚みの2倍以上100μm以下であることを特徴
とする請求項3記載の固体電解質型燃料電池の製造方
法。
5. The particle size of the pyrolyzed material is not less than twice the thickness of the surface layer of the solid electrolyte ceramic molded body excluding the projections of the pyrolyzed material and not more than 100 μm. 1. A method for manufacturing a solid oxide fuel cell.
JP9258096A 1996-04-15 1996-04-15 Manufacture of solid electrolyte type fuel cell Pending JPH09277226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9258096A JPH09277226A (en) 1996-04-15 1996-04-15 Manufacture of solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9258096A JPH09277226A (en) 1996-04-15 1996-04-15 Manufacture of solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH09277226A true JPH09277226A (en) 1997-10-28

Family

ID=14058377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9258096A Pending JPH09277226A (en) 1996-04-15 1996-04-15 Manufacture of solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH09277226A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045237B2 (en) * 2002-02-20 2006-05-16 Ion America Corporation Textured electrolyte for a solid oxide fuel cell
CN100466355C (en) * 2003-11-03 2009-03-04 康宁股份有限公司 Electrolyte sheet with protruding features having undercut angles and method of separating such sheet from its carrier
US8309265B2 (en) 2003-09-12 2012-11-13 Hitachi, Ltd. Electrolyte membrane for fuel cells, its production and fuel cell using the same
US8663869B2 (en) 2009-03-20 2014-03-04 Bloom Energy Corporation Crack free SOFC electrolyte
US8852825B2 (en) 2011-11-17 2014-10-07 Bloom Energy Corporation Multi-layered coating providing corrosion resistance to zirconia based electrolytes
US8962219B2 (en) 2011-11-18 2015-02-24 Bloom Energy Corporation Fuel cell interconnects and methods of fabrication
US9368809B2 (en) 2012-11-06 2016-06-14 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9452475B2 (en) 2012-03-01 2016-09-27 Bloom Energy Corporation Coatings for SOFC metallic interconnects
US9468736B2 (en) 2013-11-27 2016-10-18 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US9478812B1 (en) 2012-10-17 2016-10-25 Bloom Energy Corporation Interconnect for fuel cell stack
US9502721B2 (en) 2013-10-01 2016-11-22 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9583771B2 (en) 2013-05-16 2017-02-28 Bloom Energy Coporation Corrosion resistant barrier layer for a solid oxide fuel cell stack and method of making thereof
US9847520B1 (en) 2012-07-19 2017-12-19 Bloom Energy Corporation Thermal processing of interconnects
US9923211B2 (en) 2014-04-24 2018-03-20 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks
US10079393B1 (en) 2014-01-09 2018-09-18 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US10763533B1 (en) 2017-03-30 2020-09-01 Bloom Energy Corporation Solid oxide fuel cell interconnect having a magnesium containing corrosion barrier layer and method of making thereof
US11217797B2 (en) 2012-08-29 2022-01-04 Bloom Energy Corporation Interconnect for fuel cell stack

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045237B2 (en) * 2002-02-20 2006-05-16 Ion America Corporation Textured electrolyte for a solid oxide fuel cell
US8309265B2 (en) 2003-09-12 2012-11-13 Hitachi, Ltd. Electrolyte membrane for fuel cells, its production and fuel cell using the same
CN100466355C (en) * 2003-11-03 2009-03-04 康宁股份有限公司 Electrolyte sheet with protruding features having undercut angles and method of separating such sheet from its carrier
US8663869B2 (en) 2009-03-20 2014-03-04 Bloom Energy Corporation Crack free SOFC electrolyte
US8852825B2 (en) 2011-11-17 2014-10-07 Bloom Energy Corporation Multi-layered coating providing corrosion resistance to zirconia based electrolytes
US10784521B2 (en) 2011-11-17 2020-09-22 Bloom Energy Corporation Multi-layered coating providing corrosion resistance to zirconia based electrolytes
US9196909B2 (en) 2011-11-18 2015-11-24 Bloom Energy Corporation Fuel cell interconnect heat treatment method
US8962219B2 (en) 2011-11-18 2015-02-24 Bloom Energy Corporation Fuel cell interconnects and methods of fabrication
US9570769B2 (en) 2011-11-18 2017-02-14 Bloom Energy Corporation Fuel cell interconnect
US9452475B2 (en) 2012-03-01 2016-09-27 Bloom Energy Corporation Coatings for SOFC metallic interconnects
US10505206B2 (en) 2012-03-01 2019-12-10 Bloom Energy Corporation Coatings for SOFC metallic interconnects
US9847520B1 (en) 2012-07-19 2017-12-19 Bloom Energy Corporation Thermal processing of interconnects
US11705557B2 (en) 2012-08-29 2023-07-18 Bloom Energy Corporation Interconnect for fuel cell stack
US11217797B2 (en) 2012-08-29 2022-01-04 Bloom Energy Corporation Interconnect for fuel cell stack
US9478812B1 (en) 2012-10-17 2016-10-25 Bloom Energy Corporation Interconnect for fuel cell stack
US9368809B2 (en) 2012-11-06 2016-06-14 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9673457B2 (en) 2012-11-06 2017-06-06 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9368810B2 (en) 2012-11-06 2016-06-14 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9853298B2 (en) 2013-05-16 2017-12-26 Bloom Energy Corporation Corrosion resistant barrier layer for a solid oxide fuel cell stack and method of making thereof
US9583771B2 (en) 2013-05-16 2017-02-28 Bloom Energy Coporation Corrosion resistant barrier layer for a solid oxide fuel cell stack and method of making thereof
US10593962B2 (en) 2013-10-01 2020-03-17 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9502721B2 (en) 2013-10-01 2016-11-22 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9468736B2 (en) 2013-11-27 2016-10-18 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US11786970B2 (en) 2014-01-09 2023-10-17 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US10079393B1 (en) 2014-01-09 2018-09-18 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US11417894B2 (en) 2014-01-09 2022-08-16 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks
US10553879B2 (en) 2014-04-24 2020-02-04 Bloom Energy Corporation Fuel cell interconnect with metal or metal oxide contact layer
US9923211B2 (en) 2014-04-24 2018-03-20 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US10763533B1 (en) 2017-03-30 2020-09-01 Bloom Energy Corporation Solid oxide fuel cell interconnect having a magnesium containing corrosion barrier layer and method of making thereof

Similar Documents

Publication Publication Date Title
JPH09277226A (en) Manufacture of solid electrolyte type fuel cell
JP4006020B2 (en) Fabrication of devices containing thin ceramic layers.
US5629103A (en) High-temperature fuel cell with improved solid-electrolyte/electrode interface and method of producing the interface
KR101162806B1 (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
JP2695641B2 (en) Method for manufacturing solid electrolyte fuel cell
JP2008538449A5 (en)
JPH09245811A (en) Manufacture of solid electrolyte fuel cell
JP2008081804A (en) Heat resistant alloy member, current collecting member for fuel cell, fuel cell stack, and fuel cell
JPH09245810A (en) Manufacture of solid electrolyte fuel cell
JPH09223506A (en) Manufacture of solid electrolyte fuel cell
JP2001060462A (en) Cell-tube sealing structure
JPH09199143A (en) Manufacture of solid-electrolyte fuel cell
JP2001283877A (en) Unit cell for solid electrolytic fuel battery and its manufacturing method
JP2002329511A (en) Stack for solid electrolyte fuel cell and solid electrolyte fuel cell
JPH08287926A (en) Manufacture of solid electrolyte fuel cell
JP4512911B2 (en) Solid oxide fuel cell
US20060172166A1 (en) Solid-oxide fuel cell and method for producing the same
JPH10172590A (en) Solid electrolyte type fuel cell
JP3398013B2 (en) Method for manufacturing cell for polymer electrolyte fuel cell
JPH10106608A (en) Solid electrolyte fuel cell and manufacture thereof
JP2004158313A (en) Electrolyte material for solid electrolyte fuel cell, cell of solid electrolyte fuel cell, and manufacturing method of these
JP3342621B2 (en) Solid oxide fuel cell
JPH07245112A (en) Solid electrolyte fuel cell
JP2017188437A (en) Electrochemical cell
JP2005085522A (en) Supporting membrane type solid oxide fuel cell