JPH09249269A - Microwave absorption heat cooking container - Google Patents
Microwave absorption heat cooking containerInfo
- Publication number
- JPH09249269A JPH09249269A JP8090576A JP9057696A JPH09249269A JP H09249269 A JPH09249269 A JP H09249269A JP 8090576 A JP8090576 A JP 8090576A JP 9057696 A JP9057696 A JP 9057696A JP H09249269 A JPH09249269 A JP H09249269A
- Authority
- JP
- Japan
- Prior art keywords
- microwave
- cooking container
- metal oxide
- heat
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Package Specialized In Special Use (AREA)
- Electric Ovens (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、マイクロ波吸収発
熱性の調理容器に関する。TECHNICAL FIELD The present invention relates to a microwave absorbing and exothermic cooking container.
【0002】[0002]
【従来の技術】従来より、一般に電子レンジによって被
調理物を加熱調理するさいには、被調理物に焼き焦げを
生ぜず、これが電子レンジによる調理の特色とされてい
た。しかしながら、その反面、被調理物が焼魚、ステ−
キ、ピザパイ、焼ギョウザなどである場合には、むしろ
若干の焼き焦げを生じせしめる方が食感、視感、臭感が
よく、食欲をそそり好ましいものである。2. Description of the Related Art Conventionally, when an object to be cooked is heated and cooked by a microwave oven, the object to be cooked is not charred, which is a characteristic of cooking by a microwave oven. However, on the other hand, the food to be cooked is grilled fish or starch.
In the case of ki, pizza pie, grilled gyoza, etc., it is more preferable to cause some charring, since it has a better texture, a better visual sense, and a better odor, which is desirable for appetizing.
【0003】このため、マイクロ波が透過自在とされた
調理容器基材の外表面中央部などにアルミニウム、酸化
スズ、酸化アンチモン、フェライト、チタン酸バリウ
ム、チタン酸カルシウム、チタン酸ストロンチウムなど
の金属および金属酸化物、あるいは炭化珪素などよりな
るマイクロ波発熱体層を形成せしめたものが提案されて
いる。そして、上述の如く構成された調理容器は、マイ
クロ波発熱体層部分にマイクロ波が照射されると、該マ
イクロ波発熱体層に渦電流が生じ、同時にジュ−ル熱が
生じる。また、マイクロ波照射により、該マイクロ波発
熱性金属酸化物層に配向分極が生じ、その分極運動によ
る双極子回転からくる分子内摩擦熱が生じる。そして、
これらの熱エネルギ−が調理容器に吸収され、約2〜3
分で該調理容器の表面温度が200〜300℃となって
被調理物をほどよく焼き焦すものとされている。For this reason, metals such as aluminum, tin oxide, antimony oxide, ferrite, barium titanate, calcium titanate, strontium titanate and the like are formed on the central portion of the outer surface of the cooking container base material through which microwaves can pass. There is proposed a microwave heating element layer formed of a metal oxide or silicon carbide. When the microwave heating element layer portion of the cooking container configured as described above is irradiated with microwaves, an eddy current is generated in the microwave heating element layer, and at the same time, jule heat is generated. Further, the microwave irradiation causes orientational polarization in the microwave exothermic metal oxide layer, and intramolecular frictional heat due to dipole rotation due to the polarization motion is generated. And
These heat energies are absorbed by the cooking container, and about 2-3
It is said that the surface temperature of the cooking container becomes 200 to 300 ° C. in a minute and the food to be cooked is properly burned.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述の
如く構成された従来例では、マイクロ波発熱体層がアル
ミニウム、酸化スズ、フェライトなどの金属および金属
酸化物、あるいは炭化珪素などの材質より構成されてい
るが、かかる材質は本来的に自己温度制御機能的な物性
を有しないものである。このため、マイクロ波の照射時
間に比例してマイクロ波発熱体層は発熱して次第に高温
化し、過熱して場合によっては自から熔化するのみなら
ず、被調理物をも過熱せしめる不都合を生起せしめやす
いものである。また、調理容器基材も急激に高温加熱さ
れるため、耐熱性のみならず、高い耐熱衝撃性が要求さ
れ、基材材質もかなり制限されるものとなっている。However, in the conventional example configured as described above, the microwave heating element layer is made of a metal and metal oxide such as aluminum, tin oxide and ferrite, or a material such as silicon carbide. However, such a material inherently does not have physical properties of self-temperature control function. For this reason, the microwave heating element layer heats up in proportion to the microwave irradiation time and gradually rises in temperature, causing not only the self-melting in some cases but also the overheating of the food to be cooked. It's easy. Further, since the cooking container base material is rapidly heated to a high temperature, not only heat resistance but also high thermal shock resistance is required, and the material of the base material is considerably limited.
【0005】本発明者は、かかる従来の問題点を解決す
べく鋭意研究を行った結果、自己温度制御性、すなわ
ち、マイクロ波の照射により発熱して一定の温度に自己
制御せしめる金属酸化物を知見し、本発明を完成するに
至ったものである。The present inventor has conducted extensive studies to solve the above conventional problems, and as a result, has found self-temperature controllability, that is, a metal oxide capable of self-controlling at a constant temperature by being heated by microwave irradiation. They have found out the present invention and completed the present invention.
【0006】[0006]
【課題を解決するための手段】本発明は、マイクロ波が
透過自在とされた調理容器基材の外表面に、自己温度制
御性を有するマイクロ波発熱性金属酸化物層が設けられ
てなることを要旨とするものである。According to the present invention, a microwave exothermic metal oxide layer having self-temperature controllability is provided on the outer surface of a cooking container base material through which microwaves can pass. Is the gist.
【0007】[0007]
【発明の実施の形態】本発明にかかるマイクロ波が透過
自在とされた調理容器基材の形状としては、トレ−状や
皿状など公知の調理容器形状に形成せしめることが出来
る。そして、かかる調理容器基材の材質としては、耐熱
ガラス、結晶化ガラス、リチア系セラミックス、ムライ
ト、アルミナ、あるいはポリエチレンテレフタレ−ト
等、公知のガラス、セラミックス、合成樹脂を採択使用
する。BEST MODE FOR CARRYING OUT THE INVENTION The shape of a cooking container base material through which microwaves can be transmitted according to the present invention can be formed into a known cooking container shape such as a tray shape or a dish shape. As the material of the cooking container base material, known glass, ceramics, or synthetic resin such as heat-resistant glass, crystallized glass, lithia-based ceramics, mullite, alumina, or polyethylene terephthalate is selected and used.
【0008】また、自己温度制御性を有するマイクロ波
発熱性金属酸化物層の材質原料としては、VO、V
O2、V2O3、V2O5等の酸化バナジウム、NbO、N
bO2、Nb2O3、Nb2O5等の酸化ニオブ、WO2、W
O3、W2O5 等の酸化タングステン、CrO、Cr
O2、CrO3、Cr2O3等の酸化クロム、Ta2O5等の
酸化タンタル、あるいはMoO2、MoO3、Mo2O5等
の酸化モリブデンを好適に使用することができる。そし
て、かかる金属酸化物は各々単独で使用してもよく、ま
た、適宜配合して使用してもよい。例えば、V2O5とW
O3、V2O5とAl2O3、V2O5とWO3とAl2O3を好
適な配合の一例として挙げることができる。マイクロ波
発熱性金属酸化物層を形成せしめるさいには、粉末状と
されたかかる金属酸化物を水性、あるいは油性の溶媒等
に分散させてスラリ−状やペ−スト状に調製せしめ、例
えばスプレ−吹き、ディッピング、スクリ−ン印刷等公
知の方法により調理容器基材の一部または全面に付着せ
しめたのち、熱処理して焼付けることにより所要厚さの
マイクロ波発熱性金属酸化物層を形成せしめる。Further, as a raw material for the microwave exothermic metal oxide layer having self-temperature controllability, VO, V
O 2, V 2 O 3, V 2 O 5 or the like vanadium oxide, NbO, N
Niobium oxide such as bO 2 , Nb 2 O 3 and Nb 2 O 5 , WO 2 and W
Tungsten oxide such as O 3 and W 2 O 5 , CrO, Cr
Chromium oxides such as O 2 , CrO 3 and Cr 2 O 3, tantalum oxides such as Ta 2 O 5 and molybdenum oxides such as MoO 2 , MoO 3 and Mo 2 O 5 can be preferably used. The metal oxides may be used alone or may be used by appropriately mixing them. For example, V 2 O 5 and W
The O 3, V 2 O 5 and Al 2 O 3, V 2 O 5 and WO 3 and Al 2 O 3 may be mentioned as an example of a suitable formulation. When forming the microwave exothermic metal oxide layer, the powdered metal oxide is dispersed in an aqueous or oily solvent to prepare a slurry form or a paste form, for example, a spray. -A microwave-exothermic metal oxide layer having a required thickness is formed by applying it on a part or the whole surface of the cooking container base material by a known method such as blowing, dipping, or screen printing, and then heat-treating and baking. Excuse me.
【0009】そして、上述の如く構成された調理容器
は、マイクロ波発熱性金属酸化物層にマイクロ波が照射
されると、従来と同様に、該マイクロ波発熱性金属酸化
物層に過電流が生じ、同時にジュ−ル熱が生じる。ある
いは、該マイクロ波発熱性金属酸化物層に配向分極が生
じ、その分極運動による双極子回転からくる分子内摩擦
熱が生じる。かかるマイクロ波発熱性金属酸化物層は、
マイクロ波を照射すると温度が上昇し、ある温度に達す
ると、不変の状態となる。しかしながら、このような温
度制御現象が起こる理由は不明であるが、焼付けしたマ
イクロ波発熱性金属酸化物層の生成結晶相、結晶相の成
長度、結晶粒界などに起因しているものと思われる。な
お、マイクロ波発熱性金属酸化物層は調理容器基材の外
表面、好ましくは上面または下面に形成せしめるとよ
く、また、調理容器の耐久性や耐汚染性を向上せしめる
ため、かかるマイクロ波発熱性金属酸化物層上にガラス
層、セラミックス層、耐熱樹脂膜層等を保護膜として形
成せしめてもよいものである。In the cooking container constructed as described above, when the microwave exothermic metal oxide layer is irradiated with microwaves, an overcurrent is generated in the microwave exothermic metal oxide layer as in the conventional case. Occurs, and at the same time, juule heat is generated. Alternatively, orientation polarization occurs in the microwave exothermic metal oxide layer, and intramolecular frictional heat resulting from dipole rotation due to the polarization motion occurs. Such microwave exothermic metal oxide layer,
When irradiated with microwaves, the temperature rises, and when it reaches a certain temperature, it becomes invariable. However, the reason why such a temperature control phenomenon occurs is not clear, but it is considered that it is caused by the generated crystal phase of the baked microwave exothermic metal oxide layer, the degree of growth of the crystal phase, the grain boundary, and the like. Be done. The microwave-exothermic metal oxide layer may be formed on the outer surface of the cooking container base material, preferably on the upper surface or the lower surface. Further, in order to improve the durability and stain resistance of the cooking container, the microwave heating A glass layer, a ceramic layer, a heat-resistant resin film layer or the like may be formed as a protective film on the functional metal oxide layer.
【0010】[0010]
【実施例】以下に、本発明の実施例を図に基づいて説明
する。 実施例1〜8 比較例1〜2 ムライト系陶器質セラミックス素地土を用い、施釉層の
あるトレ−状の調理容器基材2を形成した。次いで、表
1に示すマイクロ波発熱性金属酸化物100重量とフリ
ット10重量部と溶剤40重量部とを混練りしてペ−ス
トを調製せしめ、該ペ−ストを調理容器基材2の下面に
100メッシュのスクリ−ンを用いてスクリ−ン印刷を
行い、これを乾燥せしめたのち500℃〜800℃に加
熱処理せしめ、調理容器基材2の下面にマイクロ波発熱
性金属酸化物層3を焼付け形成してマイクロ波吸収発熱
性の調理容器1を形成した(図1参照)。なお、比較例
2については、上記と同様の調理容器基材下面にSnC
l2から調製したSnO2ゲル溶液を蒸着せしめたのち、
500℃で熱処理し、SnO2層を形成してマイクロ波
吸収発熱性の調理容器を形成した。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Examples 1 to 8 Comparative Examples 1 to 2 A tray-shaped cooking container base 2 having a glazed layer was formed using a mullite ceramic earth material. Then, 100 parts by weight of the microwave exothermic metal oxide shown in Table 1, 10 parts by weight of the frit and 40 parts by weight of the solvent are kneaded to prepare a paste, and the paste is prepared on the lower surface of the cooking container base material 2. Screen printing was performed using a 100-mesh screen, dried, and then heat-treated at 500 ° C. to 800 ° C., and the microwave-exothermic metal oxide layer 3 was formed on the lower surface of the cooking container base material 2. To form a microwave-absorbing and exothermic cooking container 1 (see FIG. 1). For Comparative Example 2, SnC was formed on the lower surface of the cooking container base material similar to the above.
After allowed deposited SnO 2 gel solution prepared from l 2,
Heat treated at 500 ° C., to form the microwave absorbing heat generation of the cooking container to form a SnO 2 layer.
【0011】形成した各マイクロ波吸収発熱性の調理容
器1を市販の電子レンジ(内寸法300×300×20
0)内にセットせしめ、発信周波数2450MHz、出
力600Wのマイクロ波を照射せしめ、経時的にマイク
ロ波発熱性金属酸化物層3の表面温度を測定した。かか
る測定結果を表1に併せて示すと共に、図2にグラフと
して表わした。Each of the formed microwave-absorbing and exothermic cooking containers 1 was placed in a commercially available microwave oven (internal dimensions 300 × 300 × 20).
0), the microwave was emitted with an oscillation frequency of 2450 MHz and an output of 600 W, and the surface temperature of the microwave exothermic metal oxide layer 3 was measured with time. The measurement results are also shown in Table 1 and shown as a graph in FIG.
【0012】[0012]
【表1】 [Table 1]
【0013】表1、及び図2から明らかな通り、比較例
1〜2はマイクロ波の照射により発熱し、ほぼマイクロ
波の照射時間に比例して昇温せしめられている。これに
対し、実施例1〜8においては、マイクロ波の照射によ
り発熱して昇温するも、約2〜4分を経過した時点で昇
温が停滞し、以後、マイクロ波の継続的な照射に拘わら
ず、発熱温度が一定に保持せしめられており、顕著な自
己温度制御機能を発揮せしめていることが理解できるも
のである。As is clear from Table 1 and FIG. 2, in Comparative Examples 1 and 2, heat is generated by microwave irradiation, and the temperature is raised in proportion to the microwave irradiation time. On the other hand, in Examples 1 to 8, although heat was generated due to microwave irradiation and the temperature was raised, the temperature rise was stopped after about 2 to 4 minutes, and thereafter, continuous irradiation with microwaves was performed. Regardless of this, it can be understood that the heat generation temperature is kept constant and the remarkable self-temperature control function is exerted.
【0014】[0014]
【発明の効果】本発明によれば以上の次第で、マイクロ
波が透過自在とされた調理容器基材の外表面に、自己温
度制御性を有するマイクロ波発熱性金属酸化物層が設け
られているから、マイクロ波の照射により発熱して常に
一定の温度に保持せしめることが出来るものであって、
従来のように過熱して自から熔化したり、あるいは被調
理物を過熱せしめるおそれが全くなく、常に適正に所要
の調理を行うことが出来るものである。また、このた
め、調理容器基材も従来のように高耐熱性や高耐熱衝撃
性を必ずしも必要とされるものでなく、ひいては、調理
容器基材の材質に選択の幅ができ、マイクロ波が透過自
在な各種の材質を採択使用することが出来るものであ
る。As described above, according to the present invention, a microwave-exothermic metal oxide layer having a self-temperature controllability is provided on the outer surface of a cooking container substrate through which microwaves can pass. Therefore, it is possible to generate heat by irradiating microwaves and keep it at a constant temperature at all times.
There is no possibility of overheating and melting itself or overheating of the food to be cooked as in the conventional case, and the required cooking can always be performed properly. Therefore, the cooking container base material is not necessarily required to have high heat resistance and high thermal shock resistance as in the conventional case, and as a result, the material of the cooking container base material can be selected in a wide range and the microwave Various transparent materials can be selected and used.
【図1】本発明の一実施例を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention.
【図2】本発明の実施例、及び比較例で形成したマイク
ロ波吸収発熱性の調理容器にマイクロ波を照射せしめた
さいの経時的な温度測定結果を表わすグラフである。FIG. 2 is a graph showing the results of temperature measurement with time when microwaves were applied to the microwave absorbing and exothermic cooking containers formed in the examples of the present invention and the comparative examples.
1 調理容器 2 調理容器基材 3 マイクロ波発熱性金属酸化物層 1 Cooking Container 2 Cooking Container Base Material 3 Microwave Exothermic Metal Oxide Layer
Claims (2)
材の外表面に、自己温度制御性を有するマイクロ波発熱
性金属酸化物層が設けられてなることを特徴とする、マ
イクロ波吸収発熱性の調理容器。1. A microwave absorbing metal oxide layer having self-temperature controllability is provided on the outer surface of a cooking container base material through which microwaves can pass. An exothermic cooking container.
金属酸化物層の材質原料が酸化バナジウム、酸化ニオ
ブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化
タングステンの群から選択された金属酸化物であること
を特徴とする、請求項1記載のマイクロ波吸収発熱性の
調理容器。2. The material of the microwave exothermic metal oxide layer having self-temperature controllability is a metal oxide selected from the group of vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide and tungsten oxide. The microwave-absorbing and exothermic cooking container according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8090576A JPH09249269A (en) | 1996-03-18 | 1996-03-18 | Microwave absorption heat cooking container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8090576A JPH09249269A (en) | 1996-03-18 | 1996-03-18 | Microwave absorption heat cooking container |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09249269A true JPH09249269A (en) | 1997-09-22 |
Family
ID=14002266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8090576A Pending JPH09249269A (en) | 1996-03-18 | 1996-03-18 | Microwave absorption heat cooking container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09249269A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005007532A1 (en) * | 2003-07-23 | 2005-01-27 | Kiyari Co., Ltd. | Tray for frozen food, frozen food package, frozen sushi package and method for thawing frozen sushi |
KR100593358B1 (en) * | 1998-07-29 | 2006-09-14 | 주식회사 엘지이아이 | Microwave Heating Plate |
JP2018030653A (en) * | 2017-12-04 | 2018-03-01 | 東洋アルミニウム株式会社 | Food storage body |
CN115367799A (en) * | 2022-09-14 | 2022-11-22 | 贵州梅岭电源有限公司 | Method for preparing high-performance chromium oxide cathode material by microwave method |
-
1996
- 1996-03-18 JP JP8090576A patent/JPH09249269A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100593358B1 (en) * | 1998-07-29 | 2006-09-14 | 주식회사 엘지이아이 | Microwave Heating Plate |
WO2005007532A1 (en) * | 2003-07-23 | 2005-01-27 | Kiyari Co., Ltd. | Tray for frozen food, frozen food package, frozen sushi package and method for thawing frozen sushi |
US7154073B2 (en) | 2003-07-23 | 2006-12-26 | Kiyari Co., Ltd. | Microwave heatable tray for frozen food, package of frozen food, package of frozen sushi, and method of thawing frozen sushi |
JP2018030653A (en) * | 2017-12-04 | 2018-03-01 | 東洋アルミニウム株式会社 | Food storage body |
CN115367799A (en) * | 2022-09-14 | 2022-11-22 | 贵州梅岭电源有限公司 | Method for preparing high-performance chromium oxide cathode material by microwave method |
CN115367799B (en) * | 2022-09-14 | 2023-10-31 | 贵州梅岭电源有限公司 | Method for preparing high-performance chromium oxide positive electrode material by microwave method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4230924A (en) | Method and material for prepackaging food to achieve microwave browning | |
US4713510A (en) | Package for microwave cooking with controlled thermal effects | |
US3974354A (en) | Microwave utensil with reflective surface handle | |
EP0556382A1 (en) | Selectively microwave-permeable susceptor systems | |
US5466917A (en) | Microwave-absorptive heat-generating body and method for forming a heat-generating layer in a microwave-absorptive heat-generating body | |
GB1592978A (en) | Microwave food heating package method of heating such package containing food food so heated and combination of oven and microwave food heating package | |
JP2008522758A5 (en) | ||
JPH06111934A (en) | Sintered-ceramic microwave heating thermosensitive body | |
US5493103A (en) | Baking utensil to convert microwave into thermal energy | |
JPH09249269A (en) | Microwave absorption heat cooking container | |
JP6043513B2 (en) | Ceramic container | |
JPH1057239A (en) | Cooking vessel absorbing microwave to heat up | |
KR101602574B1 (en) | Cookware and Cookware manufacturing method for microwave oven | |
JP2012218970A (en) | Exothermic enamel glaze, electromagnetic induction heating apparatus, and exothermic enameled product | |
JPH01235550A (en) | Baking of food | |
JPS62227307A (en) | Food container for microwave cooking | |
JPH1085130A (en) | Cooking vessel for microwave oven | |
JP2643385B2 (en) | Heating container for induction cooker | |
JPS6314014A (en) | Heater utilizing electromagnetic wave | |
JP2001128847A (en) | Heat generating tray for microwave oven and heating medium material of heat generating tray for microwave oven as well as method for manufacturing heat generating tray for microwave oven | |
JPS63110177A (en) | Food vessel for cooking of electronic oven | |
JP3012500U (en) | Pottery cooker | |
JP2007227191A (en) | Induction heating element and its manufacturing method | |
JPS6284713A (en) | Ceramic frypan | |
JP2017533869A (en) | Food packaging containers for microwave ovens that generate heat |