JPH09246520A - Input output interface - Google Patents
Input output interfaceInfo
- Publication number
- JPH09246520A JPH09246520A JP8057131A JP5713196A JPH09246520A JP H09246520 A JPH09246520 A JP H09246520A JP 8057131 A JP8057131 A JP 8057131A JP 5713196 A JP5713196 A JP 5713196A JP H09246520 A JPH09246520 A JP H09246520A
- Authority
- JP
- Japan
- Prior art keywords
- input
- transmission line
- outside
- output
- signal transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008878 coupling Effects 0.000 claims abstract description 27
- 238000010168 coupling process Methods 0.000 claims abstract description 27
- 238000005859 coupling reaction Methods 0.000 claims abstract description 27
- 230000008054 signal transmission Effects 0.000 claims abstract description 27
- 239000003990 capacitor Substances 0.000 claims abstract description 21
- 239000002887 superconductor Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 abstract description 11
- 230000005540 biological transmission Effects 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 3
- 239000011810 insulating material Substances 0.000 abstract description 2
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、外部との熱的影響
を遮断する系内で用いられる装置と系外との信号の伝送
を行なう信号伝送線を用いた入出力インターフェイスに
関し、特に超伝導状態を保持する低温の系内に設置され
た装置と常温の系外部との入出力信号の伝送線路におけ
る信号損失が低く、かつ熱遮断特性に優れた入出力イン
ターフェイスに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an input / output interface using a signal transmission line for transmitting a signal between a device used in a system for blocking a thermal influence from the outside and a device outside the system. The present invention relates to an input / output interface which has a low signal loss in a transmission line of an input / output signal between a device installed in a low temperature system which maintains a state and the outside of the system at room temperature and which has excellent heat insulation characteristics.
【0002】[0002]
【従来の技術】通常、超伝導体を利用した種々のデバイ
ス、たとえば超伝導フィルタ回路やミキサ回路等は、超
伝導状態を保持するために断熱特性に優れた断熱部材に
より外部(たとえば、常温雰囲気)からの熱的影響を遮
断し、低温あるいは極低温雰囲気を保持する冷却体
(系)内に設置される構成となっている。2. Description of the Related Art Generally, various devices using a superconductor, such as a superconducting filter circuit and a mixer circuit, are provided with a heat insulating member having excellent heat insulating properties in order to maintain a superconducting state. ) Is installed in a cooling body (system) that keeps a low temperature or extremely low temperature atmosphere.
【0003】このような超伝導デバイスの超伝導状態を
保持する構成例を図4に示すと、超伝導デバイス3は低
温保持体1中の冷却ヘッド2上に載置され、超伝導デバ
イス3上の入出力ポート(入出力パッド)3a、3bに
信号伝送線4の一端が接続され、他端が低温保持体1外
(系外)の常温雰囲気中に露出したコネクタ等の入出力
端子4a、4bに接続された構成を有している。たとえ
ば超伝導フィルタ回路においては、入出力用の信号伝送
線として、高周波伝送に良好で信号損失の少ないセミリ
ジッドケーブル等のいわゆる同軸線路が利用されてい
る。なお、図示していないが、低温保持体1には低温雰
囲気を保持するための冷却源、圧力調整手段等が付設さ
れている。FIG. 4 shows an example of a structure for maintaining the superconducting state of such a superconducting device. The superconducting device 3 is placed on the cooling head 2 in the low temperature holder 1, and on the superconducting device 3. One end of the signal transmission line 4 is connected to the input / output ports (input / output pads) 3a and 3b, and the other end is an input / output terminal 4a such as a connector exposed in a normal temperature atmosphere outside the low temperature holder 1 (outside the system), 4b is connected. For example, in a superconducting filter circuit, a so-called coaxial line such as a semi-rigid cable that is suitable for high frequency transmission and has a small signal loss is used as an input / output signal transmission line. Although not shown, the low temperature holder 1 is provided with a cooling source for maintaining a low temperature atmosphere, a pressure adjusting means, and the like.
【0004】[0004]
【発明が解決しようとする課題】このような超伝導デバ
イスをはじめ、外部との熱的影響の遮断を必要とする
系、すなわち極低温等の所定の熱的雰囲気中でのみ特有
の動作を実現する装置においては、外部からの熱伝導
(熱の流入)を遮断する様々な工夫がなされている。し
かしながら、一般に系外部から装置の入出力端への信号
を伝送する入出力線路において、系外の入出力コネクタ
から信号伝送線を経由して系内部に伝導する熱的な影響
については、有効な対策が施されてはいなかった。たと
えば上述したような超伝導フィルタ回路においては、セ
ミリジッドケーブル等の同軸線路を利用することによ
り、信号損失を抑制してフィルタ回路の特性を向上させ
ているが、反面このような同軸線路においては、熱伝導
性が高いという特徴を有している。そのため、同軸線路
を介して熱が伝導し、系内の超伝導状態を破壊する問題
を有している。A unique operation is realized only in such a superconducting device as well as in a system which needs to be shielded from thermal influences to the outside, that is, in a predetermined thermal atmosphere such as extremely low temperature. Various devices have been devised to block heat conduction (heat inflow) from the outside. However, in general, in the input / output line that transmits a signal from the outside of the system to the input / output terminal of the device, the effective thermal effect conducted from the outside input / output connector to the inside of the system via the signal transmission line is effective. No measures were taken. For example, in the superconducting filter circuit as described above, by using a coaxial line such as a semi-rigid cable, the signal loss is suppressed and the characteristics of the filter circuit are improved. On the other hand, in such a coaxial line, It has the feature of high thermal conductivity. Therefore, there is a problem that heat is conducted through the coaxial line and destroys the superconducting state in the system.
【0005】このような問題点を解決するため、系内に
侵入(伝導)した熱を排出する冷却機構が必要となり、
超伝導デバイスを小型、省電力化して実現する上での大
きな障害となっている。上述した問題、すなわち電気的
に損失(信号損失)が少なく、熱的に抵抗(熱的遮断特
性)を大きくする方法としては、信号伝送線中に結合コ
ンデンサを設ける構成が考えられる。結合コンデンサの
特徴は、交流あるいは信号電流は通過させ、直流は阻止
する性質を有しているので、電気的な結合損失を小さく
抑えるためには、静電容量を大きくする、すなわち対向
面積を大きく設定する方が望ましい。一方、伝送線路を
伝導する熱に対する抵抗は、結合コンデンサの対向面積
が小さいほど大きくなるので、対向面積を小さく設定す
る方が望ましい。このように従来技術の課題を結合コン
デンサのみで解決しようとすると互いに矛盾する構成を
必要とする。In order to solve such a problem, a cooling mechanism for discharging the heat that has penetrated (conducted) into the system is required,
This is a major obstacle to the realization of superconducting devices that are compact and consume less power. As a method of increasing the resistance (thermal cutoff characteristic) while reducing the electrical loss (signal loss) electrically as described above, it is conceivable to provide a coupling capacitor in the signal transmission line. The characteristic of the coupling capacitor is that it allows the passage of alternating current or signal current and blocks direct current, so in order to keep the electrical coupling loss small, increase the capacitance, that is, increase the facing area. It is preferable to set it. On the other hand, the resistance to heat conducted through the transmission line increases as the facing area of the coupling capacitor decreases, so it is desirable to set the facing area small. As described above, in order to solve the problems of the conventional technology by using only the coupling capacitor, the configurations contradictory to each other are required.
【0006】本発明の目的は、外部との熱的影響の遮断
を必要とする系、すなわち極低温等の所定の熱的雰囲気
中でのみ特有の動作を実現する装置において、外部から
入出力信号の伝送線路を介して侵入する熱の伝導を抑制
し、かつ入出力信号の損失の少ない入出力インターフェ
イスを提供することにある。An object of the present invention is to provide an input / output signal from the outside in a system that needs to shut off thermal influences from the outside, that is, in a device that realizes a specific operation only in a predetermined thermal atmosphere such as extremely low temperature. Another object of the present invention is to provide an input / output interface that suppresses the conduction of heat that enters through the transmission line and has a small loss of input / output signals.
【0007】[0007]
【課題を解決するための手段】本発明は、上述の目的を
達成するために、外部との熱的影響を遮断した系内で用
いられ、外部の熱的雰囲気とは異なる所定の熱的雰囲気
内でのみ特有の動作を行なう装置の入出力端と前記系の
外部とを接続し、前記系外部と系内部の前記装置間で信
号の伝送を行なう信号伝送線を用いた入出力インターフ
ェイスにおいて、前記系内の前記信号伝送線に結合コン
デンサとインダクタとを直列に接続したことを特徴と
し、または、前記装置が超伝導体を用いたデバイスであ
り、前記系が該デバイスの超伝導状態を保持する温度保
持体であることを特徴とするものである。In order to achieve the above-mentioned object, the present invention is used in a system in which the thermal influence to the outside is blocked, and a predetermined thermal atmosphere different from the external thermal atmosphere. In an input / output interface using a signal transmission line that connects an input / output terminal of a device that performs a unique operation only inside the system and the outside of the system, and that transmits a signal between the device outside the system and the device inside the system, A coupling capacitor and an inductor are connected in series to the signal transmission line in the system, or the device is a device using a superconductor, and the system maintains a superconducting state of the device. It is characterized in that it is a temperature holding body.
【0008】本発明は、伝送線路を伝送する信号が交流
的であるのに対し、伝送線路を伝導する熱は直流的な性
質を有していることに着目し、上述の結合コンデンサに
より、伝送線を伝導する熱に対する抵抗を増大させ、ま
た結合コンデンサに直列にインダクタを接続することに
より、伝送線の結合容量を等価的に増大させ、信号損失
を抑制した入出力インターフェイスを提供する。The present invention focuses on the fact that the heat transmitted through the transmission line has a direct current characteristic while the signal transmitted through the transmission line is alternating current. (EN) An input / output interface in which the resistance to heat conducted through a line is increased and the coupling capacitance of a transmission line is equivalently increased by connecting an inductor in series with a coupling capacitor to suppress signal loss.
【0009】そのため、超伝導デバイス等の外部の熱的
影響からの遮断が強く求められる装置の入出力信号を伝
送する線路に本発明を適用すれば、低温雰囲気等の良好
な装置動作環境を保持することができるとともに、回路
特性を向上させた装置を小型、かつ省電力で実現するこ
とができる。詳しくは、超伝導フィルタ回路において、
対向電極の面積が小さい結合コンデンサを用いて、熱的
に大きな抵抗を得、超伝導状態を保持することができる
とともに、たとえば入出力部に施されるボンディングリ
ードに含まれるインダクタンス成分に着目し、電気的に
大きな結合容量を等価的に得て、信号損失の低減による
回路特性の向上を同時に実現することができる。Therefore, if the present invention is applied to a line for transmitting input / output signals of a device such as a superconducting device which is strongly required to be shielded from external thermal influences, a good device operating environment such as a low temperature atmosphere can be maintained. In addition, it is possible to realize a device having improved circuit characteristics with a small size and power saving. Specifically, in the superconducting filter circuit,
By using a coupling capacitor with a small area of the counter electrode, it is possible to obtain a large thermal resistance and maintain a superconducting state, while paying attention to the inductance component contained in the bonding lead applied to the input / output section, By electrically equivalently obtaining a large coupling capacitance, it is possible to simultaneously improve circuit characteristics by reducing signal loss.
【0010】[0010]
【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。図1は本発明の請求項1および2に係
る入出力インターフェイスを適用した装置の一実施例を
示す図である。なお、本実施例において、従来例(図
4)と共通する構成要素には同一の符号を付してある。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of an apparatus to which an input / output interface according to claims 1 and 2 of the present invention is applied. Note that, in the present embodiment, the constituent elements common to the conventional example (FIG. 4) are designated by the same reference numerals.
【0011】図1において、1は、外部の熱的雰囲気を
遮断する断熱材等により構成された低温保持体、2は、
冷却源により所定の低温状態まで載置物を冷却する冷却
ヘッド、3は、冷却ヘッド2上に載置され、冷却ヘッド
2により所定の低温状態に冷却され、超伝導特性を生じ
る超伝導フィルタ回路等の超伝導デバイス、4は、一端
が超伝導デバイス3上の入出力ポート3a、3bに接続
され、他端が低温保持体1外の入出力端子4a、4bに
接続される同軸ケーブル等の入出力用の信号伝送線であ
る。信号伝送線4には、結合コンデンサ5aとインダク
タ5bが直列に接続されている。図中では、入出力ポー
ト3aおよび入出力端子4aに接続される信号伝送線4
についてのみ結合コンデンサ(C)とインダクタ(L)
に符号を付して、3bおよび4bに接続される信号伝送
線については符号を省略した。また、図示されていない
が、低温保持体1および冷却ヘッド2は、電気的に接地
されている。In FIG. 1, reference numeral 1 is a low temperature holder made of a heat insulating material or the like for shutting off an external thermal atmosphere, and 2 is a low temperature holder.
A cooling head 3, which cools a mounted object to a predetermined low temperature state by a cooling source, is placed on the cooling head 2 and is cooled to a predetermined low temperature state by the cooling head 2 to generate a superconducting filter circuit or the like. The superconducting device 4 of FIG. 1 has an input terminal such as a coaxial cable whose one end is connected to the input / output ports 3a and 3b on the superconducting device 3 and the other end is connected to the input / output terminals 4a and 4b outside the cryostat 1. It is a signal transmission line for output. A coupling capacitor 5a and an inductor 5b are connected in series to the signal transmission line 4. In the figure, the signal transmission line 4 connected to the input / output port 3a and the input / output terminal 4a
Only for coupling capacitor (C) and inductor (L)
To the signal transmission lines connected to 3b and 4b. Further, although not shown, the cryostat 1 and the cooling head 2 are electrically grounded.
【0012】次に、本実施例における入出力インターフ
ェイスについて、さらに詳しく説明する。図2に示すよ
うに信号伝送線の一端側の接点Aと他端側の接点Bとの
間に結合コンデンサC(静電容量:C)とインダクタL
(インダクタンス:L)とが直列に接続された信号伝送
線に信号周波数ωの電気信号が印加された場合、信号伝
送線の等価的な結合容量C0は、以下の式で与えられ
る。Next, the input / output interface in this embodiment will be described in more detail. As shown in FIG. 2, a coupling capacitor C (electrostatic capacity: C) and an inductor L are provided between a contact A on one end side and a contact B on the other end side of the signal transmission line.
When an electric signal having a signal frequency ω is applied to a signal transmission line in which (inductance: L) is connected in series, an equivalent coupling capacitance C 0 of the signal transmission line is given by the following equation.
【0013】C0=C/(1−ω2CL)・・・・(1) (1)式に示すように、本実施例の入出力インターフェ
イスは、0<ω2CL<1の条件において、結合コンデ
ンサとして静電容量Cの小さいものを接続しても、見か
け上大きな結合容量C0を得ることができる。これは言
い換えると、結合コンデンサの静電容量Cは、対向電極
の大きさに比例するので、対向電極の面積を小さく設定
することができ、信号伝送線を伝導する熱に対する抵抗
を大きくすることができるとともに、一方では、伝送線
の等価的な結合容量C0を大きく設定できるため、伝送
線端A、B間に印加される電気信号の損失を小さく抑え
ることが可能となる。C 0 = C / (1−ω 2 CL) (1) As shown in the equation (1), the input / output interface of this embodiment is under the condition of 0 <ω 2 CL <1. Even if a coupling capacitor having a small capacitance C is connected, an apparently large coupling capacitance C 0 can be obtained. In other words, since the capacitance C of the coupling capacitor is proportional to the size of the counter electrode, the area of the counter electrode can be set small and the resistance to heat conducted through the signal transmission line can be increased. On the other hand, on the other hand, since the equivalent coupling capacitance C 0 of the transmission line can be set large, it is possible to suppress the loss of the electric signal applied between the transmission line ends A and B to be small.
【0014】また、(1)式において、ω2CL=1の
条件下では、直列共振を生じ、特定の周波数のみを通過
させるバンドパスフィルタとして動作する。本実施例で
は超伝導デバイスとして超伝導フィルタ回路を例とした
が、対象となる装置をフィルタ回路以外の回路、すなわ
ち特定の周波数で動作する装置に適用することができ
る。Further, in the equation (1), under the condition of ω 2 CL = 1, series resonance occurs, and it operates as a bandpass filter which allows only a specific frequency to pass. In the present embodiment, the superconducting filter circuit is taken as an example of the superconducting device, but the target device can be applied to circuits other than the filter circuit, that is, devices operating at a specific frequency.
【0015】次に、本実施例の入出力インターフェイス
における信号損失の一例を図3を用いて説明する。図3
(a)は、信号損失を算出するために使用した回路構成
で、図2に示した回路(接点A−B間の結合コンデンサ
CおよびインダクタL)を模擬的に交流電圧源ESに接
続したものである。RSは電圧源ESに付随する内部抵
抗、RLは負荷抵抗である。Next, an example of signal loss in the input / output interface of this embodiment will be described with reference to FIG. FIG.
(A) is a circuit configuration used for calculating the signal loss, and the circuit shown in FIG. 2 (the coupling capacitor C between the contacts A and B and the inductor L) is connected to the AC voltage source E S in a simulated manner. It is a thing. R S is an internal resistance associated with the voltage source E S , and R L is a load resistance.
【0016】このような回路構成において、交流電圧源
ESから送出される信号を1.0GHzから2.0MH
zの周波数を有する高周波信号とした場合の信号損失を
図3(b)に示す。ここで、結合コンデンサCの容量を
6pF、インダクタLのインダクタンスを0あるいは2
nH、内部抵抗RSおよび負荷抵抗RLを50Ωとした。In such a circuit configuration, the signal sent from the AC voltage source E S is changed from 1.0 GHz to 2.0 MH.
The signal loss when a high frequency signal having a frequency of z is shown in FIG. Here, the capacitance of the coupling capacitor C is 6 pF and the inductance of the inductor L is 0 or 2
The nH, the internal resistance R S, and the load resistance R L are set to 50Ω.
【0017】図3(b)に示すように結合コンデンサC
に加え、インダクタLを接続した場合(L=2nH)に
は、−0.1dB以下の信号損失であるのに対して、イ
ンダクタLを接続しない場合(L=0nH)には、信号
損失が−0.3dBに達し、インダクタLを介在させた
本発明の構成において、極めて信号損失が少なく、良好
な信号伝達特性が得られる。As shown in FIG. 3B, the coupling capacitor C
In addition, when the inductor L is connected (L = 2nH), the signal loss is −0.1 dB or less, whereas when the inductor L is not connected (L = 0nH), the signal loss is −. In the configuration of the present invention in which the value reaches 0.3 dB and the inductor L is interposed, the signal loss is extremely small, and excellent signal transfer characteristics can be obtained.
【0018】ここで、信号伝送線に接続されるインダク
タLとして、超伝導フィルタ回路中の入出力ポートに施
されるボンディングリードに付加するインダクタンス成
分を利用することができ、結合コンデンサのみの接続で
本発明の構成を容易に得ることができる。このように、
従来超伝導フィルタ回路の配線等に寄生する容量、ある
いは超伝導デバイスの実装技術上の問題点であった入出
力部のボンディングリードのインダクタンス成分を本発
明の構成として利用することにより、寄生容量や配線イ
ンダクタンスに伴う諸課題を解決することができるとと
もに、良好な回路特性および超伝導状態の保持を実現す
ることができる。Here, as the inductor L connected to the signal transmission line, the inductance component added to the bonding lead applied to the input / output port in the superconducting filter circuit can be used, and only the coupling capacitor can be connected. The configuration of the present invention can be easily obtained. in this way,
By using the parasitic capacitance in the wiring of the conventional superconducting filter circuit or the inductance component of the bonding lead of the input / output section, which was a problem in the mounting technology of the superconducting device, as a configuration of the present invention, Various problems associated with wiring inductance can be solved, and good circuit characteristics and superconducting state can be maintained.
【0019】なお、上記実施例では、本発明を超伝導フ
ィルタ回路等の超伝導デバイスに適用した例を示した
が、本発明の適用範囲はこれに限定されるものではな
く、少なくとも信号伝送線の入力端および出力端で熱的
雰囲気が異なる系、また信号伝送線に接続されるデバイ
ス(装置)の動作特性が温度依存性を有しており、温度
が厳密に管理される必要がある系、さらに信号伝送線に
おける電気的損失を抑制する必要がある系等に有効に適
用することができる。In the above embodiment, an example in which the present invention is applied to a superconducting device such as a superconducting filter circuit is shown, but the scope of application of the present invention is not limited to this, and at least a signal transmission line. System in which the thermal atmosphere is different at the input and output ends of the system, and the operating characteristics of the device (apparatus) connected to the signal transmission line have temperature dependence, and the temperature must be strictly controlled. Furthermore, the present invention can be effectively applied to a system or the like that needs to suppress electrical loss in a signal transmission line.
【0020】[0020]
【発明の効果】本発明の入出力インターフェイスによれ
ば、結合コンデンサにより、信号伝送線を伝導する熱に
対する抵抗を増大させ、また結合コンデンサに直列にイ
ンダクタを接続することにより、信号伝送線の結合容量
を等価的に増大させ、信号損失を抑制させることができ
るので、外部の熱的影響からの遮断が強く求められる超
伝導デバイス等の装置において、低温雰囲気等の良好な
装置動作環境を保持することができるとともに、回路特
性を向上させた装置を小型、かつ省電力で実現すること
ができるという効果が得られる。According to the input / output interface of the present invention, the coupling capacitor increases resistance to heat conducted through the signal transmission line, and the inductor is connected in series to the coupling capacitor to couple the signal transmission line. Capacitance can be increased equivalently and signal loss can be suppressed, so that in a device such as a superconducting device that is strongly required to be shielded from external thermal influences, a good device operating environment such as a low temperature atmosphere is maintained. In addition to the above, it is possible to obtain an effect that an apparatus having improved circuit characteristics can be realized in a small size and with low power consumption.
【図1】本発明の入出力インターフェイスを超伝導デバ
イスに適用した一実施例を示す図である。FIG. 1 is a diagram showing an embodiment in which an input / output interface of the present invention is applied to a superconducting device.
【図2】本発明の入出力インターフェイスの構成を説明
するための図である。FIG. 2 is a diagram for explaining a configuration of an input / output interface of the present invention.
【図3】本発明の入出力インターフェイスにおける信号
損失の一例を示す図である。FIG. 3 is a diagram showing an example of signal loss in the input / output interface of the present invention.
【図4】従来の信号伝送線を超伝導デバイスに適用した
例を示す図である。FIG. 4 is a diagram showing an example in which a conventional signal transmission line is applied to a superconducting device.
1:低温保持体 2:冷却ヘッド 3:超伝導デバイス 3a、3b:入出力ポート 4:信号伝送線 4a、4b:入出力端子 5a:結合コンデンサ 5b:インダクタ 1: Low temperature holder 2: Cooling head 3: Superconducting device 3a, 3b: Input / output port 4: Signal transmission line 4a, 4b: Input / output terminal 5a: Coupling capacitor 5b: Inductor
Claims (2)
れ、外部の熱的雰囲気とは異なる所定の熱的雰囲気内で
のみ特有の動作を行なう装置の入出力端と前記系の外部
とを接続し、前記系外部と系内部の前記装置間で信号の
伝送を行なう信号伝送線を用いた入出力インターフェイ
スにおいて、前記系内の前記信号伝送線に結合コンデン
サとインダクタとを直列接続したことを特徴とする入出
力インターフェイス。1. An input / output terminal of a device which is used in a system in which a thermal influence from the outside is blocked and which performs a unique operation only in a predetermined thermal atmosphere different from the external thermal atmosphere, and the system. In an input / output interface using a signal transmission line for connecting the outside and transmitting a signal between the device outside the system and the device inside the system, a coupling capacitor and an inductor are connected in series to the signal transmission line in the system. I / O interface characterized by
り、前記系が該デバイスの超伝導状態を保持する温度保
持体であることを特徴とする請求項1記載の入出力イン
ターフェイス。2. The input / output interface according to claim 1, wherein the apparatus is a device using a superconductor, and the system is a temperature holder for holding the superconducting state of the device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8057131A JPH09246520A (en) | 1996-03-14 | 1996-03-14 | Input output interface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8057131A JPH09246520A (en) | 1996-03-14 | 1996-03-14 | Input output interface |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09246520A true JPH09246520A (en) | 1997-09-19 |
Family
ID=13047016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8057131A Pending JPH09246520A (en) | 1996-03-14 | 1996-03-14 | Input output interface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09246520A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001057886A1 (en) * | 2000-01-31 | 2001-08-09 | Fujitsu Limited | Heat-insulated signal transmission unit and superconducting signal transmission device |
EP1160910A1 (en) * | 1999-02-26 | 2001-12-05 | Fujitsu Limited | Superconducting filter module, superconducting filter, and heat-insulated coaxial cable |
JP2016163190A (en) * | 2015-03-02 | 2016-09-05 | 株式会社東芝 | Heat insulation waveguide device |
-
1996
- 1996-03-14 JP JP8057131A patent/JPH09246520A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1160910A1 (en) * | 1999-02-26 | 2001-12-05 | Fujitsu Limited | Superconducting filter module, superconducting filter, and heat-insulated coaxial cable |
EP1160910A4 (en) * | 1999-02-26 | 2007-05-09 | Fujitsu Ltd | Superconducting filter module, superconducting filter, and heat-insulated coaxial cable |
WO2001057886A1 (en) * | 2000-01-31 | 2001-08-09 | Fujitsu Limited | Heat-insulated signal transmission unit and superconducting signal transmission device |
US6889068B2 (en) | 2000-01-31 | 2005-05-03 | Fujitsu Limited | Heat cutoff signal transmission unit and superconducting signal transmission apparatus |
JP2016163190A (en) * | 2015-03-02 | 2016-09-05 | 株式会社東芝 | Heat insulation waveguide device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5023494A (en) | High isolation passive switch | |
JP3826696B2 (en) | Wiring structure | |
US4393392A (en) | Hybrid transistor | |
US4365215A (en) | High power coaxial power divider | |
EP0578160B1 (en) | Antenna switching apparatus selectively connecting antenna with transmitter or receiver | |
JPH09246520A (en) | Input output interface | |
US5838213A (en) | Electromagnetic filter having side-coupled resonators each located in a plane | |
US11509034B2 (en) | Directional coupler | |
JPH09139592A (en) | Heat radiating structure of electronic device | |
US5576673A (en) | Small, low-pass filter for high power applications | |
JPH01135203A (en) | Apparatus and method for processing signal | |
JPH0217701A (en) | Superconducting plane circuit | |
JP2953338B2 (en) | Superconducting circuit device | |
JPH0522004A (en) | Transmission line wiring | |
JPH09247027A (en) | Signal input circuit | |
US9949361B1 (en) | Geometrically inverted ultra wide band microstrip balun | |
US5258730A (en) | Microstrip transmission line substrate to substrate transition | |
US4727351A (en) | High power RF resistor | |
JPS6139701A (en) | Hybrid integrated circuit device | |
CN107817901A (en) | A kind of computer keyboard waterproof electronic control system | |
EP4243264A1 (en) | Switching circuit and power supply device | |
US20200365963A1 (en) | Directional coupler and module | |
JP3199556B2 (en) | Cooled amplifier | |
JP2961896B2 (en) | Transmission line | |
JPH04505540A (en) | Drain bias circuit for high-power microwave field-effect transistors with internal matching function |