Nothing Special   »   [go: up one dir, main page]

JPH09228898A - Mixed member and intake pipe shape - Google Patents

Mixed member and intake pipe shape

Info

Publication number
JPH09228898A
JPH09228898A JP8034586A JP3458696A JPH09228898A JP H09228898 A JPH09228898 A JP H09228898A JP 8034586 A JP8034586 A JP 8034586A JP 3458696 A JP3458696 A JP 3458696A JP H09228898 A JPH09228898 A JP H09228898A
Authority
JP
Japan
Prior art keywords
fuel
air
pipe
fuel injection
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8034586A
Other languages
Japanese (ja)
Inventor
Noboru Tokuyasu
徳安  昇
Teruo Yamauchi
照夫 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8034586A priority Critical patent/JPH09228898A/en
Publication of JPH09228898A publication Critical patent/JPH09228898A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the mixed property of gaseous fuel with air, and thereby contrive to stabilize an idle operating condition, in a gaseous fuel injection valve by providing a mixing member giving turbulence to the tip end of an injection valve or facilitating injection of fuel reversely against an air flow. SOLUTION: A gaseous fuel injection valve for a gas engine using gaseous fuel such as natural has as fuel, allows a plunger to be raised up when a coil is energized, and also allows fuel to be injected out of a nozzle when a valve 305 is separated from a valve seat. In order to provide turbulence in fuel injection at this point of time, a turbulence promoter 402 is thereby formed at the downstream side of the nozzle 308. By this constitution, the direction of an air flow is changed with respect to fuel injection out of the nozzle when furl passes through the turbulence promoter 402 so as to allow collision and dispersion to be accelerated. As an another way to enhance the mixing property, a device can for example, be cited, which has a mixing member having a plurality of fuel injection ports over the side surface of a cylinder a pipe shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はガスエンジンの気体
用燃料噴射弁の混合部材および吸気管に関する。
TECHNICAL FIELD The present invention relates to a mixing member and an intake pipe of a gas fuel injection valve for a gas engine.

【0002】[0002]

【従来の技術】天然ガス,水素ガス等の気体燃料は周囲
の環境にやさしい燃料として脚光を浴びている。従来の
ガソリンエンジンにこれらの気体燃料を適応した場合、
空気と燃料の比重差つまり、気体燃料の密度がガソリン
より小さいため空気流への貫通力が減少し、均質混合性
が低下する。均質混合気ができないとシリンダ内の混合
気形成に偏在が生じ、燃焼が不整になりエンジン回転は
不安定となる。未だこの対策は考えられていない。そこ
で本発明は、CNG等の気体燃料と吸入空気を均一に混
合し燃焼を改善することを目的に、気体燃料流や吸入空
気流に乱れを与えることで混合性を向上させる方法を提
示する。
2. Description of the Related Art Gaseous fuels such as natural gas and hydrogen gas have been spotlighted as environmentally friendly fuels. When applying these gaseous fuels to a conventional gasoline engine,
Since the specific gravity difference between air and fuel, that is, the density of gaseous fuel is smaller than that of gasoline, the penetrating force into the air flow is reduced, and the homogeneity is deteriorated. If a homogeneous air-fuel mixture cannot be produced, the air-fuel mixture formation in the cylinder will be unevenly distributed, combustion will become irregular, and engine rotation will become unstable. This measure has not been considered yet. Therefore, the present invention proposes a method for improving the mixing property by giving turbulence to the gaseous fuel flow or the intake air flow for the purpose of uniformly mixing the gaseous fuel such as CNG and the intake air to improve combustion.

【0003】[0003]

【発明が解決しようとする課題】燃料系をガソリン用か
ら気体用に置換した内燃機関において、気体燃料の噴霧
角度,噴霧拡散状態、ならび液体燃料の場合に比して生
じる密度差により起こる均質混合性の低下、それに伴う
燃焼不整の問題があることが判明した。
In an internal combustion engine in which the fuel system has been changed from that for gasoline to that for gas, homogeneous mixing occurs due to the spray angle of the gas fuel, the spray diffusion state, and the density difference that occurs as compared with the case of liquid fuel. It has been found that there is a problem of deterioration of combustion property and combustion irregularity associated therewith.

【0004】本発明の目的は、特に燃焼が不整になりや
すいアイドル運転状態の安定化を図ることにある。
An object of the present invention is to stabilize the idle operation state where combustion is likely to be irregular.

【0005】[0005]

【課題を解決するための手段】天然ガス等の気体燃料を
燃料とするガスエンジンに取り付けられた気体用燃料噴
射弁において、燃料に乱れを与えるための部材や吸入空
気の方向に対し逆向きに燃料を噴出させるための部材を
備え、撹拌効果が促進するように構成,配置し、気体燃
料と吸入空気の相対速度を上げることで混合性を向上さ
せる。別なる方式として、吸気管に2段のスパイラルフ
ィンを形成し、それらによって発生する空気流の乱れを
利用し撹拌性を促進する。
In a fuel injection valve for a gas mounted on a gas engine that uses a gaseous fuel such as natural gas as a fuel, a member for imparting turbulence to the fuel and a direction opposite to a direction of intake air are provided. A member for ejecting fuel is provided and configured and arranged so as to promote the stirring effect, and the mixing speed is improved by increasing the relative speed of the gaseous fuel and the intake air. As another method, two stages of spiral fins are formed in the intake pipe, and the turbulence of the air flow generated by them is utilized to promote agitation.

【0006】[0006]

【発明の実施の形態】図1はMPI方式におけて気体燃
料系および吸入空気系の構成を示す。天然ガスなど気体
燃料は、200Mpa程度の高圧状態で貯蔵されている
燃料タンク101から送り出され、燃料圧力を一定圧に
減圧する減圧弁102,燃料圧力を表示する圧力ゲージ
103を介し、およそ500kPaの状態で気体用燃料
噴射弁107に供給されている。この燃料噴射弁107
は吸気弁108の上流側に装着されており、コントロー
ルユニットからの指令により最適なタイミングで気体燃
料を計量噴射する。従来方式で燃料にガソリンを使用す
る場合、燃料の壁面付着等を回避するため吸気弁108
に向け燃料を噴射するよう噴霧角度は設定されていた
が、気体燃料を使用する場合は燃料の付着の問題はな
い。特に、吸入工程噴射の場合は、空気流に逆らって噴
射しても問題はない。一方、エアクリーナ104を通過
した空気は、エアフローメータにより計測され、スロッ
トルボデー105を通ってコレクタ106で各気筒の吸
気ポート部110に分配される。吸気ポート部110で
燃料噴射弁107から噴射される気体燃料と空気は混合
されてシリンダ内109に吸収される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the structure of a gas fuel system and an intake air system in the MPI system. A gaseous fuel such as natural gas is delivered from a fuel tank 101 which is stored in a high pressure state of about 200 MPa, and a pressure reducing valve 102 for reducing the fuel pressure to a constant pressure and a pressure gauge 103 for displaying the fuel pressure are used to supply about 500 kPa. In this state, the gas fuel is injected into the fuel injection valve 107. This fuel injection valve 107
Is installed on the upstream side of the intake valve 108, and measures and injects gaseous fuel at an optimum timing according to a command from the control unit. When gasoline is used as fuel in the conventional method, the intake valve 108 is used to avoid adhesion of fuel to the wall surface.
Although the spray angle was set so as to inject fuel toward, the problem of fuel adhesion does not occur when using gaseous fuel. In particular, in the case of inhalation process injection, there is no problem even if the injection is performed against the air flow. On the other hand, the air that has passed through the air cleaner 104 is measured by an air flow meter, passes through the throttle body 105, and is distributed by the collector 106 to the intake port portion 110 of each cylinder. The gaseous fuel and air injected from the fuel injection valve 107 at the intake port 110 are mixed and absorbed in the cylinder 109.

【0007】図2にガソリンおよび気体燃料使用時のア
イドル運転時におけるエンジン回転数の状況の一例を示
す。共にISC(Idle Speed Control)バルブ112を
機能させない状態での結果であるが、スロットル105
の開度を変えて中回転域から低回転へ移行すると、ガソ
リン燃料の場合、低回転域でも十分安定して回転が継続
するが、天然ガス等の気体燃料の場合は途中でエンジン
が停止する。これは、気体燃料の特性が影響し軽量なC
NGが吸入空気と均一に混合せず、そのままシリンダ内
に吸収されるため図1の点火プラグ113付近の混合気
が可燃域を外れて失火が発生したためと考えられる。空
気流にある種の液体燃料を噴射し混合した場合、重量の
大きい燃料ほど慣性が大きいので、多くの空気と接する
ように飛翔機会ができうまく混合される。つまり、ガソ
リンは気体燃料より重量が大きいため混合性は向上す
る。従来の噴射弁及び噴霧角度では、吸入空気の流れ方
向と同方向に燃料を噴射することになり、相対速度がと
れず十分に混合されないままシリンダ内に吸入されるこ
とになる。
FIG. 2 shows an example of the state of engine speed during idle operation when gasoline and gas fuel are used. Both are the results when the ISC (Idle Speed Control) valve 112 is not functioning.
When changing from the middle speed range to low speed by changing the opening degree of the engine, in the case of gasoline fuel, the rotation continues sufficiently stably even in the low speed range, but in the case of gaseous fuel such as natural gas, the engine stops midway. . This is due to the characteristics of the gaseous fuel, and is lightweight C
It is considered that NG is not uniformly mixed with the intake air and is absorbed into the cylinder as it is, so that the air-fuel mixture near the spark plug 113 in FIG. 1 goes out of the flammable region and misfire occurs. When a certain kind of liquid fuel is injected and mixed in the air stream, the heavier fuel has a larger inertia and thus has a flying opportunity to come into contact with more air and is mixed well. That is, since gasoline has a heavier weight than gaseous fuel, the mixing property is improved. With the conventional injection valve and spray angle, the fuel is injected in the same direction as the flow direction of the intake air, and the relative velocity cannot be obtained and the fuel is sucked into the cylinder without being sufficiently mixed.

【0008】図3は従来の気体用燃料噴射弁301の断
面図を示す。噴射弁301は電極端子302を介して所
定の電流が供給され、コイル303に磁気が発生し、プ
ランジャ304が引き上げられ、バルブ305がバルブ
シート部306より離れることにより間隙が生じ、燃料
供給口307から供給された燃料は、ノズル308より
外部に噴射される。引き上げられたプランジャー304
は、プランジャー304に形成されたフランジ部309が
ストッパ310に衝突することにより停止する構造にな
っている。従来の構成では、バルブ305の下流通路に
障害物がないため、燃料はコーン状に拡散しながら下流
に移動する。これでは、空気との均質混合は得られな
い。
FIG. 3 shows a sectional view of a conventional gas fuel injection valve 301. A predetermined current is supplied to the injection valve 301 via the electrode terminal 302, magnetism is generated in the coil 303, the plunger 304 is pulled up, the valve 305 is separated from the valve seat portion 306, and a gap is generated. The fuel supplied from the nozzle is injected from the nozzle 308 to the outside. Plunger 304 lifted
Has a structure that stops when the flange portion 309 formed on the plunger 304 collides with the stopper 310. In the conventional configuration, since there is no obstacle in the downstream passage of the valve 305, the fuel moves downstream while diffusing in a cone shape. This does not result in intimate mixing with air.

【0009】図4には本発明による具体的な改善策の一
例を示す。噴射燃料401は乱れを作るため、ノズル3
08の下流側にタービュレンスプロモータ402を形成
する。従来の方式では噴射された燃料に乱れが生成され
ないが、本発明による方式ではノズル308から噴出さ
れた燃料はタービュレンスプロモータ402を通過する
ことにより気流の方向が変更されて衝突し、拡散が促進
される。吸入空気流と同方向に流れていた気体燃料が方
向を変えて噴出されるため、吸入空気流と衝突しやすく
なり混合が促進される。タービュレンスプロモータ40
2の断面は、円形と多角形のどちらでも良い。具体的な
例に示すように三角形など多角形のものが望ましい。
FIG. 4 shows an example of a concrete improvement measure according to the present invention. Since the injected fuel 401 creates turbulence, the nozzle 3
A turbulence promoter 402 is formed on the downstream side of 08. In the conventional method, turbulence is not generated in the injected fuel, but in the method according to the present invention, the fuel ejected from the nozzle 308 passes through the turbulence promoter 402, the direction of the air flow is changed and collides, and diffusion is promoted. To be done. Since the gaseous fuel flowing in the same direction as the intake air flow is ejected in a different direction, it easily collides with the intake air flow and promotes mixing. Turbulence promoter 40
The cross section of 2 may be circular or polygonal. As shown in a specific example, a polygon such as a triangle is desirable.

【0010】図5に混合性を向上させるための別の方式
を提示する。延長パイプ502を従来の燃料噴射弁の先
端に取り付け、この延長パイプ502の側面に複数の燃
料噴射口501を設ける。ノズル308から噴射された
直後の燃料401には乱流は形成されていないが、複数
個設けられた燃料噴射口501から噴射した場合吸入空
気流に逆らった流れであるため混合が進み改善される。
さらに図6のように、延長パイプ502の吸気管の上流
側に面した側面に空気流入口601を設け空気の動圧を
取り込めば、延長パイプ502内で噴射燃料401と吸
入空気は十分撹拌され、形成された均質混合気602が
パイプ内から噴出され、撹拌向上の効果がある。また、
気体燃料が延長パイプ502内に滞ることはなく、燃料
の計量精度の向上が図れる。
FIG. 5 presents another method for improving the mixing property. The extension pipe 502 is attached to the tip of a conventional fuel injection valve, and a plurality of fuel injection ports 501 are provided on the side surface of the extension pipe 502. No turbulent flow is formed in the fuel 401 immediately after being injected from the nozzle 308, but when the fuel is injected from a plurality of fuel injection ports 501, the flow is against the intake air flow, so that mixing progresses and is improved. .
Further, as shown in FIG. 6, if the air inlet 601 is provided on the side surface of the extension pipe 502 facing the upstream side of the intake pipe, and the dynamic pressure of the air is taken in, the injected fuel 401 and the intake air are sufficiently stirred in the extension pipe 502. The formed homogeneous mixture 602 is ejected from the inside of the pipe, which has the effect of improving stirring. Also,
The gaseous fuel does not remain in the extension pipe 502, and the accuracy of fuel metering can be improved.

【0011】図7は図5の応用例として、前記延長パイ
プ502の付け根付近に空気通路701を設け、図1に
示すごとくこの空気通路701とスロットル105の上
流の空気管111をバイパスさせ気流を導き空気管内の
負圧を利用し、ノズル308から噴射された燃料401に
対し垂直方向から空気が吹き出すように設置し、パイプ
502内で空気と燃料を十分撹拌し、均質混合気602
を形成し燃料噴射口501より噴射する。噴射された混
合気は吸気管を流れる空気と激しく衝突し、さらに均一
混合が促進される。
FIG. 7 shows an application example of FIG. 5, in which an air passage 701 is provided near the base of the extension pipe 502, and as shown in FIG. 1, the air passage 701 and the air pipe 111 upstream of the throttle 105 are bypassed to generate an air flow. Using the negative pressure in the guiding air pipe, it is installed so that air blows out from the direction perpendicular to the fuel 401 injected from the nozzle 308, and the air and fuel are sufficiently stirred in the pipe 502, and a homogeneous mixture 602 is obtained.
And is injected from the fuel injection port 501. The injected air-fuel mixture violently collides with the air flowing through the intake pipe, further promoting uniform mixing.

【0012】図8はエアーアシスト機構を備えた燃料噴
射弁の応用例を示す。燃料がノズルより噴射された直
後、エアーアシスト部材801を介し周囲から一様に吹
き込まれ空気により均一混合気が形成される。ガソリン
など液体燃料ではそれらの機構のみで十分な混合が成さ
れるが、混合性の悪い気体燃料では混合が不十分であ
り、図4のタービュレンスプロモータ402や図5の延
長パイプ502等の機構が組み合わせることで、気体燃
料の混合を促進させる。すなわち、2段階にわたり混合
を促進させることで気体燃料使用時の課題を克服するこ
とができる。
FIG. 8 shows an application example of a fuel injection valve having an air assist mechanism. Immediately after the fuel is injected from the nozzle, the air is uniformly blown from the surroundings through the air assist member 801, and a uniform air-fuel mixture is formed by the air. Liquid fuels such as gasoline provide sufficient mixing only with these mechanisms, but gas fuel with poor mixing does not sufficiently mix, and mechanisms such as the turbulence promoter 402 in FIG. 4 and the extension pipe 502 in FIG. The combination of the two accelerates the mixing of the gaseous fuel. That is, the problem at the time of using the gaseous fuel can be overcome by promoting the mixing in two steps.

【0013】図9には混合性を向上させるための別なる
方式を示す。あるパイプ内を一方向に旋回しながら流れ
ている空気流を強制的に逆旋回させる場合、必ず変換の
境界では激しく空気流の乱れが発生する。そこで本発明
では、吸気管110に2段のスパイラルフィン901−
1,901−2を形成する。つまり、2段目のスパイラ
ルフィン901−2を、1段目のスパイラルフィン90
1−1による空気流の旋回方向と逆方向に旋回するよう
に設けると共に、両スパイラルフィン901−1,90
1−2の間に気体用燃料噴射弁107を配置する。した
がって、気体燃料を噴射する吸気行程では、気体用燃料
噴射弁107の下方に吸気管110内では前記の通り空
気流に激しい乱れが生じるため、噴射された気体燃料4
01と空気旋回流902は衝突しやすくなり混合性が促
進される。
FIG. 9 shows another method for improving the mixing property. When the airflow flowing in one pipe while swirling in one direction is forcibly swirled in the reverse direction, the turbulence of the airflow is always generated at the boundary of conversion. Therefore, in the present invention, the intake pipe 110 has two stages of spiral fins 901-.
1, 901-2 are formed. That is, the second stage spiral fin 901-2 is replaced with the first stage spiral fin 901-2.
The spiral fins 901-1 and 90-1 are provided so as to swirl in a direction opposite to the swirling direction of the air flow by 1-1.
The fuel injection valve 107 for gas is arranged between 1-2. Therefore, in the intake stroke of injecting the gaseous fuel, the air flow is violently disturbed in the intake pipe 110 below the gaseous fuel injection valve 107 as described above, and thus the injected gaseous fuel 4 is injected.
01 and the air swirl flow 902 are likely to collide with each other, and the mixing property is promoted.

【0014】図10は空気流を乱し混合性を向上させる
ための方式を示す。吸気管110の燃料噴射弁取り付け
位置付近にスロットル105の上流側の空気管からバイ
パスを介し吸入空気の一部を合流させる。バイパスを通
過してきた空気の噴き出し方向1001は吸気管110
内を流れる空気流の方向と垂直にすることで空気は衝突
し流れに乱れが生じる。前記の通り空気の噴き出し口1
002を噴射弁取り付け位置付近に形成しているため、
燃料噴射弁107から噴射された気体燃料は噴射直後に
乱流である空気と衝突し十分に混合される。さらに、C
NGなどの気体燃料が空気より軽いことや壁面付着がな
いことなどの気体燃料の性質を活かした構成を図中点線
で示す。つまり、燃料噴射弁を吸気管の下側に装着し、
かつその噴射弁の先端には噴霧方向を変えるためのパイ
プを備えることで吸気管の底に沿って燃料を噴射する。
噴射された燃料は性質から上昇する。その上昇気流の進
行方向の延長上に吹き出し口1002を設置すれば空気
と燃料は衝突し、ますます撹拌が促進される。
FIG. 10 shows a method for disturbing the air flow to improve the mixing property. A part of the intake air is merged from the air pipe on the upstream side of the throttle 105 to the vicinity of the fuel injection valve mounting position of the intake pipe 110 via a bypass. The jet direction 1001 of the air passing through the bypass is the intake pipe 110.
By making the direction perpendicular to the direction of the air flow inside, the air collides and the flow is disturbed. As mentioned above, the air outlet 1
Since 002 is formed near the injection valve mounting position,
The gaseous fuel injected from the fuel injection valve 107 collides with turbulent air immediately after the injection and is sufficiently mixed. Furthermore, C
A dotted line in the figure shows a configuration that makes use of the properties of the gaseous fuel such as that the gaseous fuel such as NG is lighter than air and does not adhere to the wall surface. In other words, install the fuel injection valve under the intake pipe,
Further, a pipe for changing the direction of spraying is provided at the tip of the injection valve to inject fuel along the bottom of the intake pipe.
The injected fuel rises by nature. If the outlet 1002 is installed on the extension of the traveling direction of the ascending airflow, the air and the fuel collide with each other, and the stirring is further promoted.

【0015】図11には空気流を乱すための別なる方式
を示す。図の通り、吸気管110内に一部の空気の流れ
方向を変えるための空気乱流部材1101を設ける。こ
の構成から、吸気管110を流れている空気の一部は必
ず空気乱流部材1101を介すことになる。前記空気乱
流部材1101には噴き出し口1102が形成されてお
り、この噴き出し口1102は通常の空気の流れ方向に
対し、逆もしくは垂直方向に空気が流れ出すように設定
する。従って、空気乱流部材1101を通過した空気と
通常の流れを保っている空気は衝突し空気流は乱れ、そ
の散乱された空気1103に燃料噴射弁107から気体
燃料401を最適なタイミングで噴射することで撹拌効
果の向上が図れる。
FIG. 11 shows another method for disturbing the air flow. As shown in the drawing, an air turbulence member 1101 for changing the flow direction of a part of the air is provided in the intake pipe 110. With this configuration, a part of the air flowing through the intake pipe 110 always passes through the air turbulence member 1101. The air turbulence member 1101 is formed with an ejection port 1102, and the ejection port 1102 is set so that the air flows out in a direction opposite or perpendicular to the normal air flow direction. Therefore, the air that has passed through the air turbulence member 1101 collides with the air that maintains a normal flow, and the air flow is disturbed, and the fuel injector 107 injects the gaseous fuel 401 into the scattered air 1103 at an optimum timing. As a result, the stirring effect can be improved.

【0016】[0016]

【発明の効果】本発明によれば、天然ガス等の気体燃料
と吸入空気の混合性を向上することができる。
According to the present invention, the mixing property of gaseous fuel such as natural gas and intake air can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】MPI方式における気体燃料系および空気系の
説明図。
FIG. 1 is an explanatory diagram of a gas fuel system and an air system in an MPI system.

【図2】アイドル運転時のエンジン回転数の状態の説明
図。
FIG. 2 is an explanatory diagram of a state of engine speed during idle operation.

【図3】従来の気体燃料用燃料噴射弁の断面図。FIG. 3 is a sectional view of a conventional fuel injection valve for gaseous fuel.

【図4】タービュレンスプロモータの形状の説明図。FIG. 4 is an explanatory view of the shape of a turbulence promoter.

【図5】撹拌促進用のパイプ形状の説明図。FIG. 5 is an explanatory diagram of a pipe shape for promoting stirring.

【図6】図5のパイプの応用例の説明図。6 is an explanatory diagram of an application example of the pipe of FIG.

【図7】負圧を利用する場合の混合部材の形状の説明
図。
FIG. 7 is an explanatory diagram of a shape of a mixing member when negative pressure is used.

【図8】エアーアシストと組み合わせた場合の噴射弁先
端形状の説明図。
FIG. 8 is an explanatory view of a tip shape of an injection valve when combined with air assist.

【図9】空気流を旋回させるための吸気管形状の説明
図。
FIG. 9 is an explanatory view of an intake pipe shape for swirling an air flow.

【図10】負圧を利用する場合の吸気管形状の説明図。FIG. 10 is an explanatory diagram of an intake pipe shape when negative pressure is used.

【図11】吸気管内に形成した空気乱流部材の説明図。FIG. 11 is an explanatory view of an air turbulence member formed in the intake pipe.

【符号の説明】[Explanation of symbols]

101…燃料タンク、102…減圧弁、103…圧力ゲ
ージ、104…エアクリーナ、105…スロットルボデ
ー、106…コレクタ、107…燃料噴射弁、108…
吸気弁、109…シリンダ、110…吸気ポート部、1
11…空気管、112…ISCバルブ、113…点火プ
ラグ。
101 ... Fuel tank, 102 ... Pressure reducing valve, 103 ... Pressure gauge, 104 ... Air cleaner, 105 ... Throttle body, 106 ... Collector, 107 ... Fuel injection valve, 108 ...
Intake valve, 109 ... Cylinder, 110 ... Intake port, 1
11 ... Air pipe, 112 ... ISC valve, 113 ... Spark plug.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】気体燃料を燃料とするガスエンジンに取り
付けられた気体用燃料噴射弁において、噴射弁の先端に
取り付けることで燃料流に乱れを与えたり、もしくは空
気流の方向に対し逆向きに燃料噴射が可能とすることを
特徴とする混合部材。
1. A fuel injection valve for gas mounted on a gas engine using gaseous fuel as fuel, wherein the fuel flow is turbulent by attaching to the tip of the injection valve, or in the direction opposite to the direction of the air flow. A mixing member capable of injecting fuel.
【請求項2】請求項1において、棒状で断面が多角形の
タービュレンスプロモータである混合部材。
2. The mixing member according to claim 1, which is a turbulence promoter having a rod shape and a polygonal cross section.
【請求項3】請求項1において、パイプ状の側面に複数
の燃料噴射口を有する混合部材。
3. The mixing member according to claim 1, which has a plurality of fuel injection ports on a pipe-shaped side surface.
【請求項4】請求項3において、前記パイプの吸気管上
流側に面した側面に空気の動圧を取り込む入り口を形成
する混合部材。
4. The mixing member according to claim 3, wherein an inlet for taking in the dynamic pressure of air is formed on the side surface of the pipe facing the intake pipe upstream side.
【請求項5】請求項3において、前記パイプ内の気体燃
料に、スロットルの上流側の空気管をバイパスさせ吸入
空気の一部を合流させる気体用燃料噴射弁。
5. The gas fuel injection valve according to claim 3, wherein the gas fuel in the pipe bypasses the air pipe on the upstream side of the throttle and merges a part of the intake air.
【請求項6】請求項1において、エアーアシスト機構を
同時に備える気体用燃料噴射弁。
6. The fuel injection valve for gas according to claim 1, further comprising an air assist mechanism.
【請求項7】気体燃料を燃料とするガスエンジンにおけ
る吸気管において、吸気管を流れる空気流を旋回させる
か、もしくは散乱させる機構を有することを特徴とする
吸気管。
7. An intake pipe in a gas engine using a gaseous fuel as a fuel, comprising a mechanism for swirling or scattering an air flow flowing through the intake pipe.
【請求項8】請求項7において、前記燃料噴射弁の装着
位置より上流側の吸気管内部に第1のスパイラルフィ
ン,下流側に第2のスパイラルフィンを形成する吸気
管。
8. The intake pipe according to claim 7, wherein a first spiral fin is formed inside the intake pipe upstream of a mounting position of the fuel injection valve, and a second spiral fin is formed downstream thereof.
【請求項9】請求項7において、前記燃料噴射位置付近
にスロットルの上流側の空気管をバイパスさせ吸入空気
の一部を合流させるための空気噴き出し口を有する吸気
管。
9. The intake pipe according to claim 7, wherein the intake pipe has an air ejection port near the fuel injection position for bypassing an air pipe on the upstream side of the throttle and merging a part of the intake air.
【請求項10】請求項7において、前記吸気管内に空気
乱流部材を設け、この部材を通過した空気が、通常の空
気流の方向に対し逆、もしくは垂直方向に吹き出すよう
に形成される吸気管。
10. The intake air according to claim 7, wherein an air turbulence member is provided in the intake pipe, and the air passing through the member is formed so as to blow out in a direction opposite to or perpendicular to a normal air flow direction. tube.
JP8034586A 1996-02-22 1996-02-22 Mixed member and intake pipe shape Pending JPH09228898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8034586A JPH09228898A (en) 1996-02-22 1996-02-22 Mixed member and intake pipe shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8034586A JPH09228898A (en) 1996-02-22 1996-02-22 Mixed member and intake pipe shape

Publications (1)

Publication Number Publication Date
JPH09228898A true JPH09228898A (en) 1997-09-02

Family

ID=12418435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8034586A Pending JPH09228898A (en) 1996-02-22 1996-02-22 Mixed member and intake pipe shape

Country Status (1)

Country Link
JP (1) JPH09228898A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198379A (en) * 2006-01-24 2007-08-09 General Electric Co <Ge> Fuel injector
JP2011157870A (en) * 2010-02-01 2011-08-18 Seraphim:Kk Mixer for biomass fuel
WO2013150768A1 (en) * 2012-04-06 2013-10-10 株式会社日本自動車部品総合研究所 Air intake system for internal combustion engine
WO2018179776A1 (en) * 2017-03-29 2018-10-04 ヤンマー株式会社 Engine device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198379A (en) * 2006-01-24 2007-08-09 General Electric Co <Ge> Fuel injector
JP2011157870A (en) * 2010-02-01 2011-08-18 Seraphim:Kk Mixer for biomass fuel
WO2013150768A1 (en) * 2012-04-06 2013-10-10 株式会社日本自動車部品総合研究所 Air intake system for internal combustion engine
WO2018179776A1 (en) * 2017-03-29 2018-10-04 ヤンマー株式会社 Engine device
US10961948B2 (en) 2017-03-29 2021-03-30 Yanmar Power Technology Co., Ltd. Engine device

Similar Documents

Publication Publication Date Title
US20110068188A1 (en) Fuel injector for permitting efficient combustion
EP2589792B1 (en) Fuel injection valve and internal combustion engine
JPH08500164A (en) Pneumatic assist fuel injection system
US9175656B2 (en) Fuel injection valve
JP2000512711A (en) Fuel-air mixing device
JPH07133727A (en) Air intake device of internal combustion engine
US6540210B2 (en) Fluid emulsification systems and methods
JPH04362272A (en) Fuel injection device for internal combustion engine
US4955349A (en) Device for preparation of a fuel-air mixture for internal combustion engines
JPH09228898A (en) Mixed member and intake pipe shape
KR101704315B1 (en) Fuel injection valve
EP3892847B1 (en) Fuel injector
JP4302744B2 (en) Fuel injection device
JP2003013826A (en) Fuel supply device of engine
JP3734924B2 (en) Engine fuel injection valve
CS204969B2 (en) Device for mixing the liquid fuel with the drawn in air
JP3181858B2 (en) Air-assisted electromagnetic fuel injection valve
JP2012132366A (en) Fuel injection valve
JPH0299758A (en) Fuel feeding device
JP2725624B2 (en) Fuel injection valve for internal combustion engine
JPS5918543B2 (en) Fuel-injected multi-cylinder internal combustion engine
JPS58144663A (en) Fuel supplying apparatus
JP2000087706A (en) Fuel-air mixture supply device for internal combustion engine
JPH06317231A (en) Electromagnetic fuel injection valve and fuel injection device
JPH01285656A (en) Fuel injection device