JPH09227274A - Apparatus for producing semiconductor single crystal by continuous charging method and production thereof - Google Patents
Apparatus for producing semiconductor single crystal by continuous charging method and production thereofInfo
- Publication number
- JPH09227274A JPH09227274A JP6719696A JP6719696A JPH09227274A JP H09227274 A JPH09227274 A JP H09227274A JP 6719696 A JP6719696 A JP 6719696A JP 6719696 A JP6719696 A JP 6719696A JP H09227274 A JPH09227274 A JP H09227274A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- single crystal
- melt
- material supply
- semiconductor single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 85
- 239000004065 semiconductor Substances 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000002994 raw material Substances 0.000 claims abstract description 147
- 239000000155 melt Substances 0.000 claims abstract description 75
- 238000002844 melting Methods 0.000 claims description 21
- 230000008018 melting Effects 0.000 claims description 21
- 230000001681 protective effect Effects 0.000 claims description 11
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 abstract description 16
- 239000000463 material Substances 0.000 abstract description 2
- 239000010453 quartz Substances 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910002804 graphite Inorganic materials 0.000 description 9
- 239000010439 graphite Substances 0.000 description 9
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 9
- 239000011261 inert gas Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 239000000428 dust Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、原料多結晶棒を溶
解してるつぼに供給しつつ半導体単結晶を育成する連続
チャージ法による半導体単結晶製造装置および製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor single crystal production apparatus and a production method by a continuous charge method for growing a semiconductor single crystal while melting a raw material polycrystalline rod and supplying it to a crucible.
【0002】[0002]
【従来の技術】半導体素子の基板には一般に高純度の単
結晶シリコンが用いられているが、その製造には主とし
てCZ法が用いられている。CZ法においては、半導体
単結晶製造装置のチャンバ内に設置したるつぼ軸の上端
にるつぼ受けを介して黒鉛るつぼを載置し、前記黒鉛る
つぼ内に収容した石英るつぼに多結晶シリコンを装填し
た上、前記黒鉛るつぼの周囲に設けたヒータによって多
結晶シリコンを加熱溶解して融液とする。そして、シー
ドチャックに取り付けた種結晶を前記融液に浸漬し、シ
ードチャックおよび黒鉛るつぼを同方向または逆方向に
回転しつつシードチャックを引き上げて単結晶シリコン
を成長させる。2. Description of the Related Art Generally, high-purity single crystal silicon is used for a substrate of a semiconductor element, and the CZ method is mainly used for its production. In the CZ method, a graphite crucible is placed on the upper end of a crucible shaft installed in a chamber of a semiconductor single crystal manufacturing apparatus via a crucible receiver, and a quartz crucible housed in the graphite crucible is loaded with polycrystalline silicon. The polycrystalline silicon is heated and melted by a heater provided around the graphite crucible to form a melt. Then, the seed crystal attached to the seed chuck is immersed in the melt, and the seed chuck is pulled up while rotating the seed chuck and the graphite crucible in the same direction or in the opposite direction to grow single crystal silicon.
【0003】近年は、半導体ウェーハの直径が大型化
し、6インチを超える大径ウェーハが要求されるように
なり、単結晶シリコンの直径も6インチ以上のものが主
流になりつつある。このため半導体単結晶製造装置が大
型化し、1バッチ当たりの処理量も増大する傾向にあ
る。しかし、単結晶シリコンの大径化に伴って単結晶成
長工程における所要時間が長くなるとともに、その前後
工程、たとえば多結晶シリコンの溶解所要時間や、成長
した単結晶シリコンを炉外に取り出した後、るつぼ、ヒ
ータ等が清掃可能な温度に下がるまでの冷却所要時間等
も従来に比べて長くなっている。これらは単結晶シリコ
ンの生産性を低下させる要因となっている。In recent years, the diameter of semiconductor wafers has increased, and large-diameter wafers exceeding 6 inches have been required. Single crystal silicon having a diameter of 6 inches or more is becoming the mainstream. For this reason, the semiconductor single crystal manufacturing apparatus tends to be large in size, and the throughput per batch tends to increase. However, the time required for the single crystal growth step becomes longer as the diameter of the single crystal silicon becomes larger, and the steps before and after that, for example, the time required for melting the polycrystalline silicon and after the grown single crystal silicon is taken out of the furnace. The cooling time required for the crucible, the heater, etc. to reach a temperature at which they can be cleaned is longer than before. These are factors that reduce the productivity of single crystal silicon.
【0004】大径の単結晶シリコンをCZ法によって効
率よく生産する手段の一つとして、育成した単結晶シリ
コンの量に応じて原料をるつぼ内に連続的に供給しつつ
単結晶シリコンを引き上げる連続チャージ法が用いられ
ている。図6は連続チャージ法による半導体単結晶製造
装置の一例を示す部分断面図で、石英るつぼ3の周縁部
上方に複数の原料供給部20が設置されている。この原
料供給部20は、メインチャンバ1の上方から吊り下げ
られた棒状の多結晶シリコン(以下原料多結晶棒とい
う)21を溶解して融液6に滴下させるもので、原料溶
解ヒータ22と、原料溶解ヒータ22を包囲する保護筒
23と、保護筒23の底部に取り付けられた原料供給管
29とを備えている。また、前記保護筒23の下端には
原料供給部20に導入した不活性ガスをメインチャンバ
1から排出する通路となる環状のメルトカバー26が取
着され、メルトカバー26の外縁部には排気管27が接
続されている。As one of the means for efficiently producing large-diameter single crystal silicon by the CZ method, continuous pulling of the single crystal silicon while continuously supplying the raw material into the crucible according to the amount of the grown single crystal silicon. The charge method is used. FIG. 6 is a partial cross-sectional view showing an example of a semiconductor single crystal manufacturing apparatus by the continuous charge method, in which a plurality of raw material supply parts 20 are installed above the peripheral edge of the quartz crucible 3. The raw material supply unit 20 melts rod-shaped polycrystalline silicon (hereinafter, referred to as raw material polycrystalline rod) 21 hung from above the main chamber 1 and drops it into the melt 6. A protective cylinder 23 surrounding the raw material melting heater 22 and a raw material supply pipe 29 attached to the bottom of the protective cylinder 23 are provided. An annular melt cover 26, which serves as a passage for discharging the inert gas introduced into the raw material supply unit 20 from the main chamber 1, is attached to the lower end of the protective cylinder 23, and an exhaust pipe is attached to the outer edge of the melt cover 26. 27 is connected.
【0005】原料供給管29の下部は融液6に浸漬さ
れ、落下する液滴によって結晶育成部10の融液6に振
動が伝播することを防止している。また、原料供給部2
0は、上記構造により単結晶育成部10から隔離された
独立の空間を形成しているので、原料供給部20と結晶
育成部10との気相が分離されている。The lower portion of the raw material supply pipe 29 is immersed in the melt 6 to prevent vibrations from propagating to the melt 6 of the crystal growing portion 10 by the falling droplets. In addition, the raw material supply unit 2
Since 0 forms an independent space isolated from the single crystal growing portion 10 by the above structure, the vapor phase of the raw material supply portion 20 and the crystal growing portion 10 are separated.
【0006】[0006]
【発明が解決しようとする課題】半導体単結晶7の引き
上げに当たり、原料供給部20の圧力が単結晶育成部1
0の圧力よりも1Torr低くなるように真空引きす
る。図7は、原料供給管内外の融液レベルの変化を示す
説明図である。原料供給管29の下部は融液6に浸漬さ
れているが、単結晶育成部に対して原料供給部の圧力が
1Torr低いため、図7(a)に示すように原料供給
管29内の融液面は原料供給管29の外側すなわち単結
晶育成部の融液面より上昇している。この差圧により、
原料供給部で発生したSiO系ダストや不純物の単結晶
育成部への流入が阻止され、育成する半導体単結晶の有
転位化を防止することができる。When the semiconductor single crystal 7 is pulled up, the pressure of the raw material supply section 20 is controlled by the single crystal growth section 1.
Evacuate to 1 Torr below the pressure of 0. FIG. 7 is an explanatory diagram showing changes in the melt level inside and outside the raw material supply pipe. The lower part of the raw material supply pipe 29 is immersed in the melt 6, but since the pressure of the raw material supply part is 1 Torr lower than that of the single crystal growth part, as shown in FIG. The liquid level rises outside the raw material supply pipe 29, that is, above the melt level of the single crystal growth portion. By this pressure difference,
It is possible to prevent SiO-based dust and impurities generated in the raw material supply section from flowing into the single crystal growth section, and prevent dislocation of the grown semiconductor single crystal.
【0007】一連の半導体単結晶育成が終わりに近づく
と、原料多結晶棒の溶解による原料の供給が終了し、石
英るつぼ3が上昇限度まで上昇すると、融液面は次第に
下降し、原料供給管29の下端は融液6から離脱する。
しかし、融液6は表面張力が大きいため、図7(b)に
示すように原料供給管29の下面に付着して持ち上げら
れる。更に融液面が下降すると、原料供給管29に付着
していた融液6が急激に落下するため、図7(c)に示
すように液面振動が発生する。この液面振動は引き上げ
中の単結晶の有転位化の原因となる。When a series of semiconductor single crystal growth approaches the end, the supply of the raw material by the melting of the raw material polycrystalline rod ends, and when the quartz crucible 3 rises to the upper limit, the melt surface gradually lowers and the raw material supply pipe The lower end of 29 is separated from the melt 6.
However, since the melt 6 has a large surface tension, it adheres to the lower surface of the raw material supply pipe 29 and is lifted as shown in FIG. 7B. When the melt surface further descends, the melt 6 adhering to the raw material supply pipe 29 suddenly drops, causing liquid surface vibration as shown in FIG. 7C. This liquid level vibration causes dislocation of the single crystal during pulling.
【0008】本発明は上記従来の問題点に着目してなさ
れたもので、連続チャージ法による半導体単結晶の製造
において、原料供給が終了し、融液面が降下して原料供
給管が融液から離脱する際に半導体単結晶の有転位化を
起こさないような半導体単結晶製造装置および製造方法
を提供することを目的としている。The present invention has been made by paying attention to the above-mentioned conventional problems, and in the production of a semiconductor single crystal by the continuous charge method, the raw material supply is completed, the melt surface is lowered, and the raw material supply pipe is melted. It is an object of the present invention to provide a semiconductor single crystal production apparatus and a production method that do not cause dislocation of a semiconductor single crystal when the semiconductor single crystal is disengaged.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、本発明に係る半導体単結晶製造装置は、半導体単結
晶の原料を装填するるつぼと、るつぼ内の原料を溶解す
るメインヒータと、るつぼ内の融液に種結晶を浸漬して
半導体単結晶を引き上げる引き上げ機構と、るつぼの周
縁部上方に設けた原料溶解ヒータにより原料を溶解して
るつぼ内に連続的に供給する原料供給部とを備えた半導
体単結晶製造装置において、原料溶解ヒータを取り囲む
保護筒の底部に取り付ける原料供給管の下端面を、原料
供給管の軸心に対して所定の角度θで傾斜させ、更に、
前記下端面にノッチを設ける構成とした。In order to achieve the above object, a semiconductor single crystal manufacturing apparatus according to the present invention comprises a crucible for loading a raw material of a semiconductor single crystal, a main heater for melting the raw material in the crucible, and a crucible. A pulling mechanism for immersing the seed crystal in the melt inside to pull up the semiconductor single crystal, and a raw material supply section for melting the raw material by the raw material melting heater provided above the peripheral portion of the crucible and continuously supplying the raw material into the crucible. In the provided semiconductor single crystal manufacturing apparatus, the lower end surface of the raw material supply pipe attached to the bottom of the protective cylinder surrounding the raw material melting heater is inclined at a predetermined angle θ with respect to the axis of the raw material supply pipe,
A notch is provided on the lower end surface.
【0010】また、本発明に係る半導体単結晶製造方法
は、上記連続チャージ法による半導体単結晶製造装置を
用い、原料供給部を結晶育成部よりも減圧した上、原料
溶解ヒータによって溶解した原料をるつぼ内に連続的に
供給しつつ半導体単結晶を育成する半導体単結晶の製造
において、原料の供給が終了した後、原料供給部と結晶
育成部とを等圧にすることを特徴としている。Further, the semiconductor single crystal manufacturing method according to the present invention uses the semiconductor single crystal manufacturing apparatus according to the above continuous charging method, the pressure of the raw material supply section is reduced from that of the crystal growth section, and the raw material melted by the raw material melting heater is used. In the production of a semiconductor single crystal in which a semiconductor single crystal is grown while being continuously supplied into a crucible, it is characterized in that the raw material supply section and the crystal growth section are brought to an equal pressure after the supply of the raw material is completed.
【0011】[0011]
【発明の実施の形態および実施例】本発明は、連続チャ
ージ法による半導体単結晶の育成が終りに近づいたと
き、融液レベルが降下して原料供給管が融液から離脱す
る際に発生する融液面の振動に起因する有転位化を防止
するものである。原料供給管の下端面を所定の角度θで
傾斜させた場合、傾斜のない従来の原料供給管に比べて
離脱時の液ばなれは良くなるが、十分とはいえない。上
記構成によれば、原料供給管の下端面を所定の角度θで
傾斜させた上、ノッチを設けたので、ノッチが離脱時の
液ばなれのきっかけを作る作用をし、従来の原料供給管
のように、表面張力によって原料供給管の下端面に融液
が付着して持ち上げられることがない。従って、融液が
落下して融液面が振動する不具合が解消する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention occurs when the growth of a semiconductor single crystal by the continuous charge method approaches the end and the melt level drops and the raw material supply pipe separates from the melt. It prevents dislocation from occurring due to vibration of the melt surface. When the lower end surface of the raw material supply pipe is tilted at a predetermined angle θ, the liquid dispersal at the time of separation is better than that of the conventional raw material supply pipe without inclination, but this is not sufficient. According to the above configuration, since the lower end surface of the raw material supply pipe is inclined at a predetermined angle θ and the notch is provided, the notch acts as a trigger for liquid leakage at the time of separation, and the conventional raw material supply pipe As described above, the surface tension prevents the melt from adhering to the lower end surface of the raw material supply pipe and lifting it. Therefore, the problem that the melt drops and the melt surface vibrates is eliminated.
【0012】更に、原料多結晶棒の溶解が終了した後、
原料供給部を結晶育成部と等圧にすれば、原料供給管内
の融液面が下がり、原料供給管が融液から離脱する際の
液ばなれを一層容易にする。Further, after the raw polycrystalline rod is melted,
If the raw material supply part is made to have the same pressure as the crystal growth part, the melt surface in the raw material supply pipe is lowered, and it becomes easier for the raw material supply pipe to come out of the melt.
【0013】次に、本発明に係る連続チャージ法による
半導体単結晶製造装置の実施例について図面を参照して
説明する。図1は前記半導体単結晶製造装置の概略構成
を示す部分断面図で、メインチャンバ1の中心に黒鉛る
つぼ2、石英るつぼ3が昇降および回転自在に設置さ
れ、黒鉛るつぼ2の周囲にメインヒータ4、保温筒5が
配設されている。石英るつぼ3に装填した原料多結晶は
メインヒータ4により溶解して融液6となり、石英るつ
ぼ3の中心部から半導体単結晶7が引き上げられる。半
導体単結晶7が育成される石英るつぼ3の中心部領域を
結晶育成部10と呼ぶ。Next, an embodiment of the semiconductor single crystal manufacturing apparatus by the continuous charging method according to the present invention will be described with reference to the drawings. FIG. 1 is a partial cross-sectional view showing a schematic configuration of the semiconductor single crystal manufacturing apparatus. A graphite crucible 2 and a quartz crucible 3 are installed at the center of a main chamber 1 so as to be vertically movable and rotatable, and a main heater 4 is provided around the graphite crucible 2. A heat insulating cylinder 5 is provided. The raw material polycrystal charged in the quartz crucible 3 is melted by the main heater 4 to form a melt 6, and the semiconductor single crystal 7 is pulled up from the central portion of the quartz crucible 3. The central region of the quartz crucible 3 in which the semiconductor single crystal 7 is grown is called a crystal growing part 10.
【0014】石英るつぼ3の周縁近傍上方には、2組の
原料供給部20が対向して設置されている。原料供給部
20は、メインチャンバ1の上端に接続されたプルチャ
ンバ8から吊り下ろされる原料多結晶棒21を溶解して
融液6に滴下させるもので、原料溶解ヒータ22と、原
料溶解ヒータ22を包囲する保護筒23と、保護筒23
の下端に取り付けられた原料供給管24と、前記プルチ
ャンバ8の上部と原料溶解ヒータ22の上端との間に取
着されたシールドカバー25と、保護筒23の下部に取
着された環状のメルトカバー26と、排気管27とによ
って構成されている。原料溶解ヒータ22と保護筒23
の上部との隙間は石英材で封止されている。Above the vicinity of the periphery of the quartz crucible 3, two sets of raw material supply parts 20 are installed so as to face each other. The raw material supply unit 20 melts a raw material polycrystalline rod 21 hung from a pull chamber 8 connected to the upper end of the main chamber 1 and drops it into the melt 6. The raw material melting heater 22 and the raw material melting heater 22 are connected to each other. Protective cylinder 23 surrounding and protective cylinder 23
, A shield cover 25 attached between the upper part of the pull chamber 8 and the upper end of the raw material melting heater 22, and an annular melt attached to the lower part of the protective cylinder 23. It is composed of a cover 26 and an exhaust pipe 27. Raw material melting heater 22 and protective cylinder 23
The gap between the upper part and the upper part is sealed with a quartz material.
【0015】メインチャンバ1の底部に設けた排気口1
aに接続された排気管路11と、メルトカバー26外縁
部の排気管27に接続された排気管路12とは合流点1
3で合流し、合流点13の下流に設けた排気管路14は
真空ポンプ15に接続されている。前記排気管路11,
12,14にはそれぞれバルブ16,17,18が設け
られている。バルブ17は原料供給部20の圧力調整用
である。Exhaust port 1 provided at the bottom of the main chamber 1.
The exhaust pipe line 11 connected to a and the exhaust pipe line 12 connected to the exhaust pipe 27 at the outer edge of the melt cover 26 meet at a confluence point 1
An exhaust pipe line 14 provided downstream of the confluence point 13 is connected to a vacuum pump 15. The exhaust line 11,
Valves 16, 17 and 18 are provided on 12 and 14, respectively. The valve 17 is for adjusting the pressure of the raw material supply unit 20.
【0016】図2は本発明の第1実施例における原料供
給管を示し、図2(a)は断面図、図2(b)は図2
(a)のZ視図である。原料供給管24は石英製で、そ
の下端面は、原料供給管の中心軸に対して所定の角度θ
で傾斜し、更に、前記下端面にはノッチ24aが設けら
れている。FIG. 2 shows a raw material supply pipe in the first embodiment of the present invention, FIG. 2 (a) is a sectional view, and FIG. 2 (b) is FIG.
It is a Z view of (a). The raw material supply pipe 24 is made of quartz, and its lower end surface has a predetermined angle θ with respect to the central axis of the raw material supply pipe.
And a notch 24a is provided on the lower end surface.
【0017】原料多結晶棒21は1本ずつ交互に、また
は2本同時に原料溶解ヒータ22内によって溶解され、
連続的に原料の供給が行われる。シールドカバー25内
を吊り下ろされた原料多結晶棒21は、原料溶解ヒータ
22によって下端から溶解され、液滴となって原料供給
管24内を通過し、石英るつぼ3内に落下する。原料供
給管24の下部は融液6に浸漬され、前記液滴によって
原料供給管24の外方にある融液、すなわち結晶育成部
10の融液6に振動が伝播することを防止している。ま
た、原料供給部20は、上記構造により結晶育成部10
から隔離された独立の空間を形成しているので、結晶育
成部10と原料供給部20との気相が分離されている。The raw material polycrystalline rods 21 are melted in the raw material melting heater 22 alternately or one by one at a time,
The raw materials are continuously supplied. The raw material polycrystalline rod 21 suspended inside the shield cover 25 is melted from the lower end by the raw material melting heater 22, becomes droplets, passes through the raw material supply pipe 24, and falls into the quartz crucible 3. The lower portion of the raw material supply pipe 24 is immersed in the melt 6 to prevent vibrations from propagating to the melt outside the raw material supply pipe 24, that is, the melt 6 of the crystal growing portion 10 by the droplets. . Further, the raw material supply unit 20 has the crystal growth unit 10 having the above structure.
Since the independent space isolated from the above is formed, the vapor phase of the crystal growth part 10 and the raw material supply part 20 is separated.
【0018】前記シールドカバー25の上部には結晶育
成部10に導入される不活性ガスの管路とは別の管路が
接続されていて、前記2組の原料供給部20に不活性ガ
スが導入される。不活性ガスは原料多結晶棒21の周囲
を流下し、保護筒23の下部に設けた開口部からメルト
カバー26内に入り、原料多結晶棒21の溶解時に発生
したSiO系ダストや原料供給部20で発生した不純物
とともに排気管27を経てメインチャンバ1から排出さ
れる。A pipe line different from the pipe line for the inert gas introduced into the crystal growing portion 10 is connected to the upper portion of the shield cover 25, and the inert gas is supplied to the two sets of the raw material supply portions 20. be introduced. The inert gas flows down around the raw material polycrystalline rod 21, enters the melt cover 26 through an opening provided in the lower portion of the protective cylinder 23, and the SiO-based dust generated when the raw material polycrystalline rod 21 is melted and the raw material supply portion. The impurities generated in 20 are discharged from the main chamber 1 through the exhaust pipe 27.
【0019】一方、結晶育成部10に導入された不活性
ガスは、育成中の半導体単結晶7の周囲を流下し、前記
メルトカバー26と融液6との間を流れ、黒鉛るつぼ2
とメインヒータ4との隙間およびメインヒータ4と保温
筒5との隙間を流下して、メインチャンバ1の底部に設
けた排気口1aから前記結晶育成部10で発生した不純
物とともに排出される。また、不活性ガスの一部はメイ
ンチャンバ1と保温筒5との隙間を流下して、前記排気
口1aから排出される。On the other hand, the inert gas introduced into the crystal growing portion 10 flows down around the semiconductor single crystal 7 being grown, flows between the melt cover 26 and the melt 6, and the graphite crucible 2
Through the gap between the main heater 4 and the main heater 4 and the gap between the main heater 4 and the heat insulating cylinder 5, and are discharged together with the impurities generated in the crystal growing part 10 from the exhaust port 1a provided at the bottom of the main chamber 1. Further, a part of the inert gas flows down through the gap between the main chamber 1 and the heat insulating cylinder 5, and is discharged from the exhaust port 1a.
【0020】半導体単結晶の引き上げに当たり、バルブ
16およびバルブ17の開度を調節し、原料供給部20
が結晶育成部10に対して1Torr減圧した状態とす
る。原料供給部20および結晶育成部10には圧力セン
サが設置されていて、それぞれの検出値に基づいて前記
バルブの開度を調節する。これにより、原料供給部20
で発生したSiO系ダスト、不純物等の単結晶育成部へ
の流入が阻止され、育成する半導体単結晶の有転位化を
防止することができる。Upon pulling up the semiconductor single crystal, the opening of the valve 16 and the valve 17 is adjusted so that the raw material supply unit 20
Is reduced to 1 Torr with respect to the crystal growth portion 10. A pressure sensor is installed in the raw material supply unit 20 and the crystal growth unit 10, and the opening degree of the valve is adjusted based on the respective detected values. Thereby, the raw material supply unit 20
It is possible to prevent the SiO-based dust, impurities, etc., generated in the above from flowing into the single crystal growth portion, and prevent the semiconductor single crystal to be grown from having dislocation.
【0021】図3は、原料供給管に対する融液レベルの
変化を示す説明図である。図3(a)は、原料供給部で
原料多結晶棒を溶解して融液に供給しているときの原料
供給管24内外の融液レベルを示す。前述のように、原
料供給管24の下部は融液6に浸漬され、結晶育成部に
対して原料供給部の圧力が1Torr低いため、原料供
給管24内の融液面は原料供給管24の外側すなわち単
結晶育成部の融液面よりΔhだけ上昇している。FIG. 3 is an explanatory diagram showing changes in the melt level with respect to the raw material supply pipe. FIG. 3A shows the melt level inside and outside the raw material supply pipe 24 when the raw material polycrystalline rod is melted and supplied to the melt in the raw material supply section. As described above, the lower part of the raw material supply pipe 24 is immersed in the melt 6, and the pressure of the raw material supply part is 1 Torr lower than that of the crystal growth part. It rises by Δh from the outer side, that is, the melt surface of the single crystal growth portion.
【0022】原料多結晶棒の溶解による原料供給が終了
すると、図1に示したバルブ17の開度を小さくし、結
晶育成部と原料供給部とを等圧にする。その結果、図3
(b)に示すように原料供給管24内外の融液レベルは
等しくなる。また、原料供給が終了した後も半導体単結
晶の引き上げは継続されるため、融液減少量に対応して
石英るつぼおよび黒鉛るつぼを上昇させている間は融液
レベルは一定であるが、るつぼの位置が上限に達する
と、図3(c)に示すように原料供給管24に対する融
液面の位置は下がり始める。When the supply of the raw material by the melting of the raw material polycrystalline rod is completed, the opening of the valve 17 shown in FIG. 1 is reduced, and the crystal growing portion and the raw material supplying portion are made to have the same pressure. As a result, FIG.
As shown in (b), the melt levels inside and outside the raw material supply pipe 24 become equal. Further, since the semiconductor single crystal is continuously pulled up even after the supply of the raw materials is completed, the melt level is constant while the quartz crucible and the graphite crucible are being raised in accordance with the melt decrease amount, When the position of reaches the upper limit, the position of the melt surface with respect to the raw material supply pipe 24 begins to fall as shown in FIG.
【0023】融液面が下降すると、図3(d)に示すよ
うに原料供給管24の下端の一部が融液6から露出す
る。融液面に対して原料供給管24の下端面が傾斜し、
更にノッチ24aが設けられているため、このノッチ2
4aが液ばなれのきっかけを与える。融液面が更に下降
すると、図3(e)に示すように原料供給管24の下端
面は融液6から完全に露出する。このとき、原料供給管
24の下端面が傾斜しているため融液6の液ばなれが良
く、原料供給管24の下端面に融液が付着して持ち上げ
られる量はごく僅かである。従って、融液面から原料供
給管24が離脱したとき液面振動はほとんど発生せず、
育成中の単結晶の有転位化が回避される。When the melt surface descends, a part of the lower end of the raw material supply pipe 24 is exposed from the melt 6 as shown in FIG. 3 (d). The lower end surface of the raw material supply pipe 24 is inclined with respect to the melt surface,
Further, since the notch 24a is provided, this notch 2
4a gives a chance to get out of the liquid. When the melt surface further descends, the lower end surface of the raw material supply pipe 24 is completely exposed from the melt 6 as shown in FIG. At this time, since the lower end surface of the raw material supply pipe 24 is inclined, the melt 6 is easily spread out, and the amount of the molten liquid adhering to the lower end surface of the raw material supply pipe 24 and being lifted is very small. Therefore, when the raw material supply pipe 24 is separated from the melt surface, the liquid surface vibration hardly occurs,
Dislocation generation of the single crystal during growth is avoided.
【0024】図4は本発明の第2実施例における原料供
給管を示し、図4(a)は断面図、図4(b)は図4
(a)のZ視図である。この原料供給管28の下端に
は、中心軸の両側に所定の角度θの傾斜面28aが設け
られている。これにより、融液から原料供給管28が離
脱する際の液ばなれが良くなり、液面振動はほとんど発
生しない。FIG. 4 shows a raw material supply pipe in a second embodiment of the present invention, FIG. 4 (a) is a sectional view, and FIG. 4 (b) is FIG.
It is a Z view of (a). At the lower end of the raw material supply pipe 28, inclined surfaces 28a having a predetermined angle θ are provided on both sides of the central axis. As a result, when the raw material supply pipe 28 is detached from the melt, the liquid is better spread and the liquid surface vibration hardly occurs.
【0025】上記実施例では、原料多結晶棒を溶解して
融液に供給する連続チャージ法について説明したが、こ
れに限るものではなく、粒状の原料を連続的に融液に供
給する連続チャージ法においても本発明を適用すること
ができる。たとえば、図5に示す実公平7−11177
号公報に開示されている半導体単結晶製造装置では、メ
インチャンバ1の外部に設置されたホッパ31から供給
器32を介して予備加熱装置33に導かれた粒状の原料
を、前記予備加熱装置33の下端に接続した隔離管34
から融液6に供給している。隔離管34の下端を図2ま
たは図4に示した形状とし、粒状の原料の供給が終了し
たら隔離管34内を結晶育成部10と等圧にすることに
より、融液面下降時の隔離管34の液ばなれを円滑に行
うことができる。In the above embodiment, the continuous charging method in which the raw material polycrystalline rod is melted and supplied to the melt has been described, but the present invention is not limited to this, and continuous charging in which a granular raw material is continuously supplied to the melt. The present invention can be applied to the method. For example, the actual fair 7-11177 shown in FIG.
In the semiconductor single crystal manufacturing apparatus disclosed in the publication, a granular raw material introduced from a hopper 31 installed outside the main chamber 1 to a preheating device 33 via a feeder 32 is used as the preheating device 33. Isolation pipe 34 connected to the lower end of the
Is supplied to the melt 6. The lower end of the isolation tube 34 has the shape shown in FIG. 2 or 4, and when the supply of the granular raw material is completed, the inside of the isolation tube 34 is made to have the same pressure as the crystal growth portion 10, so that the isolation tube at the time of the melt surface lowering The liquid leak of 34 can be smoothly performed.
【0026】[0026]
【発明の効果】以上説明したように本発明によれば、連
続チャージ法による半導体単結晶製造装置の原料供給部
に取り付ける原料供給管の下端面を、原料供給管の軸心
に対して所定の角度θで傾斜させ、更に、前記下端面に
ノッチを設けることにより、融液面が下降して原料供給
管が融液から離脱する際の液ばなれが良くなり、従来の
ように原料供給管の下端面に付着して持ち上げられた融
液が落下して融液面振動を起こすことがない。また、原
料供給終了後、原料供給部の圧力を結晶育成部と等圧に
すれば、原料供給管内の融液面が下降するので、液ばな
れを一層良くすることができる。これにより、育成した
半導体単結晶の有転位化を防止することが可能となり、
半導体単結晶の生産性が向上する。As described above, according to the present invention, the lower end surface of the raw material supply pipe attached to the raw material supply unit of the semiconductor single crystal manufacturing apparatus by the continuous charge method is set to a predetermined position with respect to the axis of the raw material supply pipe. By inclining at an angle θ and further providing a notch on the lower end surface, the melt surface descends and the raw material supply pipe is better off when the raw material supply pipe is separated from the melt. The melt that has adhered to the lower end surface of and is lifted does not fall and cause melt surface vibration. Further, if the pressure of the raw material supply part is made equal to that of the crystal growth part after the end of the raw material supply, the melt surface in the raw material supply pipe is lowered, so that the liquid leakage can be further improved. This makes it possible to prevent dislocation of the grown semiconductor single crystal,
The productivity of semiconductor single crystals is improved.
【図1】連続チャージ法による半導体単結晶製造装置の
概略構成を示す部分断面図である。FIG. 1 is a partial cross-sectional view showing a schematic configuration of a semiconductor single crystal manufacturing apparatus by a continuous charge method.
【図2】本発明の第1実施例における原料供給管を示
し、(a)は断面図、(b)は(a)のZ視図である。2A and 2B show a raw material supply pipe according to the first embodiment of the present invention, FIG. 2A is a sectional view, and FIG. 2B is a Z view of FIG.
【図3】原料供給管に対する融液レベルの変化を示す説
明図で、(a)は原料供給時、(b)は原料供給終了
時、(c)は融液レベル下降時、(d)は原料供給管の
一部が融液から離脱した時、(e)は原料供給管が融液
から完全に離脱した状態を示す。3A and 3B are explanatory views showing changes in the melt level with respect to the raw material supply pipe. FIG. 3A is a raw material supply, FIG. 3B is a raw material supply end, FIG. 3C is a melt level lowering, and FIG. When a part of the raw material supply pipe is separated from the melt, (e) shows a state where the raw material supply pipe is completely separated from the melt.
【図4】本発明の第2実施例における原料供給管を示
し、(a)は断面図、(b)は(a)のZ視図である。4A and 4B show a raw material supply pipe in a second embodiment of the present invention, FIG. 4A is a sectional view, and FIG. 4B is a Z view of FIG. 4A.
【図5】粒状の原料を連続的に供給する連続チャージ法
による半導体単結晶製造装置の概略構成を示す部分断面
図である。FIG. 5 is a partial cross-sectional view showing a schematic configuration of a semiconductor single crystal manufacturing apparatus by a continuous charge method in which granular raw materials are continuously supplied.
【図6】連続チャージ法による従来の半導体単結晶製造
装置の概略構成を示す部分断面図である。FIG. 6 is a partial cross-sectional view showing a schematic configuration of a conventional semiconductor single crystal manufacturing apparatus by a continuous charge method.
【図7】従来の技術による原料供給管に対する融液レベ
ルの変化を示す説明図で、(a)は原料供給時、(b)
は原料供給管が融液から離脱する時、(c)は原料供給
管が融液から完全に離脱した状態を示す。FIG. 7 is an explanatory view showing a change in melt level with respect to a raw material supply pipe according to a conventional technique, in which (a) is during raw material supply and (b) is
(C) shows a state where the raw material supply pipe is completely separated from the melt when the raw material supply pipe is separated from the melt.
2…黒鉛るつぼ、3…石英るつぼ、4…メインヒータ、
6…融液、7…半導体単結晶、10…結晶育成部、20
…原料供給部、21…原料多結晶棒、22…原料溶解ヒ
ータ、23…保護筒、24,28,29…原料供給管、
24a…ノッチ。2 ... Graphite crucible, 3 ... Quartz crucible, 4 ... Main heater,
6 ... Melt, 7 ... Semiconductor single crystal, 10 ... Crystal growth part, 20
... Raw material supply section, 21 ... Raw material polycrystalline rod, 22 ... Raw material melting heater, 23 ... Protective cylinder, 24, 28, 29 ... Raw material supply pipe,
24a ... notch.
Claims (2)
と、るつぼ内の原料を溶解するメインヒータと、るつぼ
内の融液に種結晶を浸漬して半導体単結晶を引き上げる
引き上げ機構と、るつぼの周縁部上方に設けた原料溶解
ヒータにより原料を溶解してるつぼ内に連続的に供給す
る原料供給部とを備えた半導体単結晶製造装置におい
て、 原料溶解ヒータを取り囲む保護筒の底部に取り付ける原
料供給管の下端面を、原料供給管の軸心に対して所定の
角度θで傾斜させ、更に、前記下端面にノッチを設けた
ことを特徴とする連続チャージ法による半導体単結晶製
造装置。1. A crucible for loading a raw material of a semiconductor single crystal, a main heater for melting the raw material in the crucible, a pulling mechanism for immersing a seed crystal in a melt in the crucible to pull up the semiconductor single crystal, and a crucible In a semiconductor single crystal manufacturing apparatus equipped with a raw material supply section that melts the raw material by a raw material melting heater provided above the peripheral edge and continuously supplies it into the crucible, the raw material supply that is attached to the bottom of the protective cylinder surrounding the raw material melting heater An apparatus for producing a semiconductor single crystal by a continuous charge method, characterized in that a lower end surface of a tube is inclined at a predetermined angle θ with respect to an axis of a raw material supply tube, and a notch is provided on the lower end surface.
用い、原料供給部を結晶育成部よりも減圧した上、原料
溶解ヒータによって溶解した原料をるつぼ内に連続的に
供給しつつ半導体単結晶を育成する半導体単結晶の製造
において、 原料の供給が終了した後、原料供給部と結晶育成部とを
等圧にすることを特徴とする連続チャージ法による半導
体単結晶製造方法。2. The semiconductor single crystal manufacturing apparatus according to claim 1, wherein the raw material supply part is depressurized more than the crystal growth part, and the raw material melted by the raw material melting heater is continuously supplied into the crucible while the semiconductor single crystal is produced. In the production of a semiconductor single crystal for growing a crystal, a method for producing a semiconductor single crystal by a continuous charge method, characterized in that the raw material supply part and the crystal growth part are made to have an equal pressure after the supply of the raw material is completed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6719696A JPH09227274A (en) | 1996-02-28 | 1996-02-28 | Apparatus for producing semiconductor single crystal by continuous charging method and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6719696A JPH09227274A (en) | 1996-02-28 | 1996-02-28 | Apparatus for producing semiconductor single crystal by continuous charging method and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09227274A true JPH09227274A (en) | 1997-09-02 |
Family
ID=13337920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6719696A Withdrawn JPH09227274A (en) | 1996-02-28 | 1996-02-28 | Apparatus for producing semiconductor single crystal by continuous charging method and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09227274A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180066377A1 (en) * | 2016-09-06 | 2018-03-08 | Sumco Corporation | Apparatus for manufacturing silicon single crystal and melt inlet pipe of the same |
-
1996
- 1996-02-28 JP JP6719696A patent/JPH09227274A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180066377A1 (en) * | 2016-09-06 | 2018-03-08 | Sumco Corporation | Apparatus for manufacturing silicon single crystal and melt inlet pipe of the same |
US10415150B2 (en) * | 2016-09-06 | 2019-09-17 | Sumco Corporation | Apparatus for manufacturing silicon single crystal and melt inlet pipe of the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1261715A (en) | Apparatus and process for growing monocrystals of semiconductor materials from shallow crucibles by czochralski technique | |
EP2705178B1 (en) | Growth of a uniformly doped silicon ingot by doping only the initial charge | |
US10000863B2 (en) | Method for cleaning single crystal pulling apparatus, cleaning tool for use therein, and method for manufacturing single crystal | |
JP5413354B2 (en) | Silicon single crystal pulling apparatus and silicon single crystal manufacturing method | |
US10494734B2 (en) | Method for producing silicon single crystals | |
JP2619611B2 (en) | Single crystal manufacturing apparatus and manufacturing method | |
JPH09227274A (en) | Apparatus for producing semiconductor single crystal by continuous charging method and production thereof | |
JP3750174B2 (en) | Single crystal manufacturing apparatus and manufacturing method | |
JP2937109B2 (en) | Single crystal manufacturing apparatus and manufacturing method | |
JP2631591B2 (en) | Semiconductor single crystal manufacturing method and manufacturing apparatus | |
JP3885245B2 (en) | Single crystal pulling method | |
KR100906281B1 (en) | Heat shield structure of silicon single crystal ingot growth device and silicon single crystal ingot growth device using the same | |
JPH0523580Y2 (en) | ||
JP2937122B2 (en) | Single crystal pulling method | |
JPH04198086A (en) | Process for growing single crystal | |
JP2672667B2 (en) | Method and apparatus for pulling semiconductor single crystal | |
JP3870646B2 (en) | Single crystal pulling device | |
JPS63319288A (en) | Flanged quartz crucible | |
JPH07291785A (en) | Apparatus for producing semiconductor single crystal and production of semiconductor single crystal | |
JPH09241094A (en) | Production of semiconductor single crystal | |
JPH1095689A (en) | Single crystal growth method | |
JPH0733303B2 (en) | Crystal growth equipment | |
JPH0733583A (en) | Apparatus for growing semiconductor single crystal | |
JPS59141494A (en) | Production unit for single crystal | |
JP3750172B2 (en) | Single crystal pulling method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030506 |