Nothing Special   »   [go: up one dir, main page]

JPH09201512A - Method for recovering sulfuric acid by exhaust gas desulfurization - Google Patents

Method for recovering sulfuric acid by exhaust gas desulfurization

Info

Publication number
JPH09201512A
JPH09201512A JP8013850A JP1385096A JPH09201512A JP H09201512 A JPH09201512 A JP H09201512A JP 8013850 A JP8013850 A JP 8013850A JP 1385096 A JP1385096 A JP 1385096A JP H09201512 A JPH09201512 A JP H09201512A
Authority
JP
Japan
Prior art keywords
liquid
exhaust gas
absorption
unit
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8013850A
Other languages
Japanese (ja)
Inventor
Kenichi Nakagawa
健一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8013850A priority Critical patent/JPH09201512A/en
Publication of JPH09201512A publication Critical patent/JPH09201512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve desulfurization efficiency and to obtain high concentration sulfuric acid by a method in which a sulfur dioxide absorption part is converted into multiple stages to be combined in a series, absorbing liquid and exhaust gas are brought into contact with each other in a crossflow, the concentration of diluted sulfuric acid of the absorbing liquid is decreased from a stage to another in order of gas flow. SOLUTION: Absorption liquid is pumped up from each liquid receiver B-1, B-2, B-3 in the lower part of each absorption unit 1, 2, 3 to the upper part of each absorption unit 1, 2, 3 by pumps P-1, P-2, P-3 and flows down to the liquid receivers B-1, B-2, B-3 in the lower part respectively. Besides, exhaust gas containing sulfur dioxide is introduced from the exhaust gas inlet G-1 of the absorption unit 1 into an absorption apparatus and is brought into contact with the absorbing liquid in sequence in a crossflow in the absorption units 1, 2, 3, and the sulfur dioxide is absorbed by the absorbing liquid and discharged from a gas outlet. The absorbing liquid supplied to the absorption unit 3 is water, the absorbing liquid supplied to the absorption unit 2 is the absorbing liquid of the liquid receiver B-3, and the absorbing liquid supplied to the foremost absorption unit 1 is the absorbing liquid of the liquid receiver B-2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は亜硫酸ガスを含む
排ガスの脱硫による硫酸の回収方法に関する。
TECHNICAL FIELD The present invention relates to a method for recovering sulfuric acid by desulfurizing exhaust gas containing sulfurous acid gas.

【0002】[0002]

【従来の技術】重油、石炭等の燃料の燃焼排ガスに含ま
れる亜硫酸ガスは環境に及ぼす影響が大きく、公害防止
上これを除去する技術すなわち排ガス脱硫の技術が種々
提案されてきた。
2. Description of the Related Art Sulfurous acid gas contained in combustion exhaust gas of fuels such as heavy oil and coal has a great influence on the environment, and various technologies for removing this, that is, exhaust gas desulfurization technology, have been proposed in order to prevent pollution.

【0003】これら排ガス脱硫技術の一つとして、排ガ
ス中に含まれる亜硫酸ガスを硫酸として回収する方法が
あり、大別して次の3つの方法がある。(1)排ガスを
稀硫酸に接触させて亜硫酸ガスを吸収し、酸化して硫酸
とする方法。
As one of these exhaust gas desulfurization techniques, there is a method of recovering sulfurous acid gas contained in the exhaust gas as sulfuric acid, which is roughly classified into the following three methods. (1) A method in which exhaust gas is brought into contact with diluted sulfuric acid to absorb sulfur dioxide gas and oxidized to form sulfuric acid.

【0004】SO2+H2O→H2SO32SO3+1/2O2→H2SO4 (2)ウェルマン・ロード法 排ガスを亜硫酸ソーダの水溶液に接触・反応させて酸性
亜硫酸ソーダを得、濃縮・加熱分解して亜硫酸ソーダと
亜硫酸ガスに分解し、亜硫酸ソーダは再び排ガスとの接
触・反応に用い、亜硫酸ガスは公知の硫酸製造工程の原
料ガスとして使用し、最終的に所望の濃度の硫酸を得
る。
SO 2 + H 2 O → H 2 SO 3 H 2 SO 3 + 1 / 2O 2 → H 2 SO 4 (2) Wellman load method Exhaust gas is contacted with and reacted with an aqueous solution of sodium sulfite to obtain acidic sodium sulfite. It is concentrated, decomposed by heating and decomposed into sodium sulfite and sulfurous acid gas, and sodium sulfite is used again for contact and reaction with exhaust gas. To obtain sulfuric acid.

【0005】 SO2+Na2SO3+H2O→2NaHSO3 2NaHSO3→Na2SO3+SO2↑+H2O (3)亜硫酸マグネシウム分解法 排ガスを水酸化マグネシウムの水溶液に接触・反応させ
て亜硫酸マグネシウムを得、濃縮・焙焼して酸化マグネ
シウムと亜硫酸ガスに分解し、酸化マグネシウムは水に
溶かして再び排ガスとの接触・反応に用い、亜硫酸ガス
は公知の硫酸製造工程の原料ガスとして使用し、最終的
に所望の濃度の硫酸を得る。
SO 2 + Na 2 SO 3 + H 2 O → 2NaHSO 3 2NaHSO 3 → Na 2 SO 3 + SO 2 ↑ + H 2 O (3) Magnesium sulfite decomposition method Obtained, concentrated and roasted to decompose into magnesium oxide and sulfurous acid gas, magnesium oxide is dissolved in water and used again for contact and reaction with exhaust gas, and sulfurous acid gas is used as a raw material gas in a known sulfuric acid production process, Finally, the desired concentration of sulfuric acid is obtained.

【0006】SO2+Mg(OH)2→MgSO3+H2O MgSO3→MgO+SO2↑ 上記方法にはそれぞれ次の欠点がある。(1)の方法
は、硫酸の濃度が濃くなるに従い亜硫酸ガスの吸収がし
にくくなる。したがって濃度の薄い硫酸(例えば通常約
3%)しか得られず、高濃度の硫酸を得るためには濃縮
のための設備と膨大な熱源が必要となる。(2)の方法
は吸収塔が大型となり、NaHSO3の濃縮・加熱分解
のための設備と大きな熱源が必要となる。(3)の方法
もMgSO3の濃縮・焙焼のための設備と大きな熱源が
必要となる。
SO 2 + Mg (OH) 2 → MgSO 3 + H 2 O MgSO 3 → MgO + SO 2 ↑ Each of the above methods has the following drawbacks. In the method (1), as the concentration of sulfuric acid becomes higher, it becomes difficult to absorb the sulfurous acid gas. Therefore, only sulfuric acid with a low concentration (for example, about 3%) can be obtained, and in order to obtain a high concentration of sulfuric acid, equipment for concentration and a huge heat source are required. The method (2) requires a large absorption tower and requires equipment and a large heat source for the concentration and thermal decomposition of NaHSO 3 . The method (3) also requires equipment for concentrating and roasting MgSO 3 and a large heat source.

【0007】[0007]

【発明が解決しようとする課題】この発明の目的は、従
来技術の欠点を解消すべくなれたもので、前記(1)の
方法を改良し、経済的な設備で高濃度の硫酸を得る方法
を提供することである。
SUMMARY OF THE INVENTION The object of the present invention is to eliminate the drawbacks of the prior art. A method for improving the method (1) to obtain a high concentration of sulfuric acid with economical equipment. Is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、 1.亜硫酸ガスを含む排ガスを、複数個の下記手段 1.上部から吸収液を噴霧及至雨滴状に流下させて下部
の液溜めに溜める手段 2.亜硫酸ガスを含む排ガスを導入し、流下する吸収液
に対して十字流に接触させ排出させる手段 3.吸収液の酸化のための液溜めに空気を吹き込む手
段、液溜めへ吸収液を補給する手段、液溜めから吸収液
を排出する手段および吸収液を上部へ循環させる手段 を有する亜硫酸ガス吸収ユニットを、排ガスの流れの方
向に連続して結合してなる吸収装置に装入し、各ユニッ
ト中の流下する吸収液に接触させて脱硫し、この際、複
数の吸収ユニットを排ガスの通過する順番にしたがって
ユニット1,2...Nとしたとき、最後のユニットN
には吸収液の補給に水を用い、ユニットN−1の吸収液
の補給にはユニットNの液溜めの吸収液を用い、以下同
様にして最先のユニット1の吸収液の補給にはユニット
2の液溜めの吸収液を用い、ユニット1の吸収液の排出
液として硫酸を得ることを特徴とする排ガス脱硫による
硫酸回収方法、および 2.前記吸収装置に装入される前の前記亜硫酸ガスを含
む排ガスおよび前記ユニット1の吸収液の排出液を塔内
に導入して接触させ、該排ガスは冷却されて前記ユニッ
ト1に供給され、前記ユニット1の排出液は前記導入さ
れた排ガスの顕熱を利用して濃縮され、濃縮された硫酸
液として取り出される冷却濃縮塔を前記吸収装置に付加
したことを特徴とする前記1に記載の排ガス脱硫による
硫酸回収方法である。
The present invention provides: Exhaust gas containing sulfurous acid gas is treated by a plurality of the following means. Means for collecting the absorbing liquid from the upper part in the form of spray and raindrops and collecting it in the lower liquid reservoir. 2. A means for introducing an exhaust gas containing sulfurous acid gas and bringing it into contact with a flowing absorbing solution in a cross flow to discharge it. A sulfite gas absorption unit having means for blowing air into the liquid reservoir for oxidizing the absorbing liquid, means for replenishing the absorbing liquid to the liquid reservoir, means for discharging the absorbing liquid from the liquid reservoir, and means for circulating the absorbing liquid to the upper part. , Is loaded into an absorption device that is continuously coupled in the direction of the flow of exhaust gas, and is contacted with the absorbing liquid flowing down in each unit to desulfurize, at this time, in the order in which the exhaust gas passes through multiple absorption units. Therefore, the units 1, 2. . . N is the last unit N
Is used for replenishing the absorbing liquid of the unit N-1, the absorbing liquid of the reservoir of the unit N is used for replenishing the absorbing liquid of the unit N-1, and the same is applied to the unit 1 for replenishing the absorbing liquid of the first unit. 1. A method for recovering sulfuric acid by exhaust gas desulfurization, characterized in that sulfuric acid is obtained as the discharge liquid of the absorption liquid of the unit 1 using the absorption liquid of the liquid reservoir of 2. The exhaust gas containing the sulfurous acid gas before being charged into the absorption device and the discharge liquid of the absorption liquid of the unit 1 are introduced into the column and brought into contact with each other, and the exhaust gas is cooled and supplied to the unit 1, Exhaust gas of the unit 1 is concentrated by utilizing the sensible heat of the introduced exhaust gas, and a cooling concentrating tower that is taken out as a concentrated sulfuric acid solution is added to the absorption device. It is a method of recovering sulfuric acid by desulfurization.

【0009】[0009]

【発明の実施の形態】本発明の方法は前述のように従来
技術の(1)の方法の改良法である。(1)の方法の基
本は稀硫酸で排ガス中の亜硫酸ガス(以下SO2と記す
ことがある)を吸収除去し、稀硫酸中に溶解したSO2
を空気酸化して硫酸にすることにある。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the method of the present invention is an improved method of the prior art method (1). The basis of the method of (1) is to absorb and remove sulfurous acid gas (hereinafter sometimes referred to as SO 2 ) in the exhaust gas with diluted sulfuric acid, and to dissolve SO 2 dissolved in diluted sulfuric acid.
To oxidize air to sulfuric acid.

【0010】ここに、稀硫酸による単なる物理的吸収に
比較して、良好な吸収効果をあげるためには吸収塔内に
おいて、SO2の吸収と同時に酸素により酸化反応をお
こさせ、吸収されたSO2を硫酸に変化させて、化学的
吸収の状態にして総括吸収速度を増加させればよい。
Here, in order to obtain a good absorption effect as compared with mere physical absorption by dilute sulfuric acid, in the absorption tower, an oxidation reaction is caused by oxygen at the same time as the absorption of SO 2 and the absorbed SO is absorbed. It is sufficient to change 2 to sulfuric acid to bring it into a state of chemical absorption to increase the overall absorption rate.

【0011】一般に燃焼排ガス中には燃焼時の過剰空気
の使用により酸素が含まれていて、これが酸化反応に使
われるが、酸化反応をより確実に行うため本発明におい
ては、各吸収ユニットの下部の液溜めに空気を吹きこむ
手段を設けた。
Generally, the combustion exhaust gas contains oxygen due to the use of excess air at the time of combustion, and this oxygen is used for the oxidation reaction. However, in order to carry out the oxidation reaction more reliably, the lower part of each absorption unit is used in the present invention. A means for blowing air into the liquid reservoir was provided.

【0012】さらに燃焼排ガス中には、燃料中に含まれ
る金属の酸化物が含まれ、これがSO2の酸化触媒とし
て作用することが知られているが、必要により吸収液中
に公知の触媒、例えば鉄触媒を添加することもできる。
Further, it is known that the combustion exhaust gas contains an oxide of a metal contained in the fuel, which acts as an SO 2 oxidation catalyst. If necessary, a known catalyst in the absorption liquid, For example, an iron catalyst can be added.

【0013】液溜めの吸収液に空気を吹き込むことによ
り、上述のようにSO2は酸化が完了して残存SO2がな
くなり、さらに飽和量の酸素を吸収液が含むことができ
るため、この吸収液を使用する吸収ユニット内のSO2
の吸収は効率的に行われる。次に吸収塔によるSO2
除去効率に影響を及ぼす因子について検討する。これら
は次の3つである。
By blowing air into the absorbing liquid in the liquid reservoir, the SO 2 is completely oxidized as described above and the residual SO 2 is eliminated, and the absorbing liquid can contain a saturated amount of oxygen. SO 2 in absorption unit using liquid
Is efficiently absorbed. Next, factors that affect the removal efficiency of SO 2 by the absorption tower will be examined. These are the following three.

【0014】(イ)SO2吸収液である稀硫酸濃度 (ロ)吸収塔入口の排ガス中のSO2濃度 (ハ)液ガス比(L/G) これら因子の脱硫率に及ぼす影響についてはすでによく
知られている(例えば「石膏と石灰」No.121、P
20〜23.1972年11月・石膏石灰学会)。
(A) Concentration of diluted sulfuric acid which is SO 2 absorbing liquid (b) SO 2 concentration in exhaust gas at the inlet of absorption tower (c) Liquid gas ratio (L / G) The influence of these factors on the desulfurization rate has already been described. Well-known (eg "Gypsum and lime" No. 121, P
20-23. November 1972, Gypsum Lime Society).

【0015】(イ)については図4に示すように硫酸の
濃度が高くなるほど脱硫率が低くなる。(ロ)について
は図5に示すようにSO2濃度が高くなるほど脱硫率が
低下する。(ハ)液ガス比については、当然のことなが
ら、前記図4および図5にも示されているようにL/G
が大であるほど脱硫率は向上する。これを要約すると
(1)L/Gは大きく、(2)吸収液である稀硫酸濃度
は低く、(3)人口SO2濃度は低い状態で運転すれば
SO2除去に関しては高い効率が得られることを示して
いる。しかし実際にはL/Gを小さくとってポンプ動力
を小さくし、稀硫酸濃度は高くして回収する稀硫酸の濃
縮費を小にし、さらに高SO2濃度の排ガスでも効率よ
く運転することが必要である。
As for (a), as shown in FIG. 4, the desulfurization rate decreases as the concentration of sulfuric acid increases. Regarding (b), as shown in FIG. 5, the desulfurization rate decreases as the SO 2 concentration increases. (C) Regarding the liquid gas ratio, as a matter of course, as shown in FIG. 4 and FIG.
The larger the value, the higher the desulfurization rate. Summarizing this, (1) L / G is large, (2) the concentration of dilute sulfuric acid, which is the absorbing liquid, is low, and (3) operation with a low concentration of artificial SO 2 results in high efficiency in SO 2 removal. It is shown that. However, in reality, it is necessary to reduce L / G to reduce pump power, increase the concentration of dilute sulfuric acid to reduce the concentration cost of the diluted sulfuric acid to be recovered, and to operate efficiently even with exhaust gas with high SO 2 concentration. Is.

【0016】次に上記要因を考慮して従来の一基の吸収
塔(図8)を利用した場合と、本発明の方法を使用した
場合とを比較して説明する。図8は従来法に使用する吸
収塔の一例の模式図である。SO2を含む排ガスは、吸
収塔5の塔高H1に示す部分に導入され、塔高H3に示
される充填物があるパッキング部分で、塔高H2に示さ
れる部分に位置するパイプの分岐管及びノズルを経て分
散される吸収液と接触し、SO2が吸収された後塔頂か
ら排出される。下部の液溜めB−Oには、空気の吹込み
口A−Oが備えられ、吸収液の補給・排出ができ、ポン
プP−Oで塔上部のノズルに吸収液が供給される。
Considering the above factors, a case where one conventional absorption tower (FIG. 8) is used and a case where the method of the present invention is used will be described in comparison. FIG. 8 is a schematic view of an example of an absorption tower used in the conventional method. The exhaust gas containing SO 2 is introduced into the portion of the absorption tower 5 at the tower height H1, and the packing portion with the packing shown at the tower height H3 is located in the portion shown at the tower height H2. After contacting with the absorbing liquid dispersed through the nozzle and absorbing SO 2 , it is discharged from the top of the column. The lower liquid reservoir B-O is provided with an air blowing port A-O so that the absorbing liquid can be replenished and discharged, and the absorbing liquid is supplied to the nozzle at the upper part of the tower by the pump P-O.

【0017】このような吸収塔では、図4の硫酸濃度と
脱硫率の関係から、同一のL/Gに対して、吸収液に使
用する硫酸の濃度が1%(重量%、以下同じ)のときの
吸収塔の吸収能力を1として各濃度における吸収能力を
表わせば表1のようになる。
In such an absorption tower, from the relationship between the sulfuric acid concentration and the desulfurization rate shown in FIG. 4, the concentration of sulfuric acid used in the absorbing liquid is 1% (weight%, the same applies hereinafter) for the same L / G. Table 1 shows the absorption capacity at each concentration, where the absorption capacity of the absorption tower is 1.

【0018】[0018]

【表1】 すなわち、硫酸濃度8%の場合は、硫酸濃度1%の場合
に比べて、1/13.3の吸収能力に低下する。
[Table 1] That is, when the sulfuric acid concentration is 8%, the absorption capacity is 1 / 13.3 lower than when the sulfuric acid concentration is 1%.

【0019】これに対して本発明の方法については次の
ようになる。図1は本発明においてユニット数が3(N
=3)である場合の吸収装置を模式的に示したものであ
る。わかり易くするために各ユニットの液溜めB−1,
B−2,B−3は装置本体から離して画いてある。
On the other hand, the method of the present invention is as follows. FIG. 1 shows that in the present invention, the number of units is 3 (N
= 3), the absorption device is schematically shown. In order to make it easier to understand, the liquid reservoir B-1 of each unit,
B-2 and B-3 are drawn away from the apparatus main body.

【0020】図において、吸収液は各吸収ユニット1,
2,3の下部の液溜めB−1,B−2,B−3から、ポ
ンプP−1,P−2,P−3によってユニット上部に揚
液され下部の液溜めに流下し、SO2を含む排ガスは吸
収ユニット1の排ガス入口G−1から吸収装置に導入さ
れ、吸収ユニット1,2,3で吸収液とクロスフローで
順次接触し、SO2は吸収液に吸収されてガス出口から
排出される。図に示すように、吸収ユニット3に補給す
る吸収液は水であり、吸収ユニット2に補給する吸収液
は液溜B−1の吸収液、最先の吸収ユニット1に補給す
る吸収液は液溜B−2の吸収液である。
In the figure, the absorption liquid is represented by each absorption unit 1,
Pumps P-1, P-2, and P-3 pump up liquid from the lower reservoirs B-1, B-2, and B-3 of the pump 2, and flow down to the lower reservoirs, and SO 2 The exhaust gas containing the is introduced into the absorption device from the exhaust gas inlet G-1 of the absorption unit 1 and sequentially contacted with the absorption liquid in the absorption units 1, 2 and 3 in a cross flow, SO 2 is absorbed by the absorption liquid and is discharged from the gas outlet. Is discharged. As shown in the figure, the absorption liquid supplied to the absorption unit 3 is water, the absorption liquid supplied to the absorption unit 2 is the absorption liquid of the liquid reservoir B-1, and the absorption liquid supplied to the first absorption unit 1 is the liquid. It is the absorption liquid of reservoir B-2.

【0021】前述の図4および5から液溜めB−1の硫
酸濃度が8%になるように運転しようとすると、液溜め
B−2,B−3の硫酸濃度はそれぞれ約5%および2.
8%となり、硫酸濃度1%運転にくらべて、各ユニット
能力は、それぞれ1/13.3,1/3,1/2となっ
て、平均すれば前記の一塔方式の約4倍の性能を有する
ことになる。さらに各ユニットで後段になるほど人口S
2濃度は低くなるので、相乗作用により液量は1/5
程度の液量でよいことになる。
From the above-mentioned FIGS. 4 and 5, when the operation is performed so that the sulfuric acid concentration of the liquid reservoir B-1 becomes 8%, the sulfuric acid concentrations of the liquid reservoirs B-2 and B-3 are about 5% and 2.
8%, each unit capacity is 1 / 13.3, 1/3, 1/2 compared to 1% sulfuric acid operation, which is about 4 times the performance of the one-column system on average. Will have. In addition, the population S increases in the later stages of each unit.
Since the O 2 concentration is low, the synergistic effect reduces the liquid volume to 1/5.
A small amount of liquid will suffice.

【0022】さらに図1に示される本発明の例において
は、各吸収ユニットの結合はエリミネーターを介して行
われる。また吸収液の分散については、図3に示すよう
な大きな盆の中に液を注入して底部の小孔から液を滴下
させるような簡単な撒布器を用いることができる。さら
に本発明の方法においてはガス流を吸収液流とクロスさ
せるので、吸収液をユニット上部へ送るためのポンプの
揚程は、図2に示すように実質的に従来例(図8)のH
3に相当するので、ポンプ動力を大巾に低減することが
できる。
Further, in the example of the present invention shown in FIG. 1, the binding of each absorption unit is carried out via an eliminator. In addition, for the dispersion of the absorbing liquid, a simple sprinkler can be used such that the liquid is poured into a large tray as shown in FIG. 3 and the liquid is dripped from a small hole at the bottom. Further, in the method of the present invention, since the gas flow is made to cross the absorbing liquid flow, the pump head for sending the absorbing liquid to the upper part of the unit is substantially the same as that of the conventional example (FIG. 8) as shown in FIG.
Since it corresponds to 3, the pump power can be greatly reduced.

【0023】上述の吸収装置を用いて排ガス脱流を行い
稀硫酸を得る方法に加えて、吸収装置に装入する排ガス
を冷却すると共に、前記稀硫酸を濃縮する工程を付加し
た方法も、本発明に含まれる。
In addition to the method of degassing exhaust gas by using the above-mentioned absorption device to obtain dilute sulfuric acid, a method of cooling the exhaust gas charged into the absorption device and adding a step of concentrating the dilute sulfuric acid is also used. Included in the invention.

【0024】この方法を説明するための模式的工程図を
図6に示した。図6においては、吸収装置の吸収液の送
液系等の一部は省略し、要部のみを示した。冷却濃縮塔
4には、例えばボイラーの燃焼排ガスが塔下部から導入
され、塔頂から排出される。この間燃焼排ガスは、吸収
装置のB−1からポンプP−4でこの塔底の液溜B−4
に送られ、さらにこの液溜B−4からポンプP−5で塔
上部に送られて撒布される稀硫酸によって気液接触し冷
却されるとともに、稀硫酸は濃縮される。
A schematic process diagram for explaining this method is shown in FIG. In FIG. 6, a part of the liquid feeding system of the absorbing liquid of the absorbing device and the like are omitted, and only a main part is shown. For example, combustion exhaust gas from a boiler is introduced into the cooling concentration tower 4 from the lower part of the tower and discharged from the top of the tower. During this period, the combustion exhaust gas is pumped from the absorber B-1 to the pump P-4 to form a liquid pool B-4 at the bottom of the tower.
Is further sent to the upper part of the tower by the pump P-5 from the liquid reservoir B-4, and is sprayed with the diluted sulfuric acid to be brought into gas-liquid contact and cooled, and the diluted sulfuric acid is concentrated.

【0025】この場合、出口排ガスの湿球温度に大きな
影響がない程度を目安として操作する。入口排ガスの温
度、水分、B−1から補給される稀硫酸濃度等により、
得られる硫酸の濃度に限度があることは当然である。1
例として入口排ガス中のSO 2の濃度が1000ppm
(A),1500ppm(B),2000ppm(C)
とし、温度150℃、吸収装置での脱硫率80%とした
場合、冷却濃縮塔の補給硫酸濃度と濃縮後の硫酸濃度と
の関係は図7のようになり、前記(A),(B),
(C)の場合はそれぞれ5%,6.8%,8.2%の硫
酸が冷却濃縮塔に装入されれば30%硫酸が得られる。
なお、図6においては、冷却される排ガスは塔下部から
導入され、濃縮される稀硫酸は塔上部から撒布されて向
流接触しているが、これら気・液の接触が、並流または
十字流で行われるような装置を使用することはなんらさ
しつかえない。
In this case, the outlet exhaust gas has a large wet bulb temperature.
Operate using the degree of no effect as a guide. Inlet exhaust gas temperature
Degree, water content, diluted sulfuric acid concentration supplied from B-1, etc.
Of course, there is a limit to the concentration of sulfuric acid that can be obtained. 1
SO in the exhaust gas as an example TwoConcentration of 1000ppm
(A), 1500ppm (B), 2000ppm (C)
And the temperature was 150 ° C. and the desulfurization rate in the absorber was 80%.
In this case, the supply sulfuric acid concentration of the cooling concentration tower and the sulfuric acid concentration after concentration
The relationship is as shown in FIG. 7, and the above (A), (B),
In the case of (C), 5%, 6.8% and 8.2% sulfur, respectively
30% sulfuric acid is obtained when the acid is charged into the cooling concentrating column.
In addition, in FIG. 6, the exhaust gas to be cooled is supplied from the lower part of the tower.
The diluted sulfuric acid introduced and concentrated is sprinkled from the top of the tower and directed.
They are in flow contact, but the contact of these gas and liquid is parallel flow or
Nothing like using a device that is done in a cross-flow
It doesn't matter.

【0026】[0026]

【実施例】以下に重油オイルだき3トンボイラーに相当
する排ガスからの硫酸回収の実験例を示す。前記図6に
模式的に示した一連の装置を用い、冷却濃度塔の入口排
ガス量3000Nm3/hr,温度150℃、SO2濃度
約2000ppm,L/G=10(したがって各ユニッ
トの循環液量は30トン/hr)、補給水量約50kg
/hrで、定常運転時のデータは表2のようであった。
EXAMPLE An example of the recovery of sulfuric acid from exhaust gas corresponding to a heavy oil oil-fired 3-ton boiler is shown below. Using the series of devices schematically shown in FIG. 6, the inlet exhaust gas amount of the cooling concentration tower is 3000 Nm 3 / hr, the temperature is 150 ° C., the SO 2 concentration is about 2000 ppm, L / G = 10 (therefore, the circulating fluid amount of each unit). Is 30 tons / hr) and the amount of makeup water is about 50 kg.
/ Hr, the data during steady operation are shown in Table 2.

【0027】[0027]

【表2】 表2 ─────────────────────────────────── ガス温度 冷却濃縮塔出口 吸収装置出口 57℃ 52℃ ─────────────────────────────────── SO2濃度 ユニット1出口 ユニット2出口 ユニット3出口 1360ppm 690ppm 190ppm ─────────────────────────────────── SO2除去率 ユニット1 ユニット2 ユニット3 32% 49% 72% ─────────────────────────────────── 吸収液の B−1 B−2 B−1 硫酸濃度 8.1重量% 5.5重量% 2.8重量% ─────────────────────────────────── 硫酸回収量 30%硫酸 71kg/hr ─────────────────────────────────── 上記のように脱硫率は総合で約90%、硫酸回収量は1
00%硫酸として約20Kg/hrという結果を得た。
[Table 2] Table 2 ─────────────────────────────────── Gas temperature Cooling concentration tower outlet Absorption device outlet 57 ℃ 52 ℃ ─────────────────────────────────── SO 2 concentration Unit 1 outlet Unit 2 outlet Unit 3 Outlet 1360ppm 690ppm 190ppm ─────────────────────────────────── SO 2 removal rate Unit 1 Unit 2 Unit 3 32 % 49% 72% ─────────────────────────────────── Absorbing liquid B-1 B-2 B -1 Sulfuric acid concentration 8.1 wt% 5.5 wt% 2.8 wt% ──────────────────────────────── ──── Sulfuric acid recovery amount 30% Acid 71 kg / hr ─────────────────────────────────── As mentioned above, the desulfurization rate is about 90 in total. %, Sulfuric acid recovery amount is 1
A result of about 20 kg / hr was obtained as 00% sulfuric acid.

【0028】一方一塔式で、硫酸濃度8.1%吸収液の
場合、入口ガス條件を同一とすると、下記のような結果
を得た。
On the other hand, in the case of a one-tower type absorbing solution having a sulfuric acid concentration of 8.1%, the following results were obtained when the inlet gas conditions were the same.

【0029】[0029]

【表3】 表3 L/G 吸収液循環量 出口SO2 SO2除去率 (トン/hr) (ppm) (%) 30 90 900 55 50 150 640 68 100 300 320 84 150 450 180 91 表3によれば、一塔式の場合は、本発明の例に比べ、同
一の脱硫性能を得るためには吸収液の循環液量はほぼ5
倍必要となる。
[Table 3] Table 3 L / G absorption liquid circulation amount Outlet SO 2 SO 2 removal rate (ton / hr) (ppm) (%) 30 90 90 900 55 55 50 150 640 68 100 100 300 320 320 84 150 450 180 180 91 Table 3 According to this, in the case of the one-column type, compared with the example of the present invention, in order to obtain the same desulfurization performance, the circulating liquid amount of the absorbing liquid is approximately 5
You will need twice.

【0030】[0030]

【発明の効果】以上詳細に説明したように、本発明の方
法によれば、排ガスの脱硫における吸収塔を多段化した
ことにより効率のよい脱硫および高められた濃度の硫酸
が得られ、さらに、冷却濃縮塔を併用することにより、
さらに高い濃度の硫酸の回収が可能となった。
As described in detail above, according to the method of the present invention, efficient desulfurization and sulfuric acid having an increased concentration can be obtained by the multistage absorption tower in the desulfurization of exhaust gas. By using a cooling concentration tower together,
It has become possible to recover even higher concentrations of sulfuric acid.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の一例を説明する模式図である。FIG. 1 is a schematic diagram illustrating an example of the method of the present invention.

【図2】本発明の方法における吸収液の揚液用ポンプの
実揚程を示す模式図である。
FIG. 2 is a schematic diagram showing an actual head of a pump for pumping an absorption liquid in the method of the present invention.

【図3】本発明の方法に使用する吸収液の撒布器の一例
を示す模式図である。
FIG. 3 is a schematic diagram showing an example of an absorbent spreading device used in the method of the present invention.

【図4】吸収液に使用する硫酸濃度と脱硫率との関係を
示すグラフである。
FIG. 4 is a graph showing the relationship between the concentration of sulfuric acid used in the absorbing liquid and the desulfurization rate.

【図5】吸収塔の入口 SO2濃度と脱硫率との関係を
示すグラフである。
FIG. 5 is a graph showing the relationship between the SO 2 concentration at the inlet of the absorption tower and the desulfurization rate.

【図6】吸収装置に冷却濃縮塔を付加した本発明の方法
の一例を示す模式的工程図である。
FIG. 6 is a schematic process diagram showing an example of the method of the present invention in which a cooling concentration tower is added to the absorption device.

【図7】冷却濃縮塔の入口の硫酸濃度と出口の硫酸濃度
との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the sulfuric acid concentration at the inlet and the sulfuric acid concentration at the outlet of the cooling concentration tower.

【図8】従来技術における吸収塔の一例を示す模式図で
ある。
FIG. 8 is a schematic diagram showing an example of an absorption tower in the related art.

【符号の説明】[Explanation of symbols]

1、2、3 吸収ユニット 4 冷却濃縮塔 5 吸収塔 A−0〜A−3 空気吹込口 B−0〜B−4 液溜め P−0〜P−5 ポンプ G−1 排ガス入口 1, 2, 3 Absorption unit 4 Cooling concentration tower 5 Absorption tower A-0 to A-3 Air injection port B-0 to B-4 Liquid reservoir P-0 to P-5 Pump G-1 Exhaust gas inlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 亜硫酸ガスを含む排ガスを、複数個の下
記手段 1.上部から吸収液を噴霧及至雨滴状に流下させて下部
の液溜めに溜める手段 2.亜硫酸ガスを含む排ガスを導入し流下する吸収液に
対して十字流に接触させ排出させる手段 3.吸収液の酸化のための液溜めに空気を吹き込む手
段、液溜めへ吸収液を補給する手段、液溜めから吸収液
を排出する手段および吸収液を上部へ循環させる手段 を有する亜硫酸ガス吸収ユニットを、排ガスの流れの方
向に連続して結合してなる吸収装置に装入し、各ユニッ
ト中の流下する吸収液に接触させて脱硫し、この際、複
数の吸収ユニットを排ガスの通過する順番にしたがって
ユニット1,2,...Nとしたとき、最後のユニット
Nには吸収液の補給に水を用い、ユニットN−1の吸収
液の補給にはユニットNの液溜めの吸収液を用い、以下
同様にして最先のユニット1の吸収液の補給にはユニッ
ト2の液溜めの吸収液を用い、ユニット1の吸収液の排
出液として硫酸を得ることを特徴とする排ガス脱硫によ
る硫酸回収方法。
1. Exhaust gas containing sulfurous acid gas is treated by a plurality of the following means. Means for collecting the absorbing liquid from the upper part in the form of spray and raindrops and collecting it in the lower liquid reservoir. 2. A means for introducing an exhaust gas containing sulfurous acid gas and bringing it into contact with the flowing down absorbing solution in a cross flow to discharge it. A sulfite gas absorption unit having means for blowing air into the liquid reservoir for oxidizing the absorbing liquid, means for replenishing the absorbing liquid to the liquid reservoir, means for discharging the absorbing liquid from the liquid reservoir, and means for circulating the absorbing liquid to the upper part. , Is loaded into an absorption device that is continuously coupled in the direction of the flow of exhaust gas, and is contacted with the absorbing liquid flowing down in each unit to desulfurize, at this time, in the order in which the exhaust gas passes through multiple absorption units. Therefore, the units 1, 2 ,. . . Assuming N, the last unit N uses water for replenishing the absorbing liquid, the unit N-1 uses replenishing absorbing liquid for the unit N reservoir, and so on. A method for recovering sulfuric acid by exhaust gas desulfurization, characterized in that the absorbent of the liquid reservoir of unit 2 is used to replenish the absorbent of No. 1, and sulfuric acid is obtained as the discharge of the absorbent of unit 1.
【請求項2】 前記吸収装置に装入する前の前記亜硫酸
ガスを含む排ガスおよび前記ユニット1の吸収液の排出
液を塔内に導入して接触させ、該排ガスは冷却されて前
記ユニット1に供給され、該ユニット1の排出液は前記
導入された排ガスの顕熱を利用して濃縮され、濃縮され
た硫酸液として取り出される冷却濃縮塔を、前記吸収装
置に付加したことを特徴とする排ガス脱硫による硫酸回
収方法。
2. The exhaust gas containing the sulfurous acid gas before being charged into the absorption device and the discharge liquid of the absorption liquid of the unit 1 are introduced into the column and brought into contact with each other, and the exhaust gas is cooled and then is supplied to the unit 1. Exhaust gas, characterized in that a cooling and concentrating tower that is supplied and concentrated by utilizing the sensible heat of the introduced exhaust gas as the discharged liquid of the unit 1 and is taken out as concentrated sulfuric acid liquid is added to the absorption device. A method for recovering sulfuric acid by desulfurization.
JP8013850A 1996-01-30 1996-01-30 Method for recovering sulfuric acid by exhaust gas desulfurization Pending JPH09201512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8013850A JPH09201512A (en) 1996-01-30 1996-01-30 Method for recovering sulfuric acid by exhaust gas desulfurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8013850A JPH09201512A (en) 1996-01-30 1996-01-30 Method for recovering sulfuric acid by exhaust gas desulfurization

Publications (1)

Publication Number Publication Date
JPH09201512A true JPH09201512A (en) 1997-08-05

Family

ID=11844764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8013850A Pending JPH09201512A (en) 1996-01-30 1996-01-30 Method for recovering sulfuric acid by exhaust gas desulfurization

Country Status (1)

Country Link
JP (1) JPH09201512A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1062018A1 (en) * 1997-10-22 2000-12-27 Clue AS. A scrubber for the treatment of flue gases
JP2002035545A (en) * 2000-07-27 2002-02-05 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for treating waste smoke
WO2013064755A1 (en) * 2011-11-04 2013-05-10 IFP Energies Nouvelles Method for deacidifying a gas using a plurality of steps for cross-flow contact with an absorbent solution
FR2988010A1 (en) * 2012-03-15 2013-09-20 Alpha Chem Gas washing device for use in urban area, has gas-liquid contactors separated by double wall, where transfer of liquid from one contactor to another contactor is carried out by overflow of level of liquid so as to deplete impurities

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1062018A1 (en) * 1997-10-22 2000-12-27 Clue AS. A scrubber for the treatment of flue gases
EP1062018A4 (en) * 1997-10-22 2001-10-17 Clue As A scrubber for the treatment of flue gases
JP2002035545A (en) * 2000-07-27 2002-02-05 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for treating waste smoke
WO2013064755A1 (en) * 2011-11-04 2013-05-10 IFP Energies Nouvelles Method for deacidifying a gas using a plurality of steps for cross-flow contact with an absorbent solution
FR2982171A1 (en) * 2011-11-04 2013-05-10 IFP Energies Nouvelles METHOD FOR DEACIDIFYING GAS WITH MULTIPLE STAGES OF CURRENT CURRENT CONTACT WITH AN ABSORBENT SOLUTION
FR2988010A1 (en) * 2012-03-15 2013-09-20 Alpha Chem Gas washing device for use in urban area, has gas-liquid contactors separated by double wall, where transfer of liquid from one contactor to another contactor is carried out by overflow of level of liquid so as to deplete impurities

Similar Documents

Publication Publication Date Title
JP6917337B2 (en) Methods of controlling aerosol formation during absorption in ammonia desulfurization
CN102000486B (en) Method for catching carbon dioxide in flue gas by active sodium carbonate and apparatus thereof
US8182577B2 (en) Multi-stage CO2 removal system and method for processing a flue gas stream
JP6310907B2 (en) Recovering and recovering pollutants from exhaust gas
CN112387071A (en) CO2Trapping method and apparatus
CN107970743B (en) Method for separating carbon dioxide
CN107551813B (en) Ship desulfurization and denitrification integrated process and device
RU2696467C2 (en) Method of renewed wet desulphurisation using a suspension layer
CN103505999B (en) A kind of system and method for wet desulphurization denitration
CN87105896A (en) From admixture of gas, remove the improvement of the method for sour gas
CN106422667B (en) The method of one-step removal acidic components and water from gas
JP6634395B2 (en) Exhaust gas treatment device and CO2 recovery device using the same
CN100469419C (en) Segmented calcium and sodium double alkali method desulfurizing technology and device thereof
CN104857838A (en) System and method for flue gas desulfurization through bipolar membrane electrodialysis
CN113368683A (en) Carbon dioxide capture system and method
CN109173598B (en) Method for recovering CS in viscose waste gas by using composite solvent2Method (2)
CN1169335A (en) Method for taking off hydrogen sulfide from mixed gas
KR20180002843A (en) Method and apparatus for desulfurization of a gas stream
CN106890545A (en) The separating technology and equipment of hydrogen sulfide in a kind of carbon disulphide production tail gas
JPH09201512A (en) Method for recovering sulfuric acid by exhaust gas desulfurization
CN105935547A (en) Method and device for recovering acidic gas (hydrogen sulfide) from top of wastewater stripping tower
US4118460A (en) Removal of nitrogen oxides from industrial gases by use of oxidizing solutions in which nitrates are the oxidants
WO1989002310A1 (en) Simultaneous separation and conversion to sulfur of h2s
CN215962897U (en) Carbon emission reduction treatment system for oilfield fireflood tail gas
EP0053424A1 (en) Gas separation by physical absorption

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607