Nothing Special   »   [go: up one dir, main page]

JPH09195009A - Ferritic stainless steel excellent in antibacterial property and its production - Google Patents

Ferritic stainless steel excellent in antibacterial property and its production

Info

Publication number
JPH09195009A
JPH09195009A JP2173196A JP2173196A JPH09195009A JP H09195009 A JPH09195009 A JP H09195009A JP 2173196 A JP2173196 A JP 2173196A JP 2173196 A JP2173196 A JP 2173196A JP H09195009 A JPH09195009 A JP H09195009A
Authority
JP
Japan
Prior art keywords
less
stainless steel
weight
ferritic stainless
rich phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2173196A
Other languages
Japanese (ja)
Other versions
JP3498770B2 (en
Inventor
Morihiro Hasegawa
守弘 長谷川
Katsuhisa Miyakusu
克久 宮楠
Naoto Okubo
直人 大久保
Sadayuki Nakamura
定幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP02173196A priority Critical patent/JP3498770B2/en
Publication of JPH09195009A publication Critical patent/JPH09195009A/en
Application granted granted Critical
Publication of JP3498770B2 publication Critical patent/JP3498770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a ferritic stainless steel having antibacterial properties with maintainability. SOLUTION: This ferritic stainless steel has a compsn. contg. <=0.1% C, <=2% Si, <=2% Mn, 10 to 30% Cr and 0.4 to 3% Cu, and in which Cu enriched phases are precipitated into the matrix by >=0.2vol.%. Furthermore, 0.02 to 1% Nb and/or Ti may be incorporated, and one or >= two kinds among <=3% Mo, <=1% Al, <=1% Zr, <=1% V, <=0.05% B and <=0.05% rare earth metal elements (REM) may be added. The Cu enriched phases are precipitated by >=0.2vol.%, after final annealing, by executing batch annealing at 500 to 900 deg.C or executing cooling at a rate of <=10 deg.C/min in the temp. range of 900 to 500 deg.C in the cooling stage after the final annealing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、厨房機器,電気機器,
建築材料,機械機器,化学機器等の広範囲な分野におい
て抗菌性が必要とされる用途に適したフェライト系ステ
ンレス鋼及びその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to kitchen equipment, electric equipment,
The present invention relates to a ferritic stainless steel suitable for applications requiring antibacterial properties in a wide range of fields such as building materials, mechanical equipment, and chemical equipment, and a method for producing the same.

【0002】[0002]

【従来の技術】厨房機器,病院等で使用されている各種
機材や、バス,電車等の輸送機関の手摺り用パイプ等で
は、一般環境における耐食性が要求されるため、SUS
304に代表されるステンレス鋼が主として使用されて
いる。しかし、黄色ブドウ球菌による院内感染が問題と
なってきている昨今、バス,電車等の不特定多数の人間
が利用する環境においても衛生面の向上が求められてい
る。これに伴って、各種機械,器具に使用される材料と
しても、一般構造材としての特性に止まらず、定期的な
消毒等の感染防止を図る必要がない抗菌性等の機能を付
与したメンテナンスフリーの材料が望まれている。抗菌
性を付与した材料としては、特開平5−22820号公
報,特開平6−10191号公報等で開示されているよ
うに、有機皮膜やめっきによる抗菌コートが一般的であ
った。しかし、抗菌コートは、皮膜の消失に応じて抗菌
性が低下する欠点がある。抗菌性が消失した有機質は、
栄養源となり却って細菌や雑菌を繁殖させる虞れもあ
る。抗菌剤成分を混入した複合めっきを施したもので
は、めっき層の密着性が十分でなく、加工性を低下させ
る欠点がある。また、皮膜の溶解,摩耗,欠損等に起因
して外観が低下すると共に、抗菌作用が低下する場合が
ある。
2. Description of the Related Art Since various equipment used in kitchen equipment, hospitals, and pipes for handrails of transportation means such as buses and trains are required to have corrosion resistance in a general environment, SUS is required.
The stainless steel represented by 304 is mainly used. However, nosocomial infection due to Staphylococcus aureus has become a problem in recent years, and there is a demand for improved hygiene even in an environment used by an unspecified number of people such as buses and trains. Along with this, maintenance-free materials with functions such as antibacterial properties that do not stop at the properties of general structural materials as materials used for various machines and instruments and do not require infection prevention such as regular disinfection. Materials are desired. As a material having an antibacterial property, an organic film or an antibacterial coat formed by plating is generally used as disclosed in JP-A-5-22820 and JP-A-6-10191. However, the antibacterial coat has a drawback that the antibacterial property is lowered as the film disappears. The organic substances that have lost their antibacterial properties are
There is also a risk that it will serve as a nutrient source and will propagate bacteria and other germs. In the case of applying a composite plating mixed with an antibacterial agent component, the adhesion of the plating layer is not sufficient, and there is a drawback that the workability is reduced. In addition, the appearance may be deteriorated due to dissolution, wear, and defects of the film, and the antibacterial action may be decreased.

【0003】[0003]

【発明が解決しようとする課題】ところで、Ag,Cu
等の金属元素は、有効な抗菌作用を発揮することが知ら
れている。しかし、Agは、非常に高価で耐食性にも劣
っていることから、腐食が予想される環境に曝される用
途で使用されていない。他方、Cuは比較的安価な元素
であり抗菌成分としても有効なことから、ステンレス鋼
等の材料に添加して抗菌性を付与することが検討されて
いる。本発明者等も、Cu添加による抗菌性の改善を種
々検討し、ステンレス鋼表面のCu濃度を高めることに
よって抗菌性が改善されることを見い出し、特願平6−
209121号,特願平7−55069号で提案した。
本発明は、先に提案したCuの作用を更に高めるべく案
出されたものであり、Cuを主体とする第2相(以下、
Cuリッチ相という)を所定量析出させることにより、
優れた抗菌性をフェライト系ステンレス鋼に付与するこ
とを目的とする。
By the way, Ag, Cu
It is known that the metal elements such as the above exhibit an effective antibacterial action. However, Ag is extremely expensive and has poor corrosion resistance, and therefore is not used in applications exposed to an environment where corrosion is expected. On the other hand, since Cu is a relatively inexpensive element and is also effective as an antibacterial component, it has been studied to add it to a material such as stainless steel to impart antibacterial properties. The present inventors also conducted various studies on the improvement of antibacterial property by adding Cu, and found that the antibacterial property was improved by increasing the Cu concentration on the surface of stainless steel, and Japanese Patent Application No. 6-
No. 209121 and Japanese Patent Application No. 7-55069.
The present invention has been devised in order to further enhance the action of Cu previously proposed, and a second phase (hereinafter,
By depositing a predetermined amount of Cu-rich phase)
The purpose is to impart excellent antibacterial properties to ferritic stainless steel.

【0004】[0004]

【課題を解決するための手段】本発明のフェライト系ス
テンレス鋼は、その目的を達成するため、C:0.1重
量%以下,Si:2重量%以下,Mn:2重量%以下,
Cr:10〜30重量%及びCu:0.4〜3重量%を
含み、熱延後に500〜900℃のバッチ焼鈍を行うこ
とにより、或いは熱延後の冷却過程で900〜500℃
の温度範囲を10℃/分以下の速度で冷却することによ
り、マトリックス中にCuリッチ相を0.2体積%以上
の割合で析出させていることを特徴とする。本発明のフ
ェライト系ステンレス鋼は、0.02〜1重量%のNb
及び/又はTiを含むことができる。更に、Mo:3重
量%以下,Al:1重量%以下,Zr:1重量%以下,
V:1重量%以下,B:0.05重量%以下,希土類金
属元素(REM):0.05重量%以下の1種又は2種
以上を含んでも良い。このフェライト系ステンレス鋼
は、所定の組成をもつフェライト系ステンレス鋼を熱間
圧延した後、バッチ焼鈍或いは冷却過程の温度制御によ
り製造される。
In order to achieve the object, the ferritic stainless steel of the present invention has C: 0.1% by weight or less, Si: 2% by weight or less, Mn: 2% by weight or less,
Cr: 10 to 30% by weight and Cu: 0.4 to 3% by weight, and by performing batch annealing at 500 to 900 ° C. after hot rolling, or 900 to 500 ° C. in the cooling process after hot rolling.
The Cu-rich phase is precipitated in the matrix at a rate of 0.2% by volume or more by cooling the temperature range of 10 at a rate of 10 ° C./minute or less. The ferritic stainless steel of the present invention contains 0.02 to 1% by weight of Nb.
And / or Ti may be included. Further, Mo: 3 wt% or less, Al: 1 wt% or less, Zr: 1 wt% or less,
V: 1% by weight or less, B: 0.05% by weight or less, rare earth metal element (REM): 0.05% by weight or less, and one or more kinds may be included. This ferritic stainless steel is manufactured by hot rolling a ferritic stainless steel having a predetermined composition and then controlling the temperature in a batch annealing or cooling process.

【0005】[0005]

【作用】ステンレス鋼は、不動態皮膜と称されるCrを
主とする水酸化物で覆われていることから、優れた耐食
性を呈する。本発明者等は、有効な抗菌性を発現するC
uをフェライト系ステンレス鋼に添加し、不動態皮膜中
に含まれるCu量を測定すると共に、黄色ブドウ球菌を
含む液の滴下による抗菌性を調査した。その結果、ある
程度以上のCuを含有させたステンレス鋼は、抗菌性を
備えていることが判った。しかし、鋼中に数%以下のC
uを単に固溶させただけでは、抗菌性及びその持続性が
必ずしも十分ではない場合がある。そこで、更に検討を
重ねた結果、同一のCu含有量であっても、Cuの一部
がCuリッチ相として析出していると、表面のCu濃度
が上昇すると共に、抗菌性も改善されることが判明し
た。有効な抗菌性を付与する上では、Cuリッチ相を
0.2体積%以上の割合で析出させる必要がある。Cu
リッチ相は、FCC構造をもつものやHCP構造をもつ
もの等がある。
The stainless steel has excellent corrosion resistance because it is covered with a hydroxide mainly called Cr called a passive film. The present inventors have found that C that exhibits effective antibacterial properties.
u was added to ferritic stainless steel, the amount of Cu contained in the passivation film was measured, and the antibacterial property by dropping the liquid containing Staphylococcus aureus was investigated. As a result, it was found that the stainless steel containing a certain amount of Cu or more has antibacterial properties. However, the C content in steel is less than a few percent.
The antibacterial property and its durability may not always be sufficient if u is simply dissolved. Therefore, as a result of further studies, even if the Cu content is the same, if a part of Cu is precipitated as a Cu-rich phase, the Cu concentration on the surface is increased and the antibacterial property is also improved. There was found. In order to impart effective antibacterial properties, it is necessary to precipitate the Cu-rich phase at a ratio of 0.2% by volume or more. Cu
The rich phase includes those having an FCC structure and those having an HCP structure.

【0006】Cuリッチ相を析出させる手段としては、
Cuリッチ相が析出し易い温度領域で時効等の等温加熱
を施すこと,徐冷により析出温度域の通過時間をできる
だけ長くすること等が考えられる。一般的には、製造工
程の最終段階で析出処理を施すと目標とする鋼が得られ
易い。しかし、専用の析出処理は、製造コストを上昇さ
せる原因となり、製造条件としては好ましくない。そこ
で、製造性を損なわずにCuリッチ相を析出させる条件
について種々検討した結果、熱延後に500〜900℃
の範囲でバッチ焼鈍を施すこと、或いは熱延後の冷却過
程で900〜500℃の温度範囲を10℃/分以下の速
度で冷却することにより、Cuリッチ相が析出すること
を見い出した。このCuリッチ相は、中間焼鈍及び仕上
げ焼鈍等の短時間焼鈍を施しても残存する確立が高く、
添加量が低い場合においても抗菌性が得られ易い。ま
た、TiやNb等の炭窒化物,析出物等を形成し易い合
金成分が添加されると、析出物等を析出サイトとしてC
uリッチ相がマトリックス中に均一分散し易く、結果と
して抗菌性及び製造性が改善される。
As means for precipitating the Cu-rich phase,
It is conceivable to apply isothermal heating such as aging in a temperature region where the Cu-rich phase is likely to precipitate, and to gradually increase the passage time in the precipitation temperature region by slow cooling. In general, if the precipitation treatment is performed at the final stage of the manufacturing process, the target steel can be easily obtained. However, the exclusive precipitation treatment causes an increase in manufacturing cost and is not preferable as a manufacturing condition. Therefore, as a result of various studies on conditions for precipitating a Cu-rich phase without impairing manufacturability, it was found that after hot rolling, it was 500 to 900 ° C
It was found that the Cu-rich phase is precipitated by performing the batch annealing in the range of 10 to 100 ° C. or cooling the temperature range of 900 to 500 ° C. at a rate of 10 ° C./min or less in the cooling process after hot rolling. This Cu-rich phase is highly likely to remain even after short-time annealing such as intermediate annealing and finish annealing,
Antibacterial properties are easily obtained even when the amount added is low. Further, when carbonitrides such as Ti and Nb, and alloy components that easily form precipitates are added, the precipitates are used as precipitation sites to form C.
The u-rich phase is easily dispersed uniformly in the matrix, resulting in improved antibacterial properties and manufacturability.

【0007】以下、本発明フェライト系ステンレス鋼に
含まれる合金元素及びその含有量等について説明する。 C:0.1重量%以下 フェライト系ステンレス鋼の強度を向上させると共に、
本発明では、Cr炭化物の生成によりCuリッチ相の析
出を均一分散させる有効な合金元素である。しかし、C
の過剰添加は製造性や耐食性を劣化させるため、上限を
0.1重量%に規制した。 Si:2重量%以下 耐食性及び強度を改善する合金元素であり、抗菌性を向
上する作用も呈する。しかし、過剰添加は製造性を劣化
させる原因となるので、上限を2重量%に規制した。 Mn:2重量%以下 製造性を改善すると共に、鋼中の有害なSをMnSとし
て固定する合金元素である。しかし、過剰添加により耐
食性が劣化することから、上限を2重量%に規制した。
The alloying elements contained in the ferritic stainless steel of the present invention and their contents will be described below. C: 0.1 wt% or less While improving the strength of ferritic stainless steel,
In the present invention, it is an effective alloying element that uniformly disperses the precipitation of the Cu-rich phase by the formation of Cr carbide. But C
Since the excessive addition of 1 deteriorates manufacturability and corrosion resistance, the upper limit was regulated to 0.1% by weight. Si: 2 wt% or less It is an alloying element that improves corrosion resistance and strength, and also exhibits an action of improving antibacterial property. However, excessive addition causes deterioration of manufacturability, so the upper limit was limited to 2% by weight. Mn: 2 wt% or less It is an alloying element that improves manufacturability and fixes harmful S in steel as MnS. However, since the corrosion resistance deteriorates due to excessive addition, the upper limit was limited to 2% by weight.

【0008】Cr:10〜30重量% フェライト系ステンレス鋼の耐食性を維持するために重
要な合金元素であって、10重量%以上が必要とされ
る。しかし、30重量%を超える多量のCrは、製造性
を悪化させる。 Cu:0.4〜3重量% 及び Cuリッチ相:0.2
体積%以上 本発明のフェライト系ステンレス鋼において最も重要な
合金元素であり、良好な抗菌性を維持するために0.2
体積%以上のCuリッチ相が析出していることが必要で
ある。0.2体積%以上のCuリッチ相を析出させるた
めには、0.4重量%以上のCu添加が必要である。し
かし、過剰添加により製造性や耐食性が低下するので、
Cu含有量の上限を3重量%に規制した。また、Cuリ
ッチ相は、析出物の大きさが特に限定されるものでない
が、製品表面全体において均等に抗菌性を発揮させるた
めには、析出相が表面及び内部においても適宜に分散し
て分布していることが好ましい。
Cr: 10 to 30 wt% An alloying element important for maintaining the corrosion resistance of ferritic stainless steel, and 10 wt% or more is required. However, a large amount of Cr exceeding 30% by weight deteriorates manufacturability. Cu: 0.4-3 wt% and Cu-rich phase: 0.2
Volume% or more It is the most important alloying element in the ferritic stainless steel of the present invention, and is 0.2 in order to maintain good antibacterial property.
It is necessary that the Cu-rich phase of volume% or more is deposited. In order to precipitate a Cu-rich phase of 0.2 vol% or more, 0.4 wt% or more of Cu must be added. However, since excessive addition reduces productivity and corrosion resistance,
The upper limit of the Cu content was regulated to 3% by weight. In addition, the Cu-rich phase is not particularly limited in the size of the precipitate, but in order to uniformly exert the antibacterial property on the entire surface of the product, the precipitate phase is appropriately dispersed and distributed on the surface and inside. It is preferable that

【0009】Nb及び/又はTi:0.02〜1重量% 必要に応じて添加される合金元素であり、析出物となっ
て、その周囲にCuリッチ相を均一析出させる作用を呈
する。このような作用は、0.02重量%以上で顕著に
なる。しかし、1重量%を超える過剰添加は、製造性や
加工性を低下させる。 Mo:3重量%以下 必要に応じて添加される合金元素であり、耐食性及び強
度を向上させ、また抗菌性をも向上させる作用を呈す
る。しかし、3重量%を超える過剰添加は、製造性や加
工性を低下させる。 Al:1重量%以下 必要に応じて添加される合金元素であり、Moと同様に
耐食性を向上させる作用を呈する。しかし、1重量%を
超える過剰添加は、製造性や加工性を低下させる。
Nb and / or Ti: 0.02 to 1% by weight It is an alloying element that is added as required, and acts as a precipitate to uniformly precipitate the Cu-rich phase around it. Such an effect becomes remarkable at 0.02% by weight or more. However, excessive addition of more than 1% by weight reduces manufacturability and workability. Mo: 3 wt% or less It is an alloying element added as necessary, and has an effect of improving corrosion resistance and strength, and also improving antibacterial property. However, excessive addition of more than 3% by weight reduces manufacturability and workability. Al: 1% by weight or less An alloying element added as necessary, and exhibits an effect of improving corrosion resistance, similar to Mo. However, excessive addition of more than 1% by weight reduces manufacturability and workability.

【0010】Zr:1重量%以下 必要に応じて添加される合金元素であり、炭窒化物を形
成し、鋼材の強度を向上させる作用を呈する。しかし、
1重量%を超える過剰添加は、製造性や加工性を低下さ
せる。 V:1重量%以下 必要に応じて添加される合金元素であり、Zrと同様に
炭窒化物を形成し、鋼材の強度を向上させる作用を呈す
る。しかし、1重量%を超える過剰添加は、製造性や加
工性を低下させる。 B:0.05重量%以下 必要に応じて添加される合金元素であり、熱間加工性を
改善する作用を呈する。しかし、0.05重量%を超え
る過剰添加は、逆に熱間加工性が低下する原因となる。
Zr: 1% by weight or less An alloying element added as necessary, which forms a carbonitride and has an effect of improving the strength of the steel material. But,
Excessive addition of more than 1% by weight reduces manufacturability and workability. V: 1% by weight or less An alloying element added as necessary, which forms a carbonitride similar to Zr and has an effect of improving the strength of steel. However, excessive addition of more than 1% by weight reduces manufacturability and workability. B: 0.05% by weight or less It is an alloying element added as necessary and has an effect of improving hot workability. However, excessive addition of more than 0.05% by weight causes deterioration of hot workability.

【0011】希土類金属元素(REM):0.05重量
%以下 必要に応じて添加される合金元素であり、Bと同様に熱
間加工性を改善する作用を呈する。しかし、0.05重
量%を超える過剰添加は、逆に熱間加工性が低下する原
因となる。 バッチ焼鈍条件:500〜900℃ 一般的に比較的長時間行われるバッチ焼鈍は、Cuリッ
チ相を析出させる有効な処理である。焼鈍温度が低くな
るほど、マトリックス中の固溶Cu量が少なくなり、C
uリッチ相の析出量が多くなる。しかし、低過ぎる焼鈍
温度では、拡散速度が遅くなり、析出量が逆に減少す
る。温度条件を変えて種々のバッチ焼鈍を施し、抗菌性
に有効な温度範囲を検討した結果、500〜900℃が
工業的に有効な温度範囲であることが判った。 熱延後の冷却条件:900〜500℃の温度範囲を10
℃/分以下の速度で冷却フェライト系ステンレス鋼の熱
間圧延は、一般的に900℃前後で終了するため、Cu
リッチ相が析出する可能性がある。そこで、熱延後の冷
却条件でCuリッチ相を析出させる条件を検討した結
果、900〜500℃の温度範囲を10℃/分以下の速
度で徐冷するとき、抗菌性の改善に必要な0.2体積%
以上のCuリッチ相が析出することを知見した。
Rare earth metal element (REM): not more than 0.05% by weight It is an alloy element added as required, and exhibits an effect of improving hot workability like B. However, excessive addition of more than 0.05% by weight causes deterioration of hot workability. Batch annealing conditions: 500 to 900 ° C. Batch annealing, which is generally performed for a relatively long time, is an effective treatment for precipitating a Cu-rich phase. The lower the annealing temperature, the smaller the amount of solid solution Cu in the matrix,
The precipitation amount of the u-rich phase increases. However, if the annealing temperature is too low, the diffusion rate becomes slow and the amount of precipitation decreases conversely. As a result of conducting various batch annealings under different temperature conditions and examining a temperature range effective for antibacterial properties, it was found that 500 to 900 ° C. is an industrially effective temperature range. Cooling condition after hot rolling: a temperature range of 900 to 500 ° C. is 10
Since hot rolling of ferritic stainless steel cooled at a rate of ℃ / min or less is generally completed at around 900 ℃, Cu
Rich phase may precipitate. Therefore, as a result of studying the conditions for precipitating a Cu-rich phase under the cooling conditions after hot rolling, when the temperature range of 900 to 500 ° C. is gradually cooled at a rate of 10 ° C./min or less, 0 required for improving antibacterial properties is obtained. .2% by volume
It was found that the above Cu-rich phase was precipitated.

【0012】[0012]

【実施例】表1及び表2に示した組成を持つフェライト
系ステンレス鋼を30kg真空溶解炉で溶製し、鍛造及
び熱延後の冷却条件を種々制御した。次いで、バッチ焼
鈍又は短時間焼鈍を施し、冷延及び短時間焼鈍を繰り返
し、最終的に板厚0.7mmの冷延焼鈍板を得た。一部
の板については、比較のために最終焼鈍後に1時間の時
効処理を施した。得られた供試材を透過型電子顕微鏡で
観察し、Cuリッチのε−Cu相の析出量を定量した。
抗菌性試験には、Staphylococus aur
eus IFO12732(黄色ブドウ球菌)を普通ブ
イヨン培地で35℃,16〜24時間振盪培養し、培養
液を用意した。培養液を滅菌リン酸緩衝液で20,00
0倍に希釈し、菌液を調製した。5cm×5cmの試験
片を#400研磨した表面に菌液1mlを滴下し、25
℃で24時間保存した。保存後、試験片をSCDLP培
地(日本製薬株式会社製)9mlで洗い流し、得られた
液について標準寒天培地を用いた混釈平板培養法(35
℃,2日間培養)で生菌数をカウントした。また、参照
としてシャーレに菌液を直接滴下し、同様に生菌数をカ
ウントした。生菌が検出されなかったものを◎,参照の
生菌数と比較して95%以上が死滅したものを○,60
〜95%未満の範囲で死滅したものを△,60%未満の
死滅量であったものを×として評価した。評価結果を、
ε−Cu相と併せて表1及び表2に示す。
EXAMPLE Ferritic stainless steels having the compositions shown in Tables 1 and 2 were melted in a 30 kg vacuum melting furnace, and various cooling conditions after forging and hot rolling were controlled. Next, batch annealing or short-time annealing was performed, cold rolling and short-time annealing were repeated, and finally a cold-rolled annealed plate having a plate thickness of 0.7 mm was obtained. For comparison, some plates were aged for 1 hour after the final annealing. The obtained test material was observed with a transmission electron microscope to quantify the amount of precipitation of Cu-rich ε-Cu phase.
For antibacterial tests, Staphylococcus aur
Eus IFO12732 (Staphylococcus aureus) was shake-cultured in a normal broth medium at 35 ° C. for 16 to 24 hours to prepare a culture solution. The culture solution was sterilized with a phosphate buffer solution of 20,000
It was diluted to 0 times to prepare a bacterial solution. 1 ml of the bacterial solution was dropped on the surface of a 5 cm × 5 cm test piece that was polished # 400.
Stored at 24 ° C for 24 hours. After storage, the test piece was washed with 9 ml of SCDLP medium (manufactured by Nippon Pharmaceutical Co., Ltd.), and the obtained solution was subjected to the pour plate culture method using standard agar medium (35
The viable cell count was counted by culturing at 2 ° C for 2 days. As a reference, the bacterial solution was directly dropped on the petri dish, and the number of viable bacteria was counted in the same manner. Those with no viable bacteria detected were ◎, and those with 95% or more dead compared to the reference number of viable bacteria were ○, 60
What was killed in the range of less than 95% was evaluated as Δ, and what killed less than 60% was evaluated as x. Evaluation results
It is shown in Tables 1 and 2 together with the ε-Cu phase.

【0013】 [0013]

【0014】 [0014]

【0015】表1から明らかなように、0.4重量%以
上のCuが添加され、熱延後に徐冷又はバッチ焼鈍を施
したものでは、ε−Cu相の析出が多く、最終焼鈍後に
おいても多量のε−Cu相が残存していた。また、ε−
Cu相が0.2体積%以上析出したものでは、抗菌性に
優れていることが表1から判る。これに対し、Cu含有
量が0.4重量%以上添加されていても、熱延後の冷却
速度が早いもの、或いは熱延後の焼鈍が短時間のもので
は、表2にみられるようにε−Cu相の析出量が低く、
最終焼鈍後のε−Cu相の析出量が0.2体積%未満で
あり、抗菌性が劣っていた。
As is clear from Table 1, in the case where 0.4% by weight or more of Cu was added and the material was subjected to hot-rolling followed by slow cooling or batch annealing, a large amount of ε-Cu phase was precipitated, and after the final annealing. However, a large amount of ε-Cu phase remained. Also, ε−
Table 1 shows that the antibacterial property is excellent when the Cu phase is precipitated in an amount of 0.2 vol% or more. On the other hand, even if the Cu content is 0.4% by weight or more, as shown in Table 2, when the cooling rate after hot rolling is fast or the annealing after hot rolling is short. The precipitation amount of ε-Cu phase is low,
The amount of precipitation of the ε-Cu phase after the final annealing was less than 0.2% by volume, and the antibacterial property was poor.

【0016】[0016]

【発明の効果】以上に説明したように、本発明のフェラ
イト系ステンレス鋼では、素材のCu含有量を規制する
と共に、焼鈍後のバッチ焼鈍又は徐冷により所定量のC
uリッチ相を析出させ、無垢材での優れた抗菌性を発現
させている。このようにして抗菌性が付与されたフェラ
イト系ステンレス鋼は、長期間にわたって優れた特性を
持続させることから、厨房機器,病院で使用される器
材,バスや電車等の輸送機関の手摺り等の抗菌性が必要
とされる分野で使用され、生活環境が改善される。
As described above, in the ferritic stainless steel of the present invention, the Cu content of the raw material is regulated, and a predetermined amount of C is obtained by batch annealing or slow cooling after annealing.
It deposits a u-rich phase and exhibits excellent antibacterial properties in solid wood. Since the ferritic stainless steel with antibacterial properties thus maintained has excellent properties for a long period of time, it can be used for kitchen equipment, equipment used in hospitals, railings of transportation means such as buses and trains, etc. It is used in fields where antibacterial properties are required and improves the living environment.

フロントページの続き (72)発明者 中村 定幸 山口県新南陽市野村南町4976番地 日新製 鋼株式会社技術研究所内Continued on the front page (72) Inventor Sadayuki Nakamura 4976 Nomura Minamicho, Shinnanyo-shi, Yamaguchi Pref. Nisshin Steel Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 C:0.1重量%以下,Si:2重量%
以下,Mn:2重量%以下,Cr:10〜30重量%及
びCu:0.4〜3重量%を含み、マトリックス中に
0.2体積%以上の割合で分散しているCuリッチ相が
熱延後の500〜900℃のバッチ焼鈍で析出されたも
のであり、最終焼鈍後においても0.2体積%以上の割
合で存在しているフェライト系ステンレス鋼。
1. C: 0.1% by weight or less, Si: 2% by weight
Hereinafter, a Cu-rich phase containing Mn: 2 wt% or less, Cr: 10 to 30 wt% and Cu: 0.4 to 3 wt% and dispersed in a matrix at a ratio of 0.2 vol% or more is a heat. A ferritic stainless steel that has been precipitated by batch annealing at 500 to 900 ° C. after rolling and is present in a proportion of 0.2% by volume or more even after final annealing.
【請求項2】 C:0.1重量%以下,Si:2重量%
以下,Mn:2重量%以下,Cr:10〜30重量%及
びCu:0.4〜3重量%を含み、マトリックス中に
0.2体積%以上の割合で分散しているCuリッチ相が
熱延後の冷却過程で900〜500℃の温度範囲を10
℃/分以下の速度で冷却することにより析出されたもの
であり、最終焼鈍後においても0.2体積%以上の割合
で存在しているフェライト系ステンレス鋼。
2. C: 0.1% by weight or less, Si: 2% by weight
Hereinafter, a Cu-rich phase containing Mn: 2 wt% or less, Cr: 10 to 30 wt% and Cu: 0.4 to 3 wt% and dispersed in a matrix at a ratio of 0.2 vol% or more is a heat. In the cooling process after rolling, the temperature range of 900 to 500 ° C.
A ferritic stainless steel that is precipitated by cooling at a rate of ℃ / min or less and that is present in a proportion of 0.2% by volume or more even after the final annealing.
【請求項3】 Nb:0.02〜1重量%,Ti:0.
02〜1重量%,Mo:3重量%以下,Al:1重量%
以下,Zr:1重量%以下,V:1重量%以下,B:
0.05重量%以下,希土類金属元素(REM):0.
05重量%以下の1種又は2種以上を含む請求項1又は
2記載のフェライト系ステンレス鋼。
3. Nb: 0.02 to 1% by weight, Ti: 0.
02 to 1% by weight, Mo: 3% by weight or less, Al: 1% by weight
Below, Zr: 1 wt% or less, V: 1 wt% or less, B:
0.05 wt% or less, rare earth metal element (REM): 0.
The ferritic stainless steel according to claim 1 or 2, which contains one or more of 0.05% by weight or less.
【請求項4】 請求項1〜3の何れかに記載の組成をも
つフェライト系ステンレス鋼を熱延した後、500〜9
00℃のバッチ焼鈍を施しCuリッチ相を0.2体積%
以上析出させる抗菌性に優れたフェライト系ステンレス
鋼の製造方法。
4. After hot rolling the ferritic stainless steel having the composition according to any one of claims 1 to 3, 500 to 9
0.2% by volume of Cu-rich phase by batch annealing at 00 ℃
A method for producing a ferritic stainless steel having excellent antibacterial properties, which is deposited as described above.
【請求項5】 請求項1〜3の何れかに記載の組成をも
つフェライト系ステンレス鋼を熱延した後、900〜5
00℃の温度範囲を10℃/分以下の速度で冷却し、C
uリッチ相を0.2体積%以上析出させる抗菌性に優れ
たフェライト系ステンレス鋼の製造方法。
5. After hot rolling the ferritic stainless steel having the composition according to claim 1, 900 to 5
The temperature range of 00 ° C is cooled at a rate of 10 ° C / minute or less, and C
A method for producing a ferritic stainless steel excellent in antibacterial property, which deposits a u-rich phase in an amount of 0.2 vol% or more.
JP02173196A 1996-01-12 1996-01-12 Manufacturing method of ferritic stainless steel with excellent antibacterial properties Expired - Fee Related JP3498770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02173196A JP3498770B2 (en) 1996-01-12 1996-01-12 Manufacturing method of ferritic stainless steel with excellent antibacterial properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02173196A JP3498770B2 (en) 1996-01-12 1996-01-12 Manufacturing method of ferritic stainless steel with excellent antibacterial properties

Publications (2)

Publication Number Publication Date
JPH09195009A true JPH09195009A (en) 1997-07-29
JP3498770B2 JP3498770B2 (en) 2004-02-16

Family

ID=12063231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02173196A Expired - Fee Related JP3498770B2 (en) 1996-01-12 1996-01-12 Manufacturing method of ferritic stainless steel with excellent antibacterial properties

Country Status (1)

Country Link
JP (1) JP3498770B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368216B1 (en) * 1998-05-07 2003-03-17 주식회사 포스코 Ferritic anti-bacterial stainless steel bearing cu and nb elements and a method of manufacturing thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368216B1 (en) * 1998-05-07 2003-03-17 주식회사 포스코 Ferritic anti-bacterial stainless steel bearing cu and nb elements and a method of manufacturing thereof

Also Published As

Publication number Publication date
JP3498770B2 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
KR100313171B1 (en) How to use stainless steel with improved antibacterial properties
US6391253B1 (en) Stainless steel having excellent antibacterial property and method for producing the same
JP2017206725A (en) Ferritic stainless steel and manufacturing method therefor
JPH10259456A (en) Argentum-containing antibacterial stainless steel sheet and its production
JP3223418B2 (en) Ferritic stainless steel excellent in antibacterial property and method for producing the same
JP3232532B2 (en) Austenitic stainless steel excellent in antibacterial property and method for producing the same
JP3281526B2 (en) Martensitic stainless steel excellent in antibacterial property and method for producing the same
JP3219128B2 (en) High-strength martensitic stainless steel with excellent antibacterial properties
CN108728760A (en) A kind of strong antibacterial austenitic stainless steel applied to kitchen article
JP3309769B2 (en) Cu-containing stainless steel sheet and method for producing the same
JPH11343540A (en) Martensitic stainless steel excellent in antibacterial property
JP3498770B2 (en) Manufacturing method of ferritic stainless steel with excellent antibacterial properties
JP3227405B2 (en) Ferritic stainless steel with excellent antibacterial properties
JP2000160294A (en) High hardness antibacterial steel material and its manufacture
JP2001254151A (en) Ag-CONTAINING MARTENSITIC STAINLESS STEEL EXCELLENT IN ANTIBACTERIAL PROPERTY AND ITS PRODUCING METHOD
JPH10306352A (en) Ferritic stainless steel sheet excellent in antibacterial characteristic and surface characteristic and having high workability, and its production
JPH10140295A (en) Stainless steel excellent in antibacterial characteristic, and its production
JPH11256284A (en) Ferritic stainless steel excellent in antibacterial characteristic
JP4064554B2 (en) Inexpensive antibacterial cold-rolled steel sheet
JPH10237597A (en) High strength and high ductility dual-phase stainless steel excellent in antibacterial property and its production
JPH09249948A (en) Stainless steel excellent in antibacterial property and designing property
JPH11350089A (en) Austenitic stainless steel having excellent antibacterial characteristic and high workability, and its production
JP3224210B2 (en) Austenitic stainless steel with excellent antibacterial properties and press formability
JP2000303152A (en) Austenitic stainless steel excellent in antibacterial property and hole expanding workability in secondary working and its production
JP3819064B2 (en) Method for producing Cu-containing stainless steel with improved antibacterial properties

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees