JPH09194999A - Ferrite-pearlite-type non-heat treated steel - Google Patents
Ferrite-pearlite-type non-heat treated steelInfo
- Publication number
- JPH09194999A JPH09194999A JP755596A JP755596A JPH09194999A JP H09194999 A JPH09194999 A JP H09194999A JP 755596 A JP755596 A JP 755596A JP 755596 A JP755596 A JP 755596A JP H09194999 A JPH09194999 A JP H09194999A
- Authority
- JP
- Japan
- Prior art keywords
- content
- heat treated
- steel
- ferrite
- fatigue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱間での加工後に
焼入れ焼戻しの所謂「調質処理」を施さなくとも優れた
特性を有し、機械構造部材などの用途に好適な非調質鋼
に関する。より詳しくは、自動車、産業機械、建設機械
などのエンジン部品、なかでもクランクシャフトやコン
ロッドの素材として好適な500MPa 以上の引張強度
と250MPa 以上の疲労強度を有し、且つ疲労限度比
が0.50以上であるフェライト・パーライト型の非調
質鋼に関する。TECHNICAL FIELD The present invention relates to a non-heat treated steel which has excellent characteristics without being subjected to so-called “tempering treatment” of quenching and tempering after hot working, and which is suitable for applications such as machine structural members. Regarding More specifically, it has a tensile strength of 500 MPa or more and a fatigue strength of 250 MPa or more, which are suitable as materials for engine parts of automobiles, industrial machines, construction machines, etc., especially crankshafts and connecting rods, and have a fatigue limit ratio of 0.50. The above relates to a ferrite / pearlite type non-heat treated steel.
【0002】[0002]
【従来の技術】機械構造部品、なかでも自動車、産業機
械、建設機械などのエンジン部品としてのクランクシャ
フトやコンロッド、更には足廻り部品としてのステアリ
ングナックルやスピンドルなどは、従来、機械構造用の
炭素鋼(S45C、S50Cなど)や合金鋼(SCM4
40など)を用いて、熱間加工により成形した後、機械
加工と調質処理を施して所望の形状と性能を確保してい
た。2. Description of the Related Art Crankshafts and connecting rods, which are engine parts for automobiles, industrial machines, construction machines, etc., and steering knuckles and spindles, which are undercarriage parts, have been conventionally used as carbon for machine structures. Steel (S45C, S50C, etc.) and alloy steel (SCM4
No. 40, etc.) was used for hot forming, followed by machining and refining to ensure the desired shape and performance.
【0003】しかし、前記の調質処理を行うには多大の
熱エネルギーを要するので製造コストが嵩む。そのた
め、省エネルギー及びコスト低減の観点から熱間加工の
ままで調質鋼と同等の特性を持つ非調質鋼の開発が行わ
れてきた。However, since a large amount of heat energy is required to carry out the above-mentioned tempering treatment, the manufacturing cost increases. Therefore, from the viewpoint of energy saving and cost reduction, non-heat treated steel has been developed which has the same characteristics as the heat treated steel in the hot working state.
【0004】非調質鋼としては、ベイナイト型、マルテ
ンサイト型及びフェライト・パーライト型の非調質鋼が
知られている。このうち、ベイナイト型とマルテンサイ
ト型の非調質鋼では高い強度が得られるものの被削性が
低い。このため機械加工による仕上げ成形に難があり、
加えて大きな変態歪が生ずるため「曲がり」が大きくな
るという問題があって、曲がり取りの矯正工程が必要な
ためにコストアップにつながる。例えば、特開平4−1
41550号公報や特開平4−176842号公報で提
案されているベイナイト型の「熱間鍛造用非調質鋼」に
おいてもなお上記の被削性や曲がり発生の面で問題が残
るものであった。As non-heat treated steels, bainite type, martensite type and ferrite / pearlite type non-heat treated steels are known. Of these, bainite-type and martensite-type non-heat treated steels provide high strength but low machinability. Therefore, there is a difficulty in finish forming by machining,
In addition, there is a problem that "bending" becomes large because a large transformation strain is generated, and a correction process for removing the bending is required, which leads to an increase in cost. For example, Japanese Patent Laid-Open No. 4-1
In the bainite type “non-heat treated steel for hot forging” proposed in Japanese Patent No. 41550 and Japanese Unexamined Patent Publication No. 4-176842, problems still remain in terms of machinability and bending. .
【0005】一方、熱間加工後に冷却した鋼材をオ−ス
テナイト温度域まで再加熱して焼入れし、次いで焼戻し
処理する調質処理に替わるものとして、特開平6−21
2347号公報に特定の化学組成を有する鋼を熱間鍛造
後直ちに焼入れし、その後焼戻し処理を行ってTiCを
析出させる「高疲労強度を有する熱間鍛造品及びその製
造方法」が開示されている。しかしこの公報に記載の熱
間鍛造品は、熱間鍛造後に直ちに焼入れしてマルテンサ
イト組織とするので、焼入れ時の焼き割れに対する管理
が必要となるし、固溶したTiCを析出させるために焼
戻しを行うのでエネルギーコストが嵩むという問題も有
していた。On the other hand, as an alternative to the refining treatment in which a steel material cooled after hot working is reheated to the austenite temperature range, quenched, and then tempered, there is disclosed in Japanese Patent Laid-Open No. 6-21.
Japanese Patent No. 2347 discloses "a hot forged product having high fatigue strength and a manufacturing method thereof" in which a steel having a specific chemical composition is quenched immediately after hot forging, and then a tempering treatment is performed to precipitate TiC. . However, since the hot forged product described in this publication is hardened immediately after hot forging to form a martensite structure, it is necessary to control quenching cracks at the time of quenching, and tempering is required to precipitate solid solution TiC. Therefore, there is also a problem that the energy cost is increased.
【0006】特開平5−125439号公報には特定の
化学組成を有する鋼を熱間鍛造後常温まで冷却した後、
高温(350℃〜Ac1点)に再加熱する「高降伏比を有
する非調質鋼部品の製造方法」が開示されている。しか
しこの公報で提案された方法も、調質処理の「焼入れ」
は省略できるものの、熱間鍛造後に常温から前記温度に
再加熱するという点でまだまだ充分とはいえないもので
あった。Japanese Unexamined Patent Publication (Kokai) No. 5-125439 discloses that steel having a specific chemical composition is hot forged and then cooled to room temperature.
A "method for producing a non-heat treated steel part having a high yield ratio" in which it is reheated to a high temperature (350 ° C to Ac 1 point) is disclosed. However, the method proposed in this publication is also "quenching" for tempering.
Although it can be omitted, it is still insufficient in that it is reheated from room temperature to the above temperature after hot forging.
【0007】このためそれほど強度を必要としない機械
構造部品、特に、引張強度で500〜1000MPa 程
度の強度しか必要とされないようなエンジン部品、例え
ば小型の自動車、産業機械や建設機械などのエンジン部
品であるクランクシャフトやコンロッドには、被削性に
優れたフェライト・パーライト型の非調質鋼が求められ
ている。For this reason, mechanical structural parts which do not require so much strength, particularly engine parts which require only a tensile strength of about 500 to 1000 MPa, such as engine parts for small automobiles, industrial machines and construction machines. For some crankshafts and connecting rods, ferrite-pearlite type non-heat treated steel with excellent machinability is required.
【0008】ところが、例えば特開昭62−16785
5号公報に開示されている様な従来のフェライト・パー
ライト型の非調質鋼では、被削性はベイナイト型やマル
テンサイト型の非調質鋼に比べて向上するものの、その
組織が粗大なフェライト・パーライト組織からなるた
め、エンジン部品に対して要求される耐疲労特性という
点では今一つのものであった。すなわち、近年、被削性
と共にエンジンの設計面から耐疲労特性が重要視される
ようになり、疲労強度が250MPa 以上であると共に
0.5以上の疲労限度比(疲労強度/引張強度)が安定
して確保できることが要求されている。しかし、前記公
報に記載の非調質鋼ではこの産業界の要請に応じること
ができていない。However, for example, Japanese Patent Laid-Open No. 62-16785.
In the conventional ferrite / pearlite type non-heat treated steel as disclosed in Japanese Patent Publication No. 5, although machinability is improved as compared with bainite type and martensite type non-heat treated steel, its structure is coarse. Since it consists of a ferrite-pearlite structure, it was not enough in terms of fatigue resistance required for engine parts. That is, in recent years, fatigue resistance has become more important in view of machinability as well as engine design, and the fatigue strength is 250 MPa or more and the fatigue limit ratio (fatigue strength / tensile strength) of 0.5 or more is stable. Is required to be secured. However, the non-heat treated steel described in the above publication cannot meet the demands of this industry.
【0009】[0009]
【発明が解決しようとする課題】本発明は、上記現状に
鑑みなされたもので、自動車、産業機械、建設機械など
のエンジン部品、なかでもクランクシャフトやコンロッ
ドの素材として好適な引張強度が500MPa 以上、疲
労強度が250MPa 以上で且つ疲労限度比が0.5以
上であるフェライト・パーライト型の被削性に優れた非
調質鋼を提供することを課題とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a tensile strength of 500 MPa or more, which is suitable as a material for engine parts of automobiles, industrial machines, construction machines, etc., especially crankshafts and connecting rods. It is an object of the present invention to provide a ferrite / pearlite type non-heat treated steel having a fatigue strength of 250 MPa or more and a fatigue limit ratio of 0.5 or more, which is excellent in machinability.
【0010】[0010]
【課題を解決するための手段】本発明者は、上記の課題
を解決するため種々検討を重ねた結果、先ず下記の知見
を得た。As a result of various studies to solve the above problems, the present inventor first obtained the following findings.
【0011】C、Mnは静的引張強度を高めることが
知られているが、過剰の添加はフェライト・パーライト
型非調質鋼の疲労限度比(疲労強度/引張強度)を低下
させてしまう。従って、フェライト・パーライト型非調
質鋼において疲労強度を高め、且つ0.5以上という高
い疲労限度比を確保するためには、C及びMnの含有量
を厳しく制御する必要がある。It is known that C and Mn increase the static tensile strength, but excessive addition thereof lowers the fatigue limit ratio (fatigue strength / tensile strength) of the ferrite-pearlite non-heat treated steel. Therefore, in order to increase the fatigue strength and secure a high fatigue limit ratio of 0.5 or more in the ferrite-pearlite non-heat treated steel, it is necessary to strictly control the contents of C and Mn.
【0012】Nはフェライト・パーライト型非調質鋼
の引張強度を高めるほかに疲労限度比も向上させる作用
がある。N has the effect of improving the fatigue limit ratio in addition to increasing the tensile strength of the ferrite-pearlite non-heat treated steel.
【0013】次いで、上記及びの知見を基にフェラ
イト・パーライト組織に関して更に詳細に検討した結
果、以下の知見が得られた。Then, as a result of a more detailed examination of the ferrite-pearlite structure based on the above findings and, the following findings were obtained.
【0014】鋼の化学組成が重量%で、C:0.20
%以上、Si:0.05%以上、Mn:0.20%以
上、V:0.02%以上及びS:0.01%以上である
フェライト・パーライト組織においては、引張強度及び
疲労強度は下記fn1で整理できる。The chemical composition of steel is C: 0.20 in% by weight.
%, Si: 0.05% or more, Mn: 0.20% or more, V: 0.02% or more and S: 0.01% or more, the tensile strength and fatigue strength are as follows. Can be organized with fn1.
【0015】fn1=C+(Si/10)+(Mn/
5)+1.65V−(5S/7)+(5Cr/22)、 なお、上記式中の元素記号はその元素の重量%での含有
量を表す。Fn1 = C + (Si / 10) + (Mn /
5) + 1.65V- (5S / 7) + (5Cr / 22), wherein the element symbol in the above formula represents the content of the element in% by weight.
【0016】鋼の化学組成がC:0.45%以下、M
n:0.60%以下、N:0.004%以上で且つ、下
記fn2の値が0.8以下であれば、フェライト・パー
ライト組織において安定して0.5〜0.6の疲労限度
比が得られる。The chemical composition of steel is C: 0.45% or less, M
When n: 0.60% or less, N: 0.004% or more, and the following fn2 value is 0.8 or less, the fatigue limit ratio of 0.5 to 0.6 is stable in the ferrite / pearlite structure. Is obtained.
【0017】 fn2={C+(Mn/5)−5N}/fn1、 ここで、fn2中の元素記号もその元素の重量%での含
有量を表す。Fn2 = {C + (Mn / 5) -5N} / fn1, where the element symbol in fn2 also represents the content of the element in% by weight.
【0018】フェライト・パーライト組織の場合、引
張強度を1000MPa程度以下に制御してSの含有量
を適正化すれば、Pb、Caなどの快削元素を殊更に添
加しなくとも充分な被削性が得られる。In the case of a ferrite / pearlite structure, if the tensile strength is controlled to about 1000 MPa or less and the content of S is optimized, sufficient machinability is achieved without adding any free-cutting element such as Pb or Ca. Is obtained.
【0019】上記知見に基づく本発明は、下記のフェラ
イト・パーライト型非調質鋼を要旨とする。The present invention based on the above findings is summarized as the following ferrite / pearlite type non-heat treated steel.
【0020】「重量%で、C:0.20〜0.45%、
Si:0.05〜1.00%、Mn:0.20〜0.6
0%、S:0.01〜0.08%、V:0.02〜0.
50%、N:0.004〜0.03%、P:0〜0.0
5%、Cu:0〜0.30%、Ni:0〜0.30%、
Cr:0〜1.00%、Mo:0〜0.30%、Ti:
0〜0.05、Al:0〜0.050%、Pb:0〜
0.30%、Ca:0〜0.0100%、Bi:0〜
0.100%、Te:0〜0.10%を含有し、残部は
Fe及び不可避不純物からなり、且つ前記したfn1≧
0.50及びfn2≦0.80であることを特徴とする
フェライト・パーライト型非調質鋼。」"% By weight, C: 0.20 to 0.45%,
Si: 0.05 to 1.00%, Mn: 0.20 to 0.6
0%, S: 0.01 to 0.08%, V: 0.02 to 0.
50%, N: 0.004 to 0.03%, P: 0 to 0.0
5%, Cu: 0 to 0.30%, Ni: 0 to 0.30%,
Cr: 0 to 1.00%, Mo: 0 to 0.30%, Ti:
0-0.05, Al: 0-0.050%, Pb: 0
0.30%, Ca: 0-0.0100%, Bi: 0-
0.100%, Te: 0 to 0.10%, the balance consisting of Fe and unavoidable impurities, and fn1 ≧
Ferrite / pearlite type non-heat treated steel characterized in that 0.50 and fn2 ≦ 0.80. "
【0021】[0021]
【発明の実施の形態】以下に、本発明における鋼の化学
組成を上記のように限定する理由について説明する。な
お、「%」は「重量%」を意味する。BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the chemical composition of steel in the present invention as described above will be explained below. In addition, "%" means "weight%."
【0022】C:Cは鋼に所望の静的強度を付与するの
に必要な元素である反面、一定量を超えると疲労限度比
を低下させる元素でもある。最低限の静的強度(引張強
度で500MPa)を得るには0.20%以上の含有量
が必要である。一方、0.45%を超えて含有させる
と、疲労限度比の低下が著しくなって所望の0.5以上
の値を得難くなり、加えて被削性の劣化をも招く。従っ
て、Cの含有量を0.20〜0.45%とした。C: C is an element necessary for imparting a desired static strength to steel, but it is also an element that lowers the fatigue limit ratio when it exceeds a certain amount. A content of 0.20% or more is necessary to obtain the minimum static strength (500 MPa in tensile strength). On the other hand, when the content exceeds 0.45%, the fatigue limit ratio is remarkably lowered, and it becomes difficult to obtain a desired value of 0.5 or more, and in addition, machinability is deteriorated. Therefore, the content of C is set to 0.20 to 0.45%.
【0023】Si:Siは脱酸を促進すると共に、フェ
ライト中に固溶してフェライトを強化し、静的強度と疲
労強度を高める作用がある。しかし、その含有量が0.
05%未満では所望の効果が得られず、一方、1.00
%を超えて含有すると被削性の劣化をきたすようになる
ので、その含有量を0.05〜1.00%とした。Si: Si has the functions of promoting deoxidation, solid-solving in ferrite to strengthen the ferrite, and increasing static strength and fatigue strength. However, when its content is 0.1.
If less than 05%, the desired effect cannot be obtained, while on the other hand, 1.00
If it is contained in excess of%, the machinability will be deteriorated, so the content was made 0.05 to 1.00%.
【0024】Mn:Mnは脱酸作用と疲労強度を高める
作用を有する。しかし、その含有量が0.20%未満で
は添加効果に乏しい。一方、0.60%を超えて含有さ
せると疲労限度比が低下し、所望の0.5以上の値を確
保し難くなる。従って、Mnの含有量を0.20〜0.
60%とした。Mn: Mn has a deoxidizing effect and an effect of enhancing fatigue strength. However, if the content is less than 0.20%, the effect of addition is poor. On the other hand, when the content exceeds 0.60%, the fatigue limit ratio decreases, and it becomes difficult to secure a desired value of 0.5 or more. Therefore, the content of Mn is 0.20 to 0.
It was set to 60%.
【0025】S:Sは被削性を高める作用を有する。そ
の効果を充分発揮させるためには、0.01%以上の添
加が必要である。一方、0.08%を超えて含有させる
と疲労限度比が低下する。従って、Sの含有量を0.0
1〜0.08%とした。S: S has a function of improving machinability. In order to bring out the effect sufficiently, it is necessary to add 0.01% or more. On the other hand, if the content exceeds 0.08%, the fatigue limit ratio decreases. Therefore, the S content is 0.0
It was set to 1 to 0.08%.
【0026】V:Vは静的強度並びに疲労強度を高める
作用がある。しかし、その含有量が0.02%未満では
添加効果に乏しく、0.50%を超えて含有しても前記
効果は飽和し、コストのみが上昇して経済性を損うよう
になるので、その含有量を0.02〜0.50%とし
た。V: V has a function of increasing static strength and fatigue strength. However, if the content is less than 0.02%, the effect of addition is poor, and if the content exceeds 0.50%, the effect is saturated, and only the cost rises and the economic efficiency is impaired. The content was 0.02 to 0.50%.
【0027】N:Nは非調質鋼の疲労限度比を高めるの
に極めて有効な元素である。この効果を充分発揮させる
ためには、Nは0.004%以上含有させることが必要
である。N: N is an extremely effective element for increasing the fatigue limit ratio of non-heat treated steel. In order to fully exert this effect, it is necessary to contain N in an amount of 0.004% or more.
【0028】一方、0.03%を超えて含させてもその
効果は飽和するばかりか、熱間加工性の劣化を招くよう
になる。従って、Nの含有量を0.004〜0.03%
とした。なお、N含有量の好ましい範囲は0.008〜
0.022%である。On the other hand, if the content exceeds 0.03%, not only the effect is saturated but also the hot workability is deteriorated. Therefore, the N content is 0.004 to 0.03%.
And In addition, the preferable range of N content is 0.008-
It is 0.022%.
【0029】P:Pは含有させなくても良い。含有させ
れば疲労強度を高める作用がある。この効果を確実に得
るには、Pは0.005%以上の含有量とすることが好
ましい。P: P may not be contained. If contained, it has the effect of increasing fatigue strength. In order to ensure this effect, it is preferable that the content of P be 0.005% or more.
【0030】しかし、その含有量が0.05%を超える
と靭性の大幅な劣化をきたすようになるので、その含有
量を0〜0.05%とした。However, if the content exceeds 0.05%, the toughness is significantly deteriorated, so the content is set to 0 to 0.05%.
【0031】Cu:Cuは添加しなくても良い。添加す
れば焼入れ性を向上させる作用がある。この効果を確実
に得るには、Cuは0.01%以上の含有量とすること
が好ましい。しかし、その含有量が0.30%を超える
と熱間加工性の劣化をきたすようになる。従って、Cu
の含有量を0〜0.30%とした。Cu: Cu may not be added. If added, it has the effect of improving hardenability. In order to reliably obtain this effect, the content of Cu is preferably 0.01% or more. However, if the content exceeds 0.30%, the hot workability deteriorates. Therefore, Cu
Content of 0 to 0.30%.
【0032】Ni:Niも添加しなくても良い。添加す
れば焼入れ性を向上させると共に、靭性を高める作用を
有する。この効果を確実に得るには、Niは0.01%
以上の含有量とすることが好ましい。しかし、その含有
量が0.30%を超えると被削性の劣化をきたすように
なるし、経済性の面でも不利である。従って、Niの含
有量を0〜0.30%とした。Ni: Ni may not be added. If added, it has the effects of improving hardenability and enhancing toughness. To ensure this effect, Ni is 0.01%.
It is preferable to set the content as described above. However, if the content exceeds 0.30%, the machinability deteriorates, which is also disadvantageous in terms of economy. Therefore, the Ni content is set to 0 to 0.30%.
【0033】Cr:Crは添加しなくても良い。添加す
れれば焼入れ性を向上させると共に静的強度及び疲労強
度を高める作用を有する。これらの効果を確実に得るに
は、Crは0.02%以上の含有量とすることが望まし
い。しかし、その含有量が1.00%を超えるとベイナ
イトが生成し易くなって引張強度が1000MPaを超
えるようになって被削性の大きな劣化をきたす。従っ
て、Crの含有量を0〜1.00%とした。Cr: Cr may not be added. If added, it has the effects of improving hardenability and static strength and fatigue strength. In order to surely obtain these effects, it is desirable that the content of Cr be 0.02% or more. However, if the content exceeds 1.00%, bainite is likely to be formed, the tensile strength exceeds 1000 MPa, and machinability is greatly deteriorated. Therefore, the content of Cr is set to 0 to 1.00%.
【0034】Mo:Moは添加しなくても良い。添加す
れば焼入れ性並びに靭性を高める作用を有する。この効
果を確実に得るには、Moは0.01%以上の含有量と
することが好ましい。しかし、その含有量が0.30%
を超えるとベイナイトが生成し易くなって被削性の劣化
をきたすようになるし、経済性の面でも不利となる。従
って、Moの含有量を0〜0.30%とした。Mo: Mo may not be added. If added, it has the effect of enhancing hardenability and toughness. In order to surely obtain this effect, the Mo content is preferably 0.01% or more. However, its content is 0.30%
If it exceeds, bainite is likely to be formed, resulting in deterioration of machinability, which is also disadvantageous in terms of economy. Therefore, the content of Mo is set to 0 to 0.30%.
【0035】Ti:Tiも添加しなくても良い。添加す
れば結晶粒を微細化して強度と靭性を高める作用を有す
る。この効果を確実に得るには、Tiは0.001%以
上の含有量とすることが好ましい。しかし、その含有量
が0.05%を超えるとTi炭窒化物が凝集粗大化し
て、前記効果が得難くなるし、経済性の面でも不利とな
る。従って、Tiの含有量を0〜0.05%とした。Ti: Ti may not be added. If added, it has the effect of refining the crystal grains and increasing strength and toughness. In order to reliably obtain this effect, the Ti content is preferably 0.001% or more. However, if the content exceeds 0.05%, the Ti carbonitrides are aggregated and coarsened, making it difficult to obtain the above-mentioned effects, which is also disadvantageous in terms of economy. Therefore, the content of Ti is set to 0 to 0.05%.
【0036】Al:Alは添加しなくても良い。添加す
れば鋼の脱酸の安定化及び均質化を図る作用がある。こ
の効果を確実に得るには、Alは0.001%以上の含
有量とすることが好ましい。しかし、その含有量が0.
050%を超えると酸化物系の介在物が増加して切削時
に工具寿命の低下を招く。従って、Alの含有量を0〜
0.050%とした。なお、被削性を高めるために鋼に
Pb、Ca、Bi、Teを添加する場合には、Al含有
量の上限を0.010%に規制することが望ましい。Al: Al may not be added. Addition has the effect of stabilizing the deoxidation of the steel and homogenizing it. In order to reliably obtain this effect, the content of Al is preferably 0.001% or more. However, when its content is 0.1.
If it exceeds 050%, oxide-based inclusions increase and the tool life is shortened during cutting. Therefore, the Al content is 0 to
0.050%. When Pb, Ca, Bi, and Te are added to steel to improve machinability, it is desirable to control the upper limit of the Al content to 0.010%.
【0037】Pb:Pbは添加しなくても良い。添加す
れば被削性を高める作用を有する。この効果を確実に得
るには、Pbは0.01%以上の含有量とすることが好
ましい。しかし、その含有量が0.30%を超えると耐
疲労特性の劣化をきたすようになる。従って、Pbの含
有量を0〜0.30%とした。Pb: Pb may not be added. If added, it has the effect of enhancing machinability. In order to reliably obtain this effect, the Pb content is preferably 0.01% or more. However, if the content exceeds 0.30%, the fatigue resistance is deteriorated. Therefore, the Pb content is set to 0 to 0.30%.
【0038】Ca:Caは添加しなくても良い。添加す
れば被削性を高める作用を有する。この効果を確実に得
るには、Caは0.0003%以上の含有量とすること
が好ましい。しかし、0.0100%を超えて含有させ
てもその効果は飽和し、経済性を損うこととなる。従っ
て、Caの含有量を0〜0.0100%とした。Ca: Ca may not be added. If added, it has the effect of enhancing machinability. In order to reliably obtain this effect, the content of Ca is preferably 0.0003% or more. However, even if the content exceeds 0.0100%, the effect is saturated and the economical efficiency is impaired. Therefore, the content of Ca is set to 0 to 0.0100%.
【0039】Bi:Biも添加しなくても良い。添加す
れば被削性を高める作用を有する。この効果を確実に得
るには、Biは0.005%以上の含有量とすることが
好ましい。Bi: Bi may not be added. If added, it has the effect of enhancing machinability. In order to reliably obtain this effect, the Bi content is preferably 0.005% or more.
【0040】しかし、0.100%を超えて含有させて
もその効果は飽和し、経済性を損うこととなる。従っ
て、Biの含有量を0〜0.100%とした。However, even if the content exceeds 0.100%, the effect is saturated and the economy is impaired. Therefore, the Bi content is set to 0 to 0.100%.
【0041】Te:Teは添加しなくても良い。添加す
れば被削性を高める作用を有する。この効果を確実に得
るには、Teは0.01%以上の含有量とすることが好
ましい。しかし、0.10%を超えて含有させてもその
効果は飽和し、経済性を損うこととなる。従って、Te
の含有量を0〜0.10%とした。Te: Te need not be added. If added, it has the effect of enhancing machinability. In order to reliably obtain this effect, the content of Te is preferably 0.01% or more. However, even if the content exceeds 0.10%, the effect is saturated and the economy is impaired. Therefore, Te
Content was 0 to 0.10%.
【0042】fn1:鋼の化学組成が重量%で、C:
0.20%以上、Si:0.05%以上、Mn:0.2
0%以上、V:0.02%以上及びS:0.01%以上
であるフェライト・パーライト組織においては、引張強
度及び疲労強度は前記fn1で整理できる。そして、こ
の値が0.50以上の場合に500MPa 以上の引張強
度と250MPa 以上の疲労強度を確保できる。fn1
が大きくなりすぎるとベイナイトが生成し易くなって、
被削性の劣化を招くこととなるので、fn1は1.20
程度を上限値とすることが望ましい。Fn1: The chemical composition of steel is wt%, and C:
0.20% or more, Si: 0.05% or more, Mn: 0.2
In the ferrite-pearlite structure having 0% or more, V: 0.02% or more and S: 0.01% or more, the tensile strength and the fatigue strength can be arranged by the above-mentioned fn1. When this value is 0.50 or more, the tensile strength of 500 MPa or more and the fatigue strength of 250 MPa or more can be secured. fn1
When becomes too large, bainite is easily generated,
Since the machinability will be deteriorated, fn1 is 1.20.
It is desirable to set the degree to the upper limit.
【0043】fn2:鋼の化学組成がC:0.45%以
下、Mn:0.60%以下、N:0.004%以上であ
るフェライト・パーライト組織において、前記fn2が
0.80以下の場合に安定して0.5〜0.6の疲労限
度比が得られる。なお、fn2を小さくするとコストが
嵩むことになるので、fn2は0.2程度を下限値とす
ることが好ましい。Fn2: The chemical composition of steel is C: 0.45% or less, Mn: 0.60% or less, N: 0.004% or more, and fn2 is 0.80 or less. The fatigue limit ratio of 0.5 to 0.6 can be stably obtained. It should be noted that if fn2 is made small, the cost will increase, so it is preferable to set fn2 to a lower limit of about 0.2.
【0044】上記の化学組成を有する鋼は通常の方法で
溶製された後、例えば通常の方法による熱間での加工を
受け、必要に応じて機械加工や表面硬化処理を施されて
所要のクランクシャフトやコンロッドに仕上げられる。The steel having the above-mentioned chemical composition is melted by a usual method, then is subjected to hot working, for example, by a usual method, and is subjected to a mechanical working or a surface hardening treatment as required to obtain a required steel. Finished on crankshafts and connecting rods.
【0045】[0045]
【実施例】表1〜3に示す化学組成の鋼を通常の方法に
よって試験炉を用いて200kg真空溶製した。表1、
2における鋼1〜15は本発明鋼、表2、3における鋼
16〜26は成分のいずれかが本発明で規定する範囲か
ら外れた比較鋼である。EXAMPLE Steels having the chemical compositions shown in Tables 1 to 3 were vacuum-melted in 200 kg in a test furnace by a usual method. Table 1,
Steels 1 to 15 in No. 2 are steels of the present invention, and steels 16 to 26 in Tables 2 and 3 are comparative steels in which any of the components is out of the range specified by the present invention.
【0046】次いで、これらの鋼を通常の方法によって
鋼片となした後、1250℃に加熱してから、1200
〜950℃の温度で直径20mmの丸棒に熱間鍛造し、
その後常温まで空冷した。Next, these steels were made into billets by a usual method, heated to 1250 ° C., and then 1200
Hot forging into a round bar with a diameter of 20 mm at a temperature of ~ 950 ° C,
Then, it was cooled to room temperature by air.
【0047】こうして得られた丸棒から平行部径が8m
mの小野式回転曲げ疲労試験片を切り出して常温、大気
中、3000rpmの条件で疲労試験を行なった。又、
JIS4号引張試験片を切り出し常温で引張試験を行っ
た。From the round bar thus obtained, the diameter of the parallel portion is 8 m.
An Ono-type rotary bending fatigue test piece of m was cut out and a fatigue test was performed at room temperature and in the atmosphere at 3000 rpm. or,
A JIS No. 4 tensile test piece was cut out and a tensile test was performed at room temperature.
【0048】なお参考のために、鋼25の上記20mm
丸棒を845℃で1時間加熱して油焼入れし、600℃
で1時間の焼戻しを行って平行部径が8mmの小野式回
転曲げ疲労試験片とJIS4号引張試験片を切り出し、
上記の条件で疲労試験と引張試験を行った。For reference, the above-mentioned 20 mm of steel 25 is used.
Heat the round bar at 845 ° C for 1 hour and oil quench it to 600 ° C.
After tempering for 1 hour, the Ono-type rotating bending fatigue test piece and the JIS No. 4 tensile test piece with a parallel part diameter of 8 mm were cut out,
A fatigue test and a tensile test were performed under the above conditions.
【0049】試験結果を表4に示す。The test results are shown in Table 4.
【0050】本発明鋼である鋼1〜15については、い
ずれも1000MPa 以下にして所望の500MPa 以
上の引張強度、250MPa 以上の疲労強度と0.5以
上の疲労限度比が得られている。For each of the steels 1 to 15 of the present invention, the desired tensile strength of 500 MPa or more, fatigue strength of 250 MPa or more, and fatigue limit ratio of 0.5 or more were obtained at 1000 MPa or less.
【0051】これに対して、成分のいずれかが本発明で
規定する含有量の範囲から外れた比較鋼のうち、C量、
Si量及びfn1がそれぞれ低目に外れた鋼16、18
と22は引張強度が500MPaに達していない。On the other hand, among the comparative steels in which any of the components deviates from the content range specified in the present invention, the C content,
Steels 16 and 18 with low Si content and fn1
Nos. 22 and 22 do not reach the tensile strength of 500 MPa.
【0052】又、C量、Mn量、S量がそれぞれ高目に
外れた鋼17、19、20並びにN量が低めに外れた鋼
26は疲労限度比が0.50に達していない。Further, the fatigue limit ratios of the steels 17, 19 and 20 in which the amounts of C, Mn, and S deviated to a high degree and the steel 26 in which the amount of N deviated relatively low did not reach 0.50.
【0053】更に、fn2が高目に外れた鋼23、24
及び25は疲労限度比が0.37〜0.48と低いもの
であり、且つ、鋼24については疲労強度も250MP
aに達していない。Further, steels 23 and 24 with fn2 deviated to a higher degree
Nos. 25 and 25 have a low fatigue limit ratio of 0.37 to 0.48, and the fatigue strength of Steel 24 is 250MP.
a has not been reached.
【0054】C、Mn及びfn2が高めに外れると共に
Vが低めに外れた鋼21は疲労強度が250MPaに達
せず、疲労限度比も0.36と低い。The steel 21 in which C, Mn and fn2 are deviated a little and V is deviated a little, the fatigue strength does not reach 250 MPa and the fatigue limit ratio is as low as 0.36.
【0055】なお、鋼25に焼入れ焼戻しの調質処理を
施した従来タイプの場合には引張強度、疲労強度及び疲
労限度比はいずれも目標値に達している。しかし、この
場合、焼戻しマルテンサイト組織であり、被削性はフェ
ライト・パーライト型の非調質鋼に比べて劣っており、
又、焼入れ後には若干の曲がりが生じていた。In the case of the conventional type in which the tempering treatment of quenching and tempering is applied to the steel 25, the tensile strength, fatigue strength and fatigue limit ratio all reach the target values. However, in this case, it has a tempered martensite structure, and the machinability is inferior to that of the ferrite-pearlite type non-heat treated steel,
Further, after the quenching, some bending occurred.
【0056】[0056]
【表1】 [Table 1]
【0057】[0057]
【表2】 [Table 2]
【0058】[0058]
【表3】 [Table 3]
【0059】[0059]
【表4】 [Table 4]
【0060】[0060]
【発明の効果】本発明のフェライト・パーライト型非調
質鋼を用いれば、500MPa 以上の引張強度、250
MPa 以上の疲労強度、0.50以上の疲労限度比が容
易に得られ、且つ引張強度を1000MPa 以下に制御
できるので被削性も良好であり、自動車、産業機械、建
設機械などのエンジン部品、なかでもクランクシャフト
やコンロッドの素材として利用することが可能で産業上
の効果は大きい。When the ferrite / pearlite type non-heat treated steel of the present invention is used, the tensile strength of 500 MPa or more, 250
Fatigue strength of MPa or more, fatigue limit ratio of 0.50 or more can be easily obtained, and tensile strength can be controlled to 1000 MPa or less, so that machinability is good, engine parts of automobiles, industrial machines, construction machines, etc. Above all, it can be used as a material for crankshafts and connecting rods, and has a great industrial effect.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 垣見 治則 大阪府大阪市此花区島屋5丁目1番109号 住友金属工業株式会社関西製造所製鋼品事 業所内 (72)発明者 三野 匡之 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 (72)発明者 栗田 真人 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Harinori Kakimi 5-1-1109 Shimaya, Konohana-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd. Kansai Works Steel Works (72) Inventor Masayuki Mino Osaka, Osaka Prefecture Sumitomo Metal Industries, Ltd., 4-53-3 Kitahama, Chuo-ku, Yokohama (72) Inventor Masato Kurita, 4-53-3 Kitahama, Chuo-ku, Osaka-shi, Osaka Prefecture Sumitomo Metal Industries, Ltd.
Claims (1)
i:0.05〜1.00%、Mn:0.20〜0.60
%、S:0.01〜0.08%、V:0.02〜0.5
0%、N:0.004〜0.03%、P:0〜0.05
%、Cu:0〜0.30%、Ni:0〜0.30%、C
r:0〜1.00%、Mo:0〜0.30%、Ti:0
〜0.05、Al:0〜0.050%、Pb:0〜0.
30%、Ca:0〜0.0100%、Bi:0〜0.1
00%、Te:0〜0.10%を含有し、残部はFe及
び不可避不純物からなり、且つfn1≧0.50及びf
n2≦0.80であることを特徴とするフェライト・パ
ーライト型非調質鋼。但し、 fn1=C+(Si/10)+(Mn/5)+1.65
V−(5S/7)+(5Cr/22) fn2={C+(Mn/5)−5N}/fn1、 なお、式中の元素記号はその元素の重量%での含有量を
表す。1. C: 0.20 to 0.45% by weight, S
i: 0.05 to 1.00%, Mn: 0.20 to 0.60
%, S: 0.01 to 0.08%, V: 0.02 to 0.5
0%, N: 0.004 to 0.03%, P: 0 to 0.05
%, Cu: 0 to 0.30%, Ni: 0 to 0.30%, C
r: 0 to 1.00%, Mo: 0 to 0.30%, Ti: 0
.About.0.05, Al: 0 to 0.050%, Pb: 0 to 0.
30%, Ca: 0 to 0.0100%, Bi: 0 to 0.1
00%, Te: 0 to 0.10%, the balance consisting of Fe and unavoidable impurities, and fn1 ≧ 0.50 and f
Ferrite / pearlite type non-heat treated steel characterized by n2 ≦ 0.80. However, fn1 = C + (Si / 10) + (Mn / 5) +1.65
V- (5S / 7) + (5Cr / 22) fn2 = {C + (Mn / 5) -5N} / fn1, the element symbol in the formula represents the content of the element in% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP755596A JPH09194999A (en) | 1996-01-19 | 1996-01-19 | Ferrite-pearlite-type non-heat treated steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP755596A JPH09194999A (en) | 1996-01-19 | 1996-01-19 | Ferrite-pearlite-type non-heat treated steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09194999A true JPH09194999A (en) | 1997-07-29 |
Family
ID=11669055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP755596A Pending JPH09194999A (en) | 1996-01-19 | 1996-01-19 | Ferrite-pearlite-type non-heat treated steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09194999A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998054372A1 (en) * | 1997-05-26 | 1998-12-03 | Nippon Steel Corporation | Non-tempered steel for mechanical structure |
WO2000044953A1 (en) * | 1999-01-28 | 2000-08-03 | Sumitomo Metal Industries, Ltd. | Machine structural steel product |
GB2331306B (en) * | 1997-11-18 | 2003-02-12 | Isuzu Motors Ltd | Steel for machine structural use and machine parts made from such steel |
EP1408131A1 (en) * | 2002-09-27 | 2004-04-14 | CARL DAN. PEDDINGHAUS GMBH & CO. KG | Steel composition and forged workpieces made thereof |
EP1605071A1 (en) * | 2003-03-18 | 2005-12-14 | Sumitomo Metal Industries, Ltd. | Non-quenched/tempered connecting rod and method of producing the same |
CN104372263A (en) * | 2014-11-11 | 2015-02-25 | 南京钢铁股份有限公司 | Electric furnace production process of high-purity non-quenched and tempered steel for crankshaft |
WO2017094870A1 (en) * | 2015-12-04 | 2017-06-08 | 新日鐵住金株式会社 | Rolling rod for cold-forged thermally refined article |
JP2021161477A (en) * | 2020-03-31 | 2021-10-11 | 株式会社神戸製鋼所 | Non-tempered forged steel and non-tempered forged component |
-
1996
- 1996-01-19 JP JP755596A patent/JPH09194999A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6036790A (en) * | 1997-05-26 | 2000-03-14 | Nippon Steel Corporation | Non-tempered steel for mechanical structure |
WO1998054372A1 (en) * | 1997-05-26 | 1998-12-03 | Nippon Steel Corporation | Non-tempered steel for mechanical structure |
GB2331306B (en) * | 1997-11-18 | 2003-02-12 | Isuzu Motors Ltd | Steel for machine structural use and machine parts made from such steel |
DE19853259B4 (en) * | 1997-11-18 | 2005-03-17 | Isuzu Motors Ltd. | Steel for use in machine structures and machine parts made from such steel |
WO2000044953A1 (en) * | 1999-01-28 | 2000-08-03 | Sumitomo Metal Industries, Ltd. | Machine structural steel product |
US6475305B1 (en) | 1999-01-28 | 2002-11-05 | Sumitomo Metal Industries, Ltd. | Machine structural steel product |
CN100374602C (en) * | 2002-09-27 | 2008-03-12 | Cdp;印地冶炼厂有限责任公司 | Steel composition and parts forged by a forging die |
EP1408131A1 (en) * | 2002-09-27 | 2004-04-14 | CARL DAN. PEDDINGHAUS GMBH & CO. KG | Steel composition and forged workpieces made thereof |
WO2004031428A1 (en) * | 2002-09-27 | 2004-04-15 | Cdp Bharat Forge Gmbh | Steel composition and parts forged by a forging die |
EP1605071A1 (en) * | 2003-03-18 | 2005-12-14 | Sumitomo Metal Industries, Ltd. | Non-quenched/tempered connecting rod and method of producing the same |
EP1605071A4 (en) * | 2003-03-18 | 2007-08-29 | Sumitomo Metal Ind | Non-quenched/tempered connecting rod and method of producing the same |
US8152939B2 (en) | 2003-03-18 | 2012-04-10 | Sumitomo Metal Industries, Ltd. | Non-heat treated connecting rod and method of manufacturing the same |
CN104372263A (en) * | 2014-11-11 | 2015-02-25 | 南京钢铁股份有限公司 | Electric furnace production process of high-purity non-quenched and tempered steel for crankshaft |
WO2017094870A1 (en) * | 2015-12-04 | 2017-06-08 | 新日鐵住金株式会社 | Rolling rod for cold-forged thermally refined article |
JPWO2017094870A1 (en) * | 2015-12-04 | 2018-08-16 | 新日鐵住金株式会社 | Rolled bar wire for cold forging tempered products |
JP2021161477A (en) * | 2020-03-31 | 2021-10-11 | 株式会社神戸製鋼所 | Non-tempered forged steel and non-tempered forged component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003147478A (en) | Non-heattreated steel | |
CN112877591A (en) | High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof | |
EP0133959B1 (en) | Case hardening steel suitable for high temperature carburizing | |
JP3468031B2 (en) | Martensite-bainite hot forged part and method of manufacturing the same | |
JP2003055714A (en) | Non-heat treated steel forged workpiece, production method therefor and connecting rod parts for internal combustion engine obtained by using the same | |
JPH1129842A (en) | Ferrite-pearlite type non-heat treated steel | |
JPH09194999A (en) | Ferrite-pearlite-type non-heat treated steel | |
JPH10324954A (en) | Steel for machine structural use | |
JPH09310146A (en) | Production of non-heat treated steel for high strength connecting rod and high strength connecting rod | |
JP3900690B2 (en) | Age-hardening high-strength bainitic steel and method for producing the same | |
JP3069256B2 (en) | Nitriding steel with excellent toughness | |
JP3890724B2 (en) | Ferritic / pearlite non-heat treated steel with excellent machinability | |
JP3543581B2 (en) | Ferrite / pearlite non-heat treated steel | |
JPH04371547A (en) | Production of high strength and high toughness steel | |
JP2735161B2 (en) | High-strength, high-toughness non-heat treated steel for hot forging | |
JPH10265891A (en) | Ferrite/pearlite type non-heat treated steel | |
JP3419333B2 (en) | Cold work steel excellent in induction hardenability, component for machine structure, and method of manufacturing the same | |
JP2576857B2 (en) | High strength non-tempered tough steel | |
JPH09195000A (en) | Non-heat treated steel | |
JPH05302117A (en) | Production of hardening obviated steel for hot forging | |
JP3584726B2 (en) | High strength non-heat treated steel | |
JPH07102340A (en) | Production of non-heattreated steel excellent in fatigue characteristic | |
JPH06287677A (en) | High strength non-refining steel for hot forging | |
JPH1129838A (en) | Non-heat treated steel | |
JP3687275B2 (en) | Non-tempered steel for induction hardening |