Nothing Special   »   [go: up one dir, main page]

JPH09180991A - Aligner - Google Patents

Aligner

Info

Publication number
JPH09180991A
JPH09180991A JP7339156A JP33915695A JPH09180991A JP H09180991 A JPH09180991 A JP H09180991A JP 7339156 A JP7339156 A JP 7339156A JP 33915695 A JP33915695 A JP 33915695A JP H09180991 A JPH09180991 A JP H09180991A
Authority
JP
Japan
Prior art keywords
optical axis
plate
reticle
axis
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7339156A
Other languages
Japanese (ja)
Inventor
Takeshi Ando
岳 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7339156A priority Critical patent/JPH09180991A/en
Publication of JPH09180991A publication Critical patent/JPH09180991A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the superposing accuracy by providing means for parallel moving the optical axis of a light which passes through a mask. SOLUTION: The light of a mercury lamp radiated from a light source 1 is converted into parallel beams via a condenser lens 2, the beams pass through a reticle 3, and then the pattern on the reticle 3 is contraction projected on a wafer 8 on an X-Y stage 5 via a contraction projecting lens 4 to be exposed. In this case, a quartz plate 7 is disposed between the reticle 3 and the lens 4 so as to substantially intersect an optical axis 6. The angle formed between the plate 7 and the axis 6 is varied in the directions X and Y. When the beams enter the plate 7, the beams are refracted and emitted at the same angle as the incident angle, and hence the axis 6 can be parallel moved at a desired amount by varying the angle formed between the plate 7 and the axis 6. Thus, the superposing accuracy can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体素子のパター
ン形成のための露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus for patterning semiconductor elements.

【0002】[0002]

【従来の技術】図4は、ごく一般的な従来の縮小投影露
光装置の模式図である。光源1から放射された水銀ラン
プのg線(波長436nm)、i線(同365nm)、ある
いはKrFエキシマレーザ光(同248nm)などの光
は、コンデンサレンズ2によって平行光線となり、レチ
クル3を通過した後、レチクル3上のパターンを縮小投
影レンズ4によって、X−Yステージ5上のウエハ8に
縮小投影し、露光が行われる。一度に露光される面積は
15〜20mm角程度であり、X−Yステージ5を移動さ
せることによって、直径6〜8インチのウエハ全面にわ
たって露光が繰り返されていく。このときのX−Yステ
ージ5の移動には、モータ11に連結されたボールネジ
が用いられる。
2. Description of the Related Art FIG. 4 is a schematic diagram of a conventional general reduction projection exposure apparatus. Light such as g-line (wavelength 436 nm), i-line (365 nm), or KrF excimer laser light (248 nm) emitted from the light source 1 of the mercury lamp is collimated by the condenser lens 2 and passes through the reticle 3. After that, the pattern on the reticle 3 is reduced and projected by the reduction projection lens 4 onto the wafer 8 on the XY stage 5, and exposure is performed. The area exposed at one time is about 15 to 20 mm square, and by moving the XY stage 5, the exposure is repeated over the entire surface of the wafer having a diameter of 6 to 8 inches. A ball screw connected to the motor 11 is used to move the XY stage 5 at this time.

【0003】[0003]

【発明が解決しようとする課題】縮小投影露光装置にお
いて、解像度とともに重要なのが重ね合わせ精度であ
る。なぜならば、重ね合わせ精度が保証できなければ、
マスクパターン上で余分な重ね合わせマージンを確保し
なければならず、結局素子の高集積化が実現できないか
らである。一般に、必要とされる重ね合わせ精度は、解
像線幅の1/5程度とされており、例えば0.25μm
の線幅では、0.05μm 程度の精度が要求されること
になる。もちろん、重ね合わせ精度が向上すれば、マス
クパターン上の重ね合わせマージンを縮小することによ
って、さら同じ最小線幅でさらなる高集積化も期待でき
るようになる。
In the reduction projection exposure apparatus, overlay accuracy is important together with resolution. Because if the overlay accuracy cannot be guaranteed,
This is because it is necessary to secure an extra overlay margin on the mask pattern, and eventually high integration of the device cannot be realized. Generally, the required overlay accuracy is about 1/5 of the resolution line width, for example, 0.25 μm.
For the line width of, an accuracy of about 0.05 μm is required. Of course, if the overlay accuracy is improved, it is possible to expect further high integration with the same minimum line width by reducing the overlay margin on the mask pattern.

【0004】図4の縮小投影露光装置において、重ね合
わせ精度を決める最大の要因が、X−Yステージ5の位
置制御精度である。この位置制御は、X−Yステージ5
上に固定されたミラー9の位置をレーザ干渉計10によ
り計測した上で、繰り返し露光の場合と同様、モータ1
1に連結されたボールネジにより機械的に行われる。こ
のとき、一般的な値として、レーザ干渉計の分解能は
0.01μm 程度、X−Yステージの位置制御精度は
0.05μm 程度である。すなわち、位置の検出精度に
は余裕があるにもかかわらず、重ね合わせ精度は機械的
なX−Yステージの位置制御精度に支配されてしまうと
いう問題があり、0.05μm という値自体、前述のよ
うに線幅0.25μm に対応するのが限界である。今後
の素子の微細化、高集積化を考えた場合、さらなる重ね
合わせ精度の向上が望まれることになる。
In the reduction projection exposure apparatus of FIG. 4, the greatest factor that determines the overlay accuracy is the position control accuracy of the XY stage 5. This position control is performed by the XY stage 5
The position of the mirror 9 fixed above is measured by the laser interferometer 10, and then the motor 1
It is done mechanically with a ball screw connected to 1. At this time, as a general value, the resolution of the laser interferometer is about 0.01 μm, and the position control accuracy of the XY stage is about 0.05 μm. That is, although there is a margin in the position detection accuracy, there is a problem in that the overlay accuracy is governed by the mechanical position control accuracy of the XY stage. Thus, the limit is that the line width corresponds to 0.25 μm. Considering further miniaturization and high integration of elements in the future, further improvement in overlay accuracy is desired.

【0005】[0005]

【課題を解決するための手段】重ね合わせ精度を向上さ
せるために、本発明の露光装置は、マスクを通過した光
の光軸を平行移動させる手段を備えている。そして、こ
の光軸を平行移動させる手段として、マスクと投影面と
の間に、光軸とほぼ垂直に交わるように配置した透明平
板と、この透明平板と光軸とのなす角度を変化させる機
構とを備えている。さらに、透明平板と光軸とのなす角
度を変化させる機構は、透明平板に接触させて配置した
圧電素子の変位を利用している。
In order to improve the overlay accuracy, the exposure apparatus of the present invention comprises means for moving the optical axis of light passing through the mask in parallel. As a means for moving the optical axis in parallel, a transparent flat plate arranged between the mask and the projection surface so as to intersect the optical axis substantially perpendicularly, and a mechanism for changing the angle formed by the transparent flat plate and the optical axis. It has and. Further, the mechanism for changing the angle formed by the transparent flat plate and the optical axis utilizes the displacement of the piezoelectric element arranged in contact with the transparent flat plate.

【0006】[0006]

【発明の実施の形態】図1は本発明の縮小投影露光装置
の模式図である。光源1から放射された水銀ランプのg
線(波長436nm)、i線(同365nm)、あるいはK
rFエキシマレーザ光(同248nm)などの光は、コン
デンサレンズ2によって平行光線となり、レチクル3を
通過した後、レチクル3上のパターンを縮小投影レンズ
4によってX−Yステージ5上のウエハ8に縮小投影
し、露光が行われる。一度に露光される面積は15〜2
0mm角程度であり、X−Yステージ5を移動させること
によって、直径6〜8インチのウエハ全面にわたって露
光が繰り返されていく。このときのX−Yステージ5の
移動には、モータ11に連結されたボールネジが用いら
れる。
1 is a schematic diagram of a reduction projection exposure apparatus according to the present invention. G of mercury lamp emitted from light source 1
Line (wavelength 436nm), i line (365nm) or K
Light such as rF excimer laser light (248 nm) is converted into parallel rays by the condenser lens 2 and, after passing through the reticle 3, the pattern on the reticle 3 is reduced by the reduction projection lens 4 onto the wafer 8 on the XY stage 5. Project and expose. The area exposed at one time is 15-2
Exposure is repeated over the entire surface of a wafer having a diameter of 6 to 8 inches by moving the XY stage 5 having a size of about 0 mm square. A ball screw connected to the motor 11 is used to move the XY stage 5 at this time.

【0007】ここで特徴的なのは、レチクル3と縮小投
影レンズ4との間に、光軸6とほぼ垂直に交わるように
して、石英板7が配置されていることである。この石英
板7と光軸6とのなす角度はX方向、Y方向に変化させ
られるようになっている。光線は石英板7に入射すると
屈折し、入射角と同じ角度で出射するため、石英板7と
光軸6とのなす角度を変化させることによって、光軸6
を所望量平行移動させることができる。
What is characteristic here is that the quartz plate 7 is arranged between the reticle 3 and the reduction projection lens 4 so as to intersect with the optical axis 6 substantially perpendicularly. The angle formed by the quartz plate 7 and the optical axis 6 can be changed in the X direction and the Y direction. The light beam is refracted when it enters the quartz plate 7 and is emitted at the same angle as the incident angle. Therefore, by changing the angle between the quartz plate 7 and the optical axis 6,
Can be translated by a desired amount.

【0008】図2(a)(b)は、石英板7と光軸6と
のなす角度を変化させるための具体的な方法を説明する
ための模式図であり、図2(a)は平面図、図2(b)
は図2(a)のA−A’方向の断面図である。石英板7
はその下面の四隅に接触して配置した4個の圧電素子1
21〜124によって支えられおり、圧電素子121〜
124は支持材13によって露光装置の内壁14に固定
されている。圧電素子121〜124は電圧を印加する
ことによって上下方向、すなわち石英板7を押し上げる
方向に変位するようになっている。したがって、例えば
光軸をX方向に平行移動させたい場合、圧電素子1 1
21と圧電素子4 124、または圧電素子2 122
と圧電素子3 123を変位させてやればよい。また、
光軸をY方向に平行移動させたい場合には、圧電素子1
121と圧電素子2 122、または圧電素子3 1
23と圧電素子4 124を変位させてやればよい。さ
らに、それぞれの圧電素子を適量変位させることによっ
て、光軸をX方向、Y方向同時に平行移動させることも
可能である。
FIGS. 2A and 2B are schematic views for explaining a specific method for changing the angle formed by the quartz plate 7 and the optical axis 6, and FIG. 2A is a plan view. Figure, Figure 2 (b)
FIG. 3 is a sectional view taken along the line AA ′ of FIG. Quartz plate 7
Is four piezoelectric elements 1 arranged in contact with the four corners of the lower surface
The piezoelectric elements 121 to 121 are supported by the piezoelectric elements 121 to 124.
The support 124 is fixed to the inner wall 14 of the exposure apparatus by the support member 13. The piezoelectric elements 121 to 124 are adapted to be displaced in the vertical direction, that is, in the direction of pushing up the quartz plate 7 by applying a voltage. Therefore, for example, when it is desired to translate the optical axis in the X direction, the piezoelectric element 1 1
21 and the piezoelectric element 4 124 or the piezoelectric element 2 122
Then, the piezoelectric element 3123 may be displaced. Also,
When it is desired to translate the optical axis in the Y direction, the piezoelectric element 1
121 and the piezoelectric element 2 122 or the piezoelectric element 3 1
23 and the piezoelectric element 4124 may be displaced. Furthermore, by displacing each piezoelectric element by an appropriate amount, it is possible to move the optical axis in parallel in the X and Y directions simultaneously.

【0009】次に本発明の効果を定量的に見積ってみ
る。図3は石英板7が回転軸Qのまわりに回転運動する
と見なしたときの、石英板7の回転角度θ、変位量k、
光軸の平行移動量Dの間の関係を示す模式図である。実
際に必要とされる回転角度は極めて僅かなものである
が、この図では説明を容易にするために過大に描かれて
ある。
Next, the effect of the present invention will be estimated quantitatively. FIG. 3 shows the rotation angle θ of the quartz plate 7, the displacement amount k, when the quartz plate 7 is considered to rotate about the rotation axis Q,
It is a schematic diagram which shows the relationship between the parallel displacement amounts D of an optical axis. The actual required rotation angle is very small, but it is exaggerated in this figure for ease of explanation.

【0010】ここで、Tを石英板7の厚さ、n1 、n2
をそれぞれ空気と石英板7の屈折率とすると、 D=T{(n2 −n1 )/n2 }θ (1) の近似式が、さらに、Lを石英板7の回転軸Qから変位
点までの距離とすれば、 k=Lθ (2) の近似式が成り立つ。(1)(2)式よりθを消去し、
Aを縮小倍率として、ウエハ上での投影像の平行移動量
dを求めると、 d=AD=A(T/L){(n2 −n1 )/n2 }k (3) となる。例えば、A=1/5、T=1cm、L=10c
mとすれば、(3)式より d=0.0062k (4) が得られる。ちなみに、(4)式より、前述のレーザ干
渉計の分解能と同等の投影像の平行移動量、すなわちd
=0.01μm を得るためには、k=1.6μmとなる
が、これは圧電素子の変位量として実現が可能な値であ
る。このように本発明では、像を重ね合わせる際、圧電
素子の変位を利用して投影像の方を移動させるため、機
械的な制御誤差が生じず、重ね合わせ精度の向上が可能
になる。
Here, T is the thickness of the quartz plate 7, n 1 and n 2
Where D is the refractive index of air and the refractive index of quartz plate 7 is D = T {(n 2 −n 1 ) / n 2 } θ (1), and L is displaced from the rotation axis Q of quartz plate 7. Assuming the distance to the point, the approximate expression of k = Lθ (2) is established. Eliminating θ from equations (1) and (2),
When the parallel movement amount d of the projected image on the wafer is calculated with A as the reduction magnification, d = AD = A (T / L) {(n 2 −n 1 ) / n 2 } k (3). For example, A = 1/5, T = 1 cm, L = 10c
If m, then d = 0.0062k (4) is obtained from the equation (3). By the way, from the equation (4), the parallel movement amount of the projected image equivalent to the resolution of the laser interferometer described above, that is, d
= 0.01 μm, k = 1.6 μm, which is a value that can be realized as the displacement amount of the piezoelectric element. As described above, according to the present invention, when the images are superposed, the displacement of the piezoelectric element is used to move the projected image, so that a mechanical control error does not occur and the superposition accuracy can be improved.

【0011】[0011]

【発明の効果】以上説明したように本発明の露光装置
は、マスクと投影面との間に、光軸とほぼ垂直に交わる
ように透明平板を配置し、この透明平板と光軸とのなす
角度を変化させて、投影像を平行移動させることによっ
て、重ね合わせ精度を向上させることができる。
As described above, in the exposure apparatus of the present invention, the transparent flat plate is arranged between the mask and the projection surface so as to intersect with the optical axis substantially perpendicularly, and the transparent flat plate and the optical axis form the same. By changing the angle and moving the projected images in parallel, the overlay accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の露光装置を示す模式図である。FIG. 1 is a schematic view showing an exposure apparatus of the present invention.

【図2】本発明の露光装置の一部を示す模式図である。FIG. 2 is a schematic view showing a part of an exposure apparatus of the present invention.

【図3】本発明の原理を示す模式図である。FIG. 3 is a schematic view illustrating the principle of the present invention.

【図4】従来例の露光装置を示す模式図である。FIG. 4 is a schematic diagram showing a conventional exposure apparatus.

【符号の説明】 1 光源 2 コンデンサレンズ 3 レチクル 4 縮小投影レンズ 5 X−Yステージ 6 光軸 7 石英板 8 ウエハ 9 ミラー 10 レーザ干渉計 11 モータ 121、122、123、124 圧電素子 13 支持材 14 内壁 Q 石英板の回転軸 θ 石英板の回転角度 k 石英板の変位量 D 光軸の平行移動量 T 石英板の厚さ L 石英板の支持点から変位点までの距離[Description of Reference Signs] 1 light source 2 condenser lens 3 reticle 4 reduction projection lens 5 XY stage 6 optical axis 7 quartz plate 8 wafer 9 mirror 10 laser interferometer 11 motors 121, 122, 123, 124 piezoelectric element 13 support material 14 Inner wall Q Quartz plate rotation axis θ Quartz plate rotation angle k Quartz plate displacement amount D Optical axis translation amount T Quartz plate thickness L Distance between quartz plate support point and displacement point

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光源から放射された光が、マスク上のパタ
ーンを投影面に投影する露光装置において、前記マスク
を通過した光の光軸を平行移動させる手段を備えたこと
を特徴とする露光装置。
1. An exposure apparatus for projecting a pattern on a mask onto a projection surface by light emitted from a light source, comprising means for translating an optical axis of the light passing through the mask. apparatus.
【請求項2】前記光軸を平行移動させる手段として、前
記マスクと前記投影面との間に、前記光軸とほぼ垂直に
交わるように配置した透明平板と、この透明平板と前記
光軸とのなす角度を変化させる機構とを備えたことを特
徴とする請求項1記載の露光装置。
2. A transparent flat plate disposed between the mask and the projection plane so as to intersect the optical axis substantially perpendicularly, as a means for moving the optical axis in parallel, and the transparent flat plate and the optical axis. 2. The exposure apparatus according to claim 1, further comprising a mechanism for changing an angle formed by.
【請求項3】前記透明平板と前記光軸とのなす角度を変
化させる機構が、前記透明平板に接触させて配置した圧
電素子の変位を利用していることを特徴とする請求項2
記載の露光装置。
3. A mechanism for changing an angle formed by the transparent flat plate and the optical axis utilizes displacement of a piezoelectric element placed in contact with the transparent flat plate.
Exposure apparatus according to the above.
JP7339156A 1995-12-26 1995-12-26 Aligner Pending JPH09180991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7339156A JPH09180991A (en) 1995-12-26 1995-12-26 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7339156A JPH09180991A (en) 1995-12-26 1995-12-26 Aligner

Publications (1)

Publication Number Publication Date
JPH09180991A true JPH09180991A (en) 1997-07-11

Family

ID=18324776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7339156A Pending JPH09180991A (en) 1995-12-26 1995-12-26 Aligner

Country Status (1)

Country Link
JP (1) JPH09180991A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149740A (en) * 2001-11-16 2003-05-21 National Institute Of Advanced Industrial & Technology Light-projection device
KR100919578B1 (en) * 2007-02-15 2009-10-01 주식회사 하이닉스반도체 Exposure equipment and method for forming semiconductor device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149740A (en) * 2001-11-16 2003-05-21 National Institute Of Advanced Industrial & Technology Light-projection device
KR100919578B1 (en) * 2007-02-15 2009-10-01 주식회사 하이닉스반도체 Exposure equipment and method for forming semiconductor device using the same

Similar Documents

Publication Publication Date Title
US5523193A (en) Method and apparatus for patterning and imaging member
US6060224A (en) Method for maskless lithography
US6841323B2 (en) Mask producing method
KR100583694B1 (en) Substrate provided with an Alignment Mark, Method of Designing a Mask, Computer Program, Mask for Exposing said Mark, Device Manufacturing Method, and Device Manufactured Thereby
US8098364B2 (en) Exposure apparatus and method for photolithography process
KR20060052321A (en) Optical position assessment apparatus and method
JP2002520840A (en) Maskless photolithography system
JP5068844B2 (en) Lithographic method and lithographic apparatus
US20070242254A1 (en) Exposure apparatus and device manufacturing method
KR100313355B1 (en) Method and apparatus for changing magnification of printed pattern
JP2007258707A (en) Lithographic apparatus and device manufacturing method employing double-exposure overlay control
JP2000029202A (en) Production of mask
JP2007108559A (en) Scanning exposure apparatus and method for manufacturing device
US5291239A (en) System and method for leveling semiconductor wafers
JPS598059B2 (en) Automatic projection printing device
JP4146673B2 (en) Exposure method and apparatus
JP2005166778A (en) Aligner and method of manufacturing device
JP2000021716A (en) Exposure device and device manufacturing method using the exposure device
JP4376227B2 (en) Projection apparatus for lithographic apparatus
JPH09180991A (en) Aligner
JP2002072497A (en) Exposure method
KR100588114B1 (en) Lithographic Apparatus and Device Manufacturing Method
JP2003318095A (en) Flame measuring method and flare measuring device, aligning method and aligner, and method for adjusting aligner
KR100436055B1 (en) Reticle stage
JP2800731B2 (en) Scanning exposure method and circuit element manufacturing method by scanning exposure

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981201