Nothing Special   »   [go: up one dir, main page]

JPH09170574A - Scroll gas compressor - Google Patents

Scroll gas compressor

Info

Publication number
JPH09170574A
JPH09170574A JP7332992A JP33299295A JPH09170574A JP H09170574 A JPH09170574 A JP H09170574A JP 7332992 A JP7332992 A JP 7332992A JP 33299295 A JP33299295 A JP 33299295A JP H09170574 A JPH09170574 A JP H09170574A
Authority
JP
Japan
Prior art keywords
compression
chamber
scroll
bypass
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7332992A
Other languages
Japanese (ja)
Other versions
JP2959457B2 (en
Inventor
Katsuharu Fujio
勝晴 藤尾
Kiyoshi Sano
潔 佐野
Takashi Morimoto
敬 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33299295A priority Critical patent/JP2959457B2/en
Priority to US08/761,085 priority patent/US5855475A/en
Priority to MYPI96005076A priority patent/MY119499A/en
Priority to CN96118600A priority patent/CN1086778C/en
Priority to KR1019960064063A priority patent/KR100210230B1/en
Publication of JPH09170574A publication Critical patent/JPH09170574A/en
Application granted granted Critical
Publication of JP2959457B2 publication Critical patent/JP2959457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize effective piping constitution of a by-pass hole for improvement of compression efficiency of a scroll gas compressor furnished with a capacity ratio constantly without a closed compressed space. SOLUTION: By-pass holes 39a, 39b to communicate a second compression chamber 2b and a discharge chamber 32 to each other at a position where a part of the by-pass holes 39a, 39b is not blocked by a revolving scroll lap 13a in a state immediately before the second compression chamber 2b nearest to a discharge port is communicated to the discharge port 30 and in a state where the second compression chamber 2b advances by 150 degrees from the former state. In this constitution, in the case when a driving compression ratio is smaller than a set compression ratio, it is possible to reduce compression input and to prevent damage of a compressor by preventing overcompression by discharging a part of gas in the middle of compression to a discharge chamber 32.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はスクロール気体圧縮
機のバイパス弁装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bypass valve device for a scroll gas compressor.

【0002】[0002]

【従来の技術】低振動、低騒音特性を備えたスクロール
圧縮機は、吸入室が圧縮空間を形成する渦巻きの外周部
に有り、吐出口が渦巻きの中心部に設けられ、吸入容積
と最終圧縮室容積とで決定する容積比が一定である。特
に、吸入圧力と吐出圧力とで定まる圧縮比の変動が少な
い場合は、それに合わせた容積比を設定することによっ
て、往復動圧縮機や回転式圧縮機のような流体を圧縮す
るための吐出弁装置を必要とせず、高効率な圧縮ができ
る。
2. Description of the Related Art A scroll compressor having low vibration and low noise characteristics has a suction chamber located at the outer periphery of a spiral forming a compression space, a discharge port provided at the center of the spiral, and a suction volume and final compression. The volume ratio determined by the chamber volume is constant. In particular, when there is little fluctuation in the compression ratio determined by the suction pressure and the discharge pressure, a discharge valve for compressing fluid such as a reciprocating compressor or a rotary compressor is set by setting a volume ratio that matches it. Highly efficient compression is possible without requiring a device.

【0003】このスクロール圧縮機を空調用冷媒圧縮機
として使用する場合は、可変速運転や空調負荷変動によ
って冷媒の吸入圧力と吐出圧力が変化する。そして、実
際の圧縮比と設定圧縮比との間の差によって、不足圧縮
や過圧縮運転が生じる。不足圧縮時には、吐出室の高圧
冷媒ガスが吐出口から圧縮室に間欠的に逆流し、圧縮入
力の増加を招く。また、液冷媒や多量の潤滑油を圧縮す
る、いわゆる液圧縮現象が生じた場合には、超過圧縮状
態となり、圧縮入力の異常上昇・過大な振動と騒音、圧
縮機破損を招くことがある。
When this scroll compressor is used as a refrigerant compressor for air conditioning, the suction pressure and the discharge pressure of the refrigerant change due to variable speed operation and air conditioning load fluctuations. Then, due to the difference between the actual compression ratio and the set compression ratio, insufficient compression or overcompression operation occurs. At the time of insufficient compression, the high-pressure refrigerant gas in the discharge chamber intermittently flows backward from the discharge port into the compression chamber, resulting in an increase in compression input. Further, when a so-called liquid compression phenomenon occurs in which a liquid refrigerant or a large amount of lubricating oil is compressed, an excessive compression state occurs, which may cause abnormal increase in compression input, excessive vibration and noise, and compressor damage.

【0004】このような圧縮不足に起因する圧縮流体の
逆流を防ぐ方策として、吐出口の出口側に逆止弁装置を
設けることもある。また、液圧縮を軽減する方策とし
て、特公平5−49830号公報に記載されているよう
に、特に、吸入室にも吐出室にも間欠的に通じない常時
密閉空間となる圧縮室を有する圧縮空間の場合には、超
過圧縮発生頻度の高い常時密閉空間となる圧縮室から吐
出室に通じる対称位置に配置されたバイパス穴を設け、
バイパス穴の出口側に吐出室への流体流出のみを許容す
るバイパス弁装置を設けて液圧縮や過圧縮に起因する圧
縮機破損を防止する手段が知られている。
A check valve device may be provided on the outlet side of the discharge port as a measure for preventing the backflow of the compressed fluid due to such insufficient compression. Further, as a measure for reducing liquid compression, as described in Japanese Patent Publication No. 5-49830, in particular, a compression chamber having a compression chamber which is not always connected to the suction chamber or the discharge chamber and which is a constantly closed space is provided. In the case of space, bypass holes are provided at symmetrical positions leading from the compression chamber to the discharge chamber, which is a normally closed space with a high frequency of excessive compression.
There is known a means for preventing a compressor from being damaged due to liquid compression or overcompression by providing a bypass valve device on the outlet side of the bypass hole that allows only the fluid to flow into the discharge chamber.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、超過圧縮となる液圧縮や通常の過圧縮は
上述の常時密閉空間に限らず、圧縮途中の任意の圧縮室
でも生じる可能性がある。また、スクロール圧縮機の構
成によっては常時密閉空間となる圧縮室が存在しない容
積比を備える場合もある。したがって、バイパス穴を設
置することは圧縮途中ガスの圧縮室内残留を生じさせ、
その結果、圧縮効率低下を招き易いことから、特に、常
時密閉空間となる圧縮室が存在しない容積比を備える構
成のスクロール気体圧縮機の場合は、バイパス穴位置設
定の指針か少ないという課題があった。また、圧縮機破
損防止のために設けられるバイパス穴の位置が、吐出口
を開閉する逆止弁装置と関係してバイパス弁装置の配置
構成から決められることが多かった。当然のことなが
ら、スクロール気体圧縮機の幅広い圧縮比運転領域での
圧縮効率向上のためにバイパス穴とバイパス弁装置を積
極的に導入する考え方が少なく、圧縮効率向上のための
効果的なバイパス機能を備えたスクロール気体圧縮機の
実現が望まれていた。
However, in the above-mentioned conventional structure, the liquid compression which is the over-compression and the normal over-compression may occur not only in the above-mentioned always closed space but also in any compression chamber during the compression. is there. Further, depending on the configuration of the scroll compressor, there may be a case where the volume ratio is such that there is no compression chamber that is always a closed space. Therefore, installing a bypass hole causes gas to remain in the compression chamber during compression,
As a result, since the compression efficiency is likely to be lowered, there is a problem that there are few guidelines for setting the bypass hole position, particularly in the case of the scroll gas compressor having the volume ratio in which the compression chamber that is always the closed space does not exist. It was Further, the position of the bypass hole provided to prevent damage to the compressor is often determined by the arrangement configuration of the bypass valve device in relation to the check valve device that opens and closes the discharge port. As a matter of course, there is little idea of actively introducing a bypass hole and a bypass valve device to improve the compression efficiency in a wide compression ratio operation region of the scroll gas compressor, and an effective bypass function for improving the compression efficiency. It has been desired to realize a scroll gas compressor equipped with.

【0006】本発明はこのような従来の課題を解決する
ものであり、圧縮比が大きい運転状態での性能を損なう
ことなく、圧縮比が中以下の運転状態での性能向上を図
ることを目的とする。
The present invention is intended to solve such a conventional problem, and it is an object of the present invention to improve the performance in an operating condition with a compression ratio of medium or lower without impairing the performance in an operating condition with a large compression ratio. And

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、吐出口に最も近い圧縮室の特定の範囲にバ
イパス穴を設けたものである。上記バイパス穴開設によ
って、運転圧縮比が設定圧縮比より大きい場合と小さい
場合とを含めた全運転圧縮比領域を通した全体の圧縮効
率を高めることができる。
In order to solve the above-mentioned problems, the present invention provides a bypass hole in a specific range of the compression chamber closest to the discharge port. By opening the bypass hole, it is possible to improve the overall compression efficiency through the entire operation compression ratio region including the case where the operation compression ratio is larger than the set compression ratio and the case where the operation compression ratio is smaller than the set compression ratio.

【0008】[0008]

【発明の実施の形態】上記の課題を解決するための請求
項1記載の発明は、渦巻状の圧縮空間には吐出室にも吸
入室にも間欠的に連通しない空間が存在せず、吐出口に
最も近い圧縮室が吐出口に連通する直前の状態と、吐出
口に最も近い圧縮室がその状態から150度前進した状
態とで、旋回スクロールラップによってバイパス穴の一
部が閉塞されない位置に、圧縮室と吐出室との間を連通
するバイパス穴を設けたものである。そして、この構成
によれば運転圧縮比が設定圧縮比より大きい場合にも、
吐出口に開口直前の圧縮室内気体の吐出室への一部排出
を促進させて吐出口から気体を排出する際の過圧縮を抑
制することができる。また運転圧縮比が設定圧縮比より
小さい場合には、圧縮途中気体を吐出室に一部排出して
過圧縮を防止することができる。
BEST MODE FOR CARRYING OUT THE INVENTION In order to solve the above-mentioned problems, the invention according to claim 1 does not have a space which does not intermittently communicate with the discharge chamber or the suction chamber in the spiral compression space, A position immediately before the compression chamber closest to the outlet communicates with the discharge port and a state in which the compression chamber closest to the discharge port is advanced by 150 degrees from that state are positioned so that the orbiting scroll wrap does not block part of the bypass hole. A bypass hole that connects the compression chamber and the discharge chamber is provided. Further, according to this configuration, even when the operating compression ratio is larger than the set compression ratio,
It is possible to promote partial discharge of gas in the compression chamber immediately before opening to the discharge port to the discharge port, and suppress overcompression when discharging gas from the discharge port. Further, when the operating compression ratio is smaller than the set compression ratio, it is possible to prevent the overcompression by partially discharging the gas during the compression to the discharge chamber.

【0009】請求項2記載の発明は、単一のバイパス弁
装置が複数のバイパス穴を同時に開閉すべくバイパス穴
を接近させて配置するもので、バイパス穴を分散して圧
縮途中気体を継続的に吐出室に排出させるとともに、バ
イパス穴の通路を確保することができる。
According to the second aspect of the present invention, the single bypass valve device arranges the bypass holes close to each other so as to simultaneously open and close the plurality of bypass holes, and the bypass holes are dispersed to continuously maintain the gas during compression. It is possible to secure the passage of the bypass hole while discharging the gas to the discharge chamber.

【0010】請求項3記載の発明は、吐出口を開閉する
逆止弁装置がバイパス弁装置を兼ねたもので、バイパス
穴開設位置の自由度を広げるとともに、バイパス弁装置
を省くことができる。
According to the third aspect of the present invention, the check valve device for opening and closing the discharge port also serves as the bypass valve device, so that the degree of freedom of the bypass hole opening position can be increased and the bypass valve device can be omitted.

【0011】請求項4記載の発明は、吐出口に最も近い
バイパス穴から360度以内に後退した位置で且つ圧縮
開始から360度以内の位置に別の補助バイパス穴と補
助バイパス穴を開閉する補助バイパス弁装置を鏡板に配
置するもので、閉塞した圧縮空間の領域を少なくし、過
圧縮発生領域を少なくできる。
According to a fourth aspect of the present invention, another auxiliary bypass hole and an auxiliary bypass hole are opened and closed at a position retracted within 360 degrees from the bypass hole closest to the discharge port and within 360 degrees from the start of compression. By disposing the bypass valve device on the end plate, the area of the closed compression space can be reduced and the area of overcompression can be reduced.

【0012】請求項5記載の発明は、バイパス穴と補助
バイパス穴との間の圧縮室に旋回スクロールラップで全
開全閉される状態で開口し且つ他端が冷凍サイクルの減
圧装置の途中に通じたインジェクション穴を鏡板に設け
たもので、圧縮機運転圧縮比が設定圧縮比よりも大きい
時(圧縮不足状態)に、未蒸発冷媒(液と気体の混合冷
媒)の一部は圧縮途中の圧縮室に流入して圧縮部を冷却
するとともに、圧縮完了圧力を高めて圧縮不足状態を解
消し、吐出圧力を上昇させることができる。
According to a fifth aspect of the present invention, the compression chamber between the bypass hole and the auxiliary bypass hole is opened in a state where it is fully opened and closed by the orbiting scroll wrap, and the other end communicates with the decompression device of the refrigeration cycle. In addition, the injection holes are provided in the end plate, and when the compressor operating compression ratio is higher than the set compression ratio (undercompression state), part of the unevaporated refrigerant (refrigerant mixture of liquid and gas) is compressed during compression. It is possible to flow into the chamber to cool the compression portion, increase the compression completion pressure to eliminate the insufficient compression state, and increase the discharge pressure.

【0013】請求項6記載の発明は、冷凍サイクルの減
圧装置とインジェクション穴との間の冷媒インジェクシ
ョン配管の途中に開閉弁を設け、圧縮機運転圧縮比が設
定圧縮比よりも大きい時に、開閉弁を開通せしめ、それ
以外の圧縮機運転時に開閉弁を遮断すべく制御する冷凍
サイクルに接続したもので、圧縮機起動直後の冷媒液圧
縮を阻止して起動負荷を軽減することができる。
According to a sixth aspect of the present invention, an opening / closing valve is provided in the middle of the refrigerant injection pipe between the pressure reducing device of the refrigeration cycle and the injection hole, and the opening / closing valve is provided when the compressor operating compression ratio is larger than the set compression ratio. Is connected to a refrigeration cycle in which the on-off valve is controlled so as to be shut off when the compressor is in operation other than that. It is possible to prevent the refrigerant liquid compression immediately after the compressor is started and reduce the starting load.

【0014】[0014]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】(実施例1)図1において、横置形スクロ
ール冷媒圧縮機の部分縦断面図を示す鉄製の密閉容器1
の内部全体は吐出管(図示なし)に連通する高圧雰囲気
となり、その中央部にモータ3、右部に圧縮部が配置さ
れ、モータ3の回転子3aに固定された駆動軸4の一端
を支承する圧縮部の本体フレーム5が密閉容器1に固定
されており、その本体フレーム5に固定スクロール7が
取り付けられている。駆動軸4に設けられた主軸方向の
油穴12は、その一端が給油ポンプ装置(図示なし)に
通じ、他端が最終的に主軸受8に通じている。固定スク
ロール7と噛み合って圧縮室2を形成する旋回スクロー
ル13は、渦巻き状の旋回スクロールラップ13aと旋
回軸13cとを直立させたラップ支持円盤13bとから
成り、固定スクロール7と本体フレーム5との間に配置
されている。固定スクロール7は、鏡板7aと渦巻き状
の固定スクロールラップ7bとから成り、固定スクロー
ルラップ7aの中央部に吐出口30、外周部に吸入室3
1が配置されている。吐出口30は、隣接する吐出室3
2を介してモータ3が配置された高圧空間に通じてい
る。吸入室31は、密閉容器1の端壁を貫通する吸入管
33に通じている。駆動軸4の主軸から偏芯して駆動軸
4の右端穴部に配置された旋回軸受14は、旋回スクロ
ール13の旋回軸13cと係合摺動すべく構成されてい
る。旋回スクロール13のラップ支持円板13bと本体
フレーム5に設けられたスラスト軸受19との間は、油
膜形成可能な微小隙間が設けられている。ラップ支持円
板13bには旋回軸13cとほぼ同芯の環状シール部材
18が遊合状態で装着されており、その環状シール部材
18はその内側の背面室A20と外側とを仕切ってい
る。背面室A20は、隣接する主軸受8に通じる一方、
旋回軸受14の摺動面を介して駆動軸4の油穴12にも
通じている。旋回軸受14の底部の油室15と、ラップ
支持円板13bの外周部空間の背面室C16との間は、
ラップ支持円板13bに設けられた油通路21を介して
通じている。油通路21は、その両端に絞り部A22と
絞り部B23を、その中間にバイパス油穴24を有して
いる。バイパス油穴24は、旋回スクロール13の旋回
運動に伴って、スラスト軸受19面に設けられた環状の
油溝25に間欠的に通じるべく配置されている。環状の
油溝25と背面室C16とは、環状の油溝25の一部に
設けられた排出油通路26を介して通じている。スラス
ト軸受19の環状溝25は、自転阻止部材(図示なし)
と係合する旋回スクロール13の係止溝(図示なし)に
も間欠的に連通すべく配置されている。背面室C16と
吸入室31との間は、ラップ支持円板13bと摺接する
鏡板7aの表面に設けられた油溝50(図2,図3参
照)を介して連通している。吐出口30の出口側を開閉
する逆止弁装置35が固定スクロール7の鏡板7aの平
面上に取り付けられており、その逆止弁装置35は薄鋼
板製のリード弁35aと弁押え35bとから成る。鏡板
7aの中央部には、吐出口30と間欠的に連通する第2
圧縮室2bと吐出室32とに開口し、且つ、第2圧縮室
2bへの開口部が旋回スクロールラップ13aの幅より
も小さい二対の第1バイパス穴30a,第2バイパス穴
39bが旋回スクロールラップ13aの壁面に沿って圧
縮進行方向に追従する形態で順次対称配置されており、
第1バイパス穴39a,第2バイパス穴39bの出口側
を開閉するバイパス弁装置40が鏡板7a上に配置され
ている。また、吸入室31と間欠的に連通する第1圧縮
室2aと吐出室32とに開口し且つ第1圧縮室2aへの
開口部が旋回スクロールラップ13aの幅よりも小さい
一対の補助バイパス穴49が旋回スクロールラップ13
aの壁面近傍に対称配置され、補助バイパス穴49の出
口側を開閉する補助バイパス弁装置42が鏡板7a上に
配置されている。
(Embodiment 1) In FIG. 1, an iron-made hermetically sealed container 1 showing a partial vertical sectional view of a horizontal scroll refrigerant compressor.
Has a high-pressure atmosphere that communicates with a discharge pipe (not shown). The motor 3 is arranged in the central part and the compression part is arranged in the right part, and one end of the drive shaft 4 fixed to the rotor 3a of the motor 3 is supported. The main body frame 5 of the compression unit is fixed to the closed container 1, and the fixed scroll 7 is attached to the main body frame 5. The main shaft direction oil hole 12 provided in the drive shaft 4 has one end communicating with an oil supply pump device (not shown) and the other end finally communicating with the main bearing 8. The orbiting scroll 13 that meshes with the fixed scroll 7 to form the compression chamber 2 includes a spiral orbiting scroll wrap 13a and a wrap support disk 13b in which an orbiting shaft 13c is upright. It is located in between. The fixed scroll 7 includes an end plate 7a and a spiral fixed scroll wrap 7b. The fixed scroll wrap 7a has a discharge port 30 at the center and an intake chamber 3 at the outer periphery.
1 is arranged. The discharge port 30 is connected to the adjacent discharge chamber 3
2 leads to a high-pressure space in which the motor 3 is arranged. The suction chamber 31 communicates with a suction pipe 33 that penetrates the end wall of the closed container 1. The orbiting bearing 14 arranged in the right end hole of the drive shaft 4 eccentrically from the main shaft of the drive shaft 4 is configured to engage and slide with the orbiting shaft 13c of the orbiting scroll 13. Between the lap support disk 13b of the orbiting scroll 13 and the thrust bearing 19 provided on the main body frame 5, there is provided a minute gap capable of forming an oil film. An annular seal member 18 which is substantially concentric with the swivel shaft 13c is mounted on the lap support disk 13b in a loosely fitted state, and the annular seal member 18 separates the inner rear chamber A20 from the outer side. The back chamber A20 communicates with the adjacent main bearing 8 while
It also communicates with the oil hole 12 of the drive shaft 4 via the sliding surface of the slewing bearing 14. Between the oil chamber 15 at the bottom of the slewing bearing 14 and the back chamber C16 in the outer peripheral space of the lap support disk 13b,
It communicates via an oil passage 21 provided in the lap support disk 13b. The oil passage 21 has a throttle portion A22 and a throttle portion B23 at both ends thereof, and a bypass oil hole 24 in the middle thereof. The bypass oil hole 24 is arranged so as to intermittently communicate with an annular oil groove 25 provided on the surface of the thrust bearing 19 as the orbiting scroll 13 orbits. The annular oil groove 25 and the back chamber C16 communicate with each other through an exhaust oil passage 26 provided in a part of the annular oil groove 25. The annular groove 25 of the thrust bearing 19 is a rotation preventing member (not shown).
It is also arranged so as to intermittently communicate with a locking groove (not shown) of the orbiting scroll 13 that engages with. The back chamber C16 and the suction chamber 31 are communicated with each other via an oil groove 50 (see FIGS. 2 and 3) provided on the surface of the end plate 7a that is in sliding contact with the lap support disk 13b. A check valve device 35 that opens and closes the outlet side of the discharge port 30 is mounted on the plane of the end plate 7a of the fixed scroll 7. The check valve device 35 includes a thin steel plate reed valve 35a and a valve retainer 35b. Become. A second portion that intermittently communicates with the discharge port 30 is provided at the center of the end plate 7a.
Two pairs of the first bypass hole 30a and the second bypass hole 39b, which are open to the compression chamber 2b and the discharge chamber 32 and have an opening to the second compression chamber 2b smaller than the width of the orbiting scroll wrap 13a, are orbiting scrolls. Along the wall surface of the wrap 13a, they are sequentially symmetrically arranged so as to follow the compression progress direction,
A bypass valve device 40 for opening and closing the outlet side of the first bypass hole 39a and the second bypass hole 39b is arranged on the end plate 7a. In addition, a pair of auxiliary bypass holes 49 that open to the first compression chamber 2a and the discharge chamber 32 that are intermittently in communication with the suction chamber 31 and the opening to the first compression chamber 2a is smaller than the width of the orbiting scroll wrap 13a. Orbiting scroll wrap 13
An auxiliary bypass valve device 42 that is symmetrically arranged near the wall surface of a and opens and closes the outlet side of the auxiliary bypass hole 49 is arranged on the end plate 7a.

【0016】図2は図1におけるA−A線に沿った断面
を示した図で、吐出口30と間欠的に連通する第2圧縮
室2bが吐出口32と開通する直前の圧縮空間の状態を
示す。第1バイパス穴39a,第2バイパス穴39bは
旋回スクロールラップ13aによって、その一部を遮閉
されることのない位置に配置されている。
FIG. 2 is a view showing a cross section taken along the line AA in FIG. 1. The state of the compression space immediately before the second compression chamber 2b which is intermittently communicated with the discharge port 30 and the discharge port 32 is opened. Indicates. The first bypass hole 39a and the second bypass hole 39b are arranged at positions that are not partially blocked by the orbiting scroll wrap 13a.

【0017】図3は図2における旋回スクロールラップ
13aが150度前進した時の圧縮空間の状態を示す。
この状態において、第1バイパス穴39a,第2バイパ
ス穴39bは旋回スクロールラップ13aによって、そ
の一部を遮閉されることのない位置に配置され、第1バ
イパス穴39a,第2バイパス穴39bの通路を確保し
ている。
FIG. 3 shows the state of the compression space when the orbiting scroll wrap 13a in FIG. 2 is advanced by 150 degrees.
In this state, the first bypass hole 39a and the second bypass hole 39b are arranged at positions that are not partially blocked by the orbiting scroll wrap 13a, and the first bypass hole 39a and the second bypass hole 39b are The passage is secured.

【0018】図4は図2および図3における第1バイパ
ス穴39a,第2バイパス穴39bおよび補助バイパス
穴49が旋回スクロールラップ13aの旋回移動に伴っ
て順次開閉されていく状態を示す図で、特に、(a)は
図2と図3の中間の状態を示している。(b)〜(d)
は、それ以外の旋回スクロールラップ13aと第1バイ
パス穴39a,第2バイパス穴39bおよび補助バイパ
ス穴49の位置関係を示す。
FIG. 4 is a view showing a state in which the first bypass hole 39a, the second bypass hole 39b and the auxiliary bypass hole 49 shown in FIGS. 2 and 3 are sequentially opened and closed as the orbiting scroll wrap 13a orbits. Particularly, (a) shows an intermediate state between FIG. 2 and FIG. (B)-(d)
Shows the other positional relationship among the orbiting scroll wrap 13a, the first bypass hole 39a, the second bypass hole 39b, and the auxiliary bypass hole 49.

【0019】図5は図1における逆止弁装置35,バイ
パス弁装置40,補助バイパス弁装置42を鏡板7a上
に取り付けた配置を示した図である。
FIG. 5 is a view showing an arrangement in which the check valve device 35, the bypass valve device 40, and the auxiliary bypass valve device 42 shown in FIG. 1 are mounted on the end plate 7a.

【0020】図6は、横軸に圧縮機運転速度を、縦軸に
圧力と圧縮比を表し、空調装置運転時の圧縮機運転速度
と吸入圧力,吐出圧力,圧縮比の関係を示す実負荷特性
を示す図である。
In FIG. 6, the horizontal axis represents the compressor operating speed and the vertical axis represents the pressure and the compression ratio, and the actual load showing the relationship between the compressor operating speed and the suction pressure, the discharge pressure, and the compression ratio when the air conditioner is operating. It is a figure which shows a characteristic.

【0021】図7は、横軸に圧縮室の容積変化を、縦軸
に圧縮室の圧力変化を表した従来スクロール冷媒圧縮機
のP−V線図である。
FIG. 7 is a P-V diagram of a conventional scroll refrigerant compressor in which the horizontal axis represents the volume change of the compression chamber and the vertical axis represents the pressure change of the compression chamber.

【0022】以上のスクロール冷媒圧縮機の構成におい
て、モータ3によって駆動軸4が回転駆動すると本体フ
レーム5のスラスト軸受19に支持された旋回スクロー
ル13が旋回運動をし、圧縮機に接続した冷凍サイクル
から潤滑油を含んだ吸入冷媒ガスが、吸入管33を経由
して吸入室31に流入し、旋回スクロール13と固定ス
クロール7との間に形成された圧縮室2へと圧縮移送さ
れ、中央部の吐出口30,吐出室32を経てモータ3を
冷却しながら吐出管(図示なし)から圧縮機外部に排出
される。潤滑油を含んだ吐出冷媒ガスは、吐出室32か
ら吐出管(図示なし)までの通路途中で分離され、油溜
11に収集する。吐出圧力が作用する潤滑油は、駆動軸
4の一端に連結された給油ポンプ装置(図示なし)によ
り、駆動軸4の油穴12を経由して油室15に送られ、
その大部分が旋回軸受14と主軸受8の摺動面を経由し
て油溜11に帰還する一方、残りの潤滑油が旋回スクロ
ール13に設けられた油通路21を経由して最終的に背
面室C16に流入する。油通路21を流れる潤滑油は、
その入口部の絞り部A22で一次減圧され、その一部の
潤滑油がバイパス穴24を通じてスラスト軸受19に設
けられた環状油溝25に流入し、残りの潤滑油が絞り部
B23で二次減圧された後、両経路を経た潤滑油は吸入
室31に通じている背面室C16で合流する。油通路2
1の潤滑油は、旋回スクロール13の旋回運動に伴って
バイパス穴24が環状油溝25に間欠的に連通する際の
通路抵抗の影響を受ける。すなわち、旋回速度が遅い時
には油通路21の潤滑油が環状油溝25に多く流入し、
旋回速度が速い時には油通路21の潤滑油が環状油溝2
5に少なく流入するように調整される。圧縮室2の冷媒
ガス圧力は、駆動軸4の主軸方向に旋回スクロール13
を固定スクロール7から離反させようと作用する。一
方、旋回スクロール13のラップ支持円板13bが吐出
圧力の作用する背面室A20(環状シール部材18で囲
まれた内側部分)からの背圧を受けている。したがっ
て、旋回スクロール13を固定スクロール7から離反さ
せようとする力と背圧力とが相殺される。その結果、旋
回スクロール13の離反力よりも背圧力が大きい場合に
は、ラップ支持円板13bは固定スクロール7の鏡板7
aに支持され、反対の場合にはスラスト軸受19に支持
される。上述のいずれの場合にもラップ支持円板13b
とその摺動面の間は微小隙間が保持されて、その摺動面
に供給された潤滑油によって油膜形成されており、その
摺動抵抗が軽減されている。旋回スクロール13のラッ
プ支持円板13bが固定スクロール7の鏡板7aまたは
スラスト軸受19のいずれに支持される場合でも、圧縮
室2の隙間は微小で、背面室C16,吸入室31を順次
経て圧縮室2に流入した潤滑油の油膜で密封されてい
る。一方、スクロール圧縮機は圧縮比が一定なことか
ら、圧縮機冷時始動初期には多量の冷媒液が吸入管33
を介して冷凍サイクルから帰還し、圧縮室2に流入して
液圧縮が生じることが有り、圧縮室2が異常圧力上昇し
て吐出室32の圧力より高くなる。吸入室31と間欠的
に連通する第1圧縮室2a(図2,図3参照)で液圧縮
が生じた場合には、図5で示すように、鏡板7aに設け
た補助バイパス穴49の出口側を閉塞する補助バイパス
弁装置42および第1バイパス穴39a,第2バイパス
穴39bの出口側を閉塞するバイパス弁40が順次開い
て冷媒を吐出室32に流出させ、圧縮室圧力を降下させ
る。また、吐出口30と間欠的に連通する第2圧縮室2
b(図2,図3参照)で液圧縮が生じた場合には、鏡板
7aに設けた第1バイパス穴39a,第2バイパス穴3
9bの出口側を閉塞するバイパス弁40が開き冷媒を吐
出室32に流出させ、圧縮室圧力を降下させる。なお、
第1バイパス穴39a,第2バイパス穴39bおよび補
助バイパス穴49は、いずれの圧縮室2で液圧縮が生じ
ても、第1バイパス穴39a,第2バイパス穴39bお
よび補助バイパス穴49のうち、いずれかと開通するよ
うに各バイパス穴が配置されているので、補助バイパス
弁装置42とバイパス弁装置40のうち少なくとも一方
が必ず開通作動する。また、補助バイパス弁装置42お
よびバイパス弁40が開通作動するのは、圧縮室2で液
圧縮が生じる場合に限らない。すなわち、図6に示す如
く、通常の冷凍サイクル運転における吸入圧力は、圧縮
機が低速〜高速運転に変化するのに追従して低下する。
一方、吐出圧力は上昇して、圧縮比が上昇するのが一般
的である。したがって、補助バイパス弁装置42および
バイパス弁40が設置されない場合の圧縮機低速運転時
などの圧縮比は、定格負荷運転状態で設定された圧縮比
よりも小さくなって図7の斜線部分で示す如く過圧縮状
態となる。このような場合には上述と同様に、第1バイ
パス穴39a,第2バイパス穴39bの出口側を閉塞す
るバイパス弁40のリード部40bが開いて冷媒を吐出
室32に流出させ、2点鎖線99で示す如く、圧縮室圧
力が途中降下して圧縮負荷が軽減する。なお、一般的に
は、対称位置に配置された圧縮室2(圧縮室A,圧縮室
B)の各圧力は、圧縮室隙間密封程度の差から互いに相
違する。この圧縮室2の圧力差は旋回スクロール13に
自転力を与えて旋回スクロール13の自転阻止部材(図
示なし)に回転力を与えることになる。しかし、補助バ
イパス弁装置42およびバイパス弁40が開通して圧縮
負荷軽減する場合に、圧縮室2(圧縮室A,圧縮室B)
の圧力が吐出室32を介して圧縮行程途中で瞬時的に均
圧されて、圧縮室圧力差が小さくなる。一方、圧縮機高
速運転時は吸入室31の圧力が低下、吐出室32の圧力
が上昇する結果、実際の冷凍サイクル運転圧縮比がスク
ロール圧縮機設定圧縮比よりも大きい圧縮状態(圧縮不
足状態)となって、第2圧縮室2bの容積が拡大する過
程で、しかも逆止弁装置35が吐出口30を閉塞するま
での間に吐出室32の冷媒ガスが吐出口30を介して第
2圧縮室2bに間欠的に逆流する。この逆流冷媒ガスは
第2圧縮室2bで再圧縮されて過圧縮状態となる。この
場合も上述と同様に、第1バイパス穴39a,第2バイ
パス穴39bを通してバイパス弁装置40を開通させ、
過圧縮冷媒ガスが吐出室32に部分排出されて圧縮室圧
力を降下させる。なお、第1バイパス穴39aを通じバ
イパス弁装置40が開くことによって、第2バイパス穴
39bから吐出室32への冷媒ガス排出タイミングが早
くなり、圧縮室圧力降下が速くなり、過圧縮損失が少な
くなる。なお、第1バイパス穴39aと第2バイパス穴
39bは、吐出口30に最接近した位置に開設されてい
ないので、第2圧縮室2bが吐出口32に開通直前でも
旋回スクロールラップ13aによって閉塞されずに、吐
出室32へのバイパス作用として機能する。また、第1
バイパス穴39aと第2バイパス穴39bは、第2圧縮
室2bが吐出口32に開通する直前の状態から150度
進行した状態でも旋回スクロールラップ13aによって
閉塞されない位置に開設されているので、旋回スクロー
ルラップ13aが第1バイパス穴39a,第2バイパス
穴39bを通過後に、第2圧縮室2bが一部閉塞される
こともなく、圧縮室2で生じる過圧縮現象に対して、常
時、有効なバイパス作用を発揮することができる。ま
た、第1バイパス穴39aと第2バイパス穴39bとが
適度な間隔を有して配置されているので、第1バイパス
穴39aと第2バイパス穴39bが旋回スクロールラッ
プ13aによって同時に閉塞される時間を短くすること
ができ、バイパス作用の有効性を長くしている。すなわ
ち、第1バイパス穴39a,第2バイパス穴39bから
のバイパス作用を継続することによって、第2圧縮室2
bが吐出口32に開通した時の第2圧縮室2bの圧力変
化が小さくなり、吐出室32への流出音,逆止弁装置3
2からの発生音および吐出脈動が小さくなる。
In the structure of the scroll refrigerant compressor described above, when the drive shaft 4 is rotationally driven by the motor 3, the orbiting scroll 13 supported by the thrust bearing 19 of the body frame 5 orbits, and the refrigeration cycle connected to the compressor. The suction refrigerant gas containing the lubricating oil flows into the suction chamber 31 via the suction pipe 33, is compressed and transferred to the compression chamber 2 formed between the orbiting scroll 13 and the fixed scroll 7, and the central portion Is discharged from the discharge pipe (not shown) to the outside of the compressor while cooling the motor 3 through the discharge port 30 and the discharge chamber 32. The discharge refrigerant gas containing the lubricating oil is separated in the middle of the passage from the discharge chamber 32 to the discharge pipe (not shown) and is collected in the oil sump 11. Lubricating oil acting on the discharge pressure is sent to the oil chamber 15 via the oil hole 12 of the drive shaft 4 by the oil supply pump device (not shown) connected to one end of the drive shaft 4.
Most of the oil returns to the oil sump 11 via the sliding surfaces of the orbiting bearing 14 and the main bearing 8, while the remaining lubricating oil passes through an oil passage 21 provided in the orbiting scroll 13 and finally to the rear surface. It flows into the chamber C16. The lubricating oil flowing through the oil passage 21 is
A primary pressure reduction is performed at the throttle portion A22 at the inlet portion, a part of the lubricating oil flows into the annular oil groove 25 provided in the thrust bearing 19 through the bypass hole 24, and the remaining lubricating oil is subjected to the secondary pressure reduction at the throttle portion B23. After being lubricated, the lubricating oils that have passed through both paths merge in the back chamber C16 communicating with the suction chamber 31. Oil passage 2
The first lubricating oil is affected by the passage resistance when the bypass hole 24 intermittently communicates with the annular oil groove 25 in accordance with the orbiting motion of the orbiting scroll 13. That is, when the turning speed is slow, a large amount of lubricating oil in the oil passage 21 flows into the annular oil groove 25,
When the swirling speed is high, the lubricating oil in the oil passage 21 is in the annular oil groove 2
It is adjusted so that it flows into 5 less. The pressure of the refrigerant gas in the compression chamber 2 is the orbiting scroll 13 in the main axis direction of the drive shaft 4.
Acts to separate the fixed scroll 7 from the fixed scroll 7. On the other hand, the wrap support disk 13b of the orbiting scroll 13 receives a back pressure from the back chamber A20 (the inner part surrounded by the annular seal member 18) where the discharge pressure acts. Therefore, the force for separating the orbiting scroll 13 from the fixed scroll 7 and the back pressure cancel each other out. As a result, when the back pressure is larger than the separating force of the orbiting scroll 13, the lap support disk 13 b is fixed to the end plate 7 of the fixed scroll 7.
It is supported by a and, in the opposite case, by a thrust bearing 19. In any of the above cases, the lap support disk 13b
A small gap is maintained between the sliding surface and the sliding surface, and an oil film is formed by the lubricating oil supplied to the sliding surface to reduce the sliding resistance. Regardless of whether the lap support disk 13b of the orbiting scroll 13 is supported by the end plate 7a of the fixed scroll 7 or the thrust bearing 19, the gap between the compression chambers 2 is very small, and the compression chambers are sequentially passed through the back chamber C16 and the suction chamber 31. It is sealed with an oil film of the lubricating oil flowing into No. 2. On the other hand, since the scroll compressor has a constant compression ratio, a large amount of the refrigerant liquid is sucked into the suction pipe 33 in the initial stage of the cold start of the compressor.
There is a case where the liquid returns from the refrigeration cycle via the flow path and flows into the compression chamber 2 to cause liquid compression, and the compression chamber 2 has an abnormally increased pressure and becomes higher than the pressure in the discharge chamber 32. When liquid compression occurs in the first compression chamber 2a (see FIGS. 2 and 3) that intermittently communicates with the suction chamber 31, as shown in FIG. 5, the outlet of the auxiliary bypass hole 49 provided in the end plate 7a. The auxiliary bypass valve device 42 for closing the side and the bypass valve 40 for closing the outlet side of the first bypass hole 39a and the second bypass hole 39b are sequentially opened to allow the refrigerant to flow out to the discharge chamber 32, thereby lowering the pressure of the compression chamber. In addition, the second compression chamber 2 that communicates intermittently with the discharge port 30.
When liquid compression occurs in b (see FIGS. 2 and 3), the first bypass hole 39a and the second bypass hole 3 provided in the end plate 7a are provided.
The bypass valve 40 that closes the outlet side of 9b opens to allow the refrigerant to flow into the discharge chamber 32, thereby reducing the pressure in the compression chamber. In addition,
The first bypass hole 39a, the second bypass hole 39b, and the auxiliary bypass hole 49 are the same among the first bypass hole 39a, the second bypass hole 39b, and the auxiliary bypass hole 49, regardless of which compression chamber 2 the liquid compression occurs. Since each bypass hole is arranged so as to open with either of them, at least one of the auxiliary bypass valve device 42 and the bypass valve device 40 always opens. Further, the auxiliary bypass valve device 42 and the bypass valve 40 are opened not only when liquid compression occurs in the compression chamber 2. That is, as shown in FIG. 6, the suction pressure in the normal refrigeration cycle operation decreases as the compressor changes from low speed to high speed operation.
On the other hand, the discharge pressure generally rises, and the compression ratio generally rises. Therefore, when the auxiliary bypass valve device 42 and the bypass valve 40 are not installed, the compression ratio at the time of low speed operation of the compressor is smaller than the compression ratio set in the rated load operation state, as shown by the shaded portion in FIG. It becomes over-compressed. In such a case, as described above, the reed portion 40b of the bypass valve 40 that closes the outlet sides of the first bypass hole 39a and the second bypass hole 39b opens to let the refrigerant flow into the discharge chamber 32, and the two-dot chain line As indicated by 99, the compression chamber pressure drops midway and the compression load is reduced. In general, the respective pressures of the compression chambers 2 (compression chamber A, compression chamber B) arranged at symmetrical positions are different from each other due to the difference in sealing degree of the compression chamber. This pressure difference in the compression chamber 2 gives a rotation force to the orbiting scroll 13 to give a rotation force to a rotation preventing member (not shown) of the orbiting scroll 13. However, when the auxiliary bypass valve device 42 and the bypass valve 40 are opened to reduce the compression load, the compression chamber 2 (compression chamber A, compression chamber B)
Is instantaneously equalized via the discharge chamber 32 during the compression stroke, and the pressure difference in the compression chamber is reduced. On the other hand, during high-speed operation of the compressor, the pressure in the suction chamber 31 decreases and the pressure in the discharge chamber 32 increases. As a result, the actual refrigeration cycle operation compression ratio is larger than the scroll compressor set compression ratio (compression state). Thus, the refrigerant gas in the discharge chamber 32 undergoes the second compression via the discharge port 30 in the process of expanding the volume of the second compression chamber 2b and before the check valve device 35 closes the discharge port 30. The gas flows back into the chamber 2b intermittently. This backflow refrigerant gas is recompressed in the second compression chamber 2b and becomes an overcompressed state. Also in this case, similarly to the above, the bypass valve device 40 is opened through the first bypass hole 39a and the second bypass hole 39b,
The over-compressed refrigerant gas is partially discharged into the discharge chamber 32 to reduce the pressure in the compression chamber. By opening the bypass valve device 40 through the first bypass hole 39a, the timing of discharging the refrigerant gas from the second bypass hole 39b to the discharge chamber 32 is accelerated, the compression chamber pressure drop is accelerated, and the overcompression loss is reduced. . Since the first bypass hole 39a and the second bypass hole 39b are not opened at the position closest to the discharge port 30, the second compression chamber 2b is closed by the orbiting scroll wrap 13a even immediately before the discharge port 32 is opened. Instead, it functions as a bypass action to the discharge chamber 32. Also, the first
Since the bypass hole 39a and the second bypass hole 39b are opened at a position where they are not blocked by the orbiting scroll wrap 13a even when the second compression chamber 2b has advanced by 150 degrees from the state immediately before opening to the discharge port 32, the orbiting scroll 39a is opened. The second compression chamber 2b is not partially blocked after the wrap 13a passes through the first bypass hole 39a and the second bypass hole 39b, and the bypass that is always effective against the overcompression phenomenon occurring in the compression chamber 2 is generated. It can exert its effect. Further, since the first bypass hole 39a and the second bypass hole 39b are arranged with an appropriate interval, the time when the first bypass hole 39a and the second bypass hole 39b are simultaneously closed by the orbiting scroll wrap 13a. It can be shortened and the effectiveness of bypass action is lengthened. That is, by continuing the bypass action from the first bypass hole 39a and the second bypass hole 39b, the second compression chamber 2
The change in pressure of the second compression chamber 2b when b is opened to the discharge port 32 becomes small, and the sound flowing out to the discharge chamber 32 and the check valve device 3 are generated.
The generated sound and discharge pulsation from 2 are reduced.

【0023】圧縮機停止直後の残存差圧によって、油溜
11の潤滑油が油穴12,油通路21,背面室C16,
吸入室31を順次介して第1圧縮室2aに流入する。圧
縮機再起動時に第1圧縮室2aで油圧縮が生じる。当然
のことながら、この潤滑油は、補助バイパス穴49を通
じ吐出室32に排出され、その後、円滑な圧縮機運転が
継続する。なお、吸入室31に通じる背面室C16の圧
力は、吸入室31と背面室C16の間の通路抵抗によっ
て吸入圧力相当にも、また、吸入圧力と吐出圧力との中
間圧力にも設定することができる。
Due to the residual differential pressure immediately after the compressor is stopped, the lubricating oil in the oil sump 11 is forced into the oil hole 12, the oil passage 21, the rear chamber C16,
It flows into the first compression chamber 2a through the suction chamber 31 in sequence. Oil compression occurs in the first compression chamber 2a when the compressor is restarted. Naturally, this lubricating oil is discharged to the discharge chamber 32 through the auxiliary bypass hole 49, and thereafter, the smooth compressor operation continues. The pressure of the back chamber C16 communicating with the suction chamber 31 can be set to a suction pressure equivalent to the suction pressure or an intermediate pressure between the suction pressure and the discharge pressure depending on the passage resistance between the suction chamber 31 and the back chamber C16. it can.

【0024】また、上記実施例では補助バイパス穴を各
1個対称配置したが、各複数個を対称配置しても良く、
単一の補助バイパス弁装置で複数個の補助バイパス穴を
開閉しても良い。
In the above embodiment, one auxiliary bypass hole is symmetrically arranged, but a plurality of auxiliary bypass holes may be symmetrically arranged.
A single auxiliary bypass valve device may open and close a plurality of auxiliary bypass holes.

【0025】(実施例2)図8は、図5における逆止弁
装置35とバイバス弁装置40とを一体にした逆止弁装
置35aの形状を示した図である。
(Embodiment 2) FIG. 8 is a view showing the shape of a check valve device 35a in which the check valve device 35 and the bypass valve device 40 in FIG. 5 are integrated.

【0026】上記の構成において、第2圧縮室2bの圧
縮途中冷媒ガスが第1バイパス穴39a,第2バイパス
穴39bを通じて吐出室32に一部排出することによっ
て吐出口32を塞ぐ逆止弁装置40aが開き始めてお
り、第2圧縮室2bが吐出口32に開通直後から圧縮完
了冷媒ガスを遅延することなく、吐出口32を通じて吐
出室32に排出される。このため、圧縮完了後の吐出口
32の圧力が過剰に上昇することなく、圧縮入力が低減
する。なお図8では、逆止弁装置35aと補助バイパス
弁装置42とが別構成であるが、これら全てを連結した
構成でも、上述の作用は同じである。
In the above structure, the check valve device for closing the discharge port 32 by partially discharging the refrigerant gas in the middle of the compression of the second compression chamber 2b to the discharge chamber 32 through the first bypass hole 39a and the second bypass hole 39b. 40a has begun to open, and the compression completion refrigerant gas is discharged to the discharge chamber 32 through the discharge port 32 immediately after the second compression chamber 2b is opened to the discharge port 32 without delay. Therefore, the pressure of the discharge port 32 after the completion of compression does not rise excessively, and the compression input is reduced. Although the check valve device 35a and the auxiliary bypass valve device 42 have different configurations in FIG. 8, the above-described operation is the same even if all of them are connected.

【0027】また、上記実施例では冷媒圧縮機について
説明したが、窒素,酸素,ヘリウム等、他の気体圧縮機
についても同様の作用をする。
Further, although the refrigerant compressor has been described in the above embodiment, other gas compressors such as nitrogen, oxygen, and helium have the same operation.

【0028】(実施例3)図9は、冷凍サイクル配管系
の減圧装置103の途中とスクロール冷媒圧縮機101
の圧縮室とを冷媒インジェクション管105で連通さ
せ、その途中に開閉弁106を設けて、圧縮機運転圧縮
比が設定圧縮比よりも大きい時(圧縮不足状態)に、開
閉弁106を開通させて凝縮器102で液化した冷媒を
吐出圧力と吸入圧力との中間圧力に一次減圧させた未蒸
発冷媒(液と気体の混合冷媒)を、圧縮室に冷媒インジ
ェクションする冷凍サイクルを示す図である。冷媒イン
ジェクション管105は、図4の(3)で示した第2圧
縮室2bに対称配置で開口(第1バイパス穴39aと補
助バイパス穴49との間で開口)し且つ鏡板7aに設け
られたインジェクション穴98を通じて、第2圧縮室2
bに通じている。インジェクション穴98は、旋回スク
ロールラップ13aの壁面に沿って開口しており、開口
部の大きさは旋回スクロールラップ13aによって開閉
されるべく設定されている。
(Embodiment 3) FIG. 9 shows a scroll refrigerant compressor 101 in the middle of a decompression device 103 of a refrigeration cycle piping system.
Is connected to the compression chamber of the refrigerant injection pipe 105, and an opening / closing valve 106 is provided in the middle thereof to open the opening / closing valve 106 when the compressor operating compression ratio is larger than the set compression ratio (compression insufficiency state). It is a figure which shows the refrigerating cycle which carries out the refrigerant injection of the unevaporated refrigerant (mixed refrigerant of liquid and gas) which decompressed the refrigerant liquefied in the condenser 102 to the intermediate pressure between discharge pressure and suction pressure in the compression chamber. The refrigerant injection pipe 105 is opened symmetrically with respect to the second compression chamber 2b shown in (3) of FIG. 4 (opened between the first bypass hole 39a and the auxiliary bypass hole 49) and provided on the end plate 7a. Through the injection hole 98, the second compression chamber 2
It leads to b. The injection hole 98 is opened along the wall surface of the orbiting scroll wrap 13a, and the size of the opening is set so as to be opened and closed by the orbiting scroll wrap 13a.

【0029】上記の構成において、圧縮機運転圧縮比が
設定圧縮比よりも大きい時(圧縮不足状態)に、未蒸発
冷媒(液と気体の混合冷媒)の一部は第2圧縮室2bに
流入して吸入室31経由の圧縮途中冷媒ガスと合流して
圧縮部を冷却するとともに、圧縮完了圧力を高めて圧縮
不足状態を解消し、吐出室32の圧力を上昇させる。吐
出室32を経由した冷媒ガスがモータ3の温度を下げ
て、モータ3の効率を高めることもできる。この冷凍サ
イクルを空調装置の暖房運転に使用する時、室内吹き出
し空気温度を高めて暖房能力を向上することができる。
圧縮途中冷媒ガス圧力が吐出室32の圧力よりも高くな
る場合は、上述と同様に第1バイパス穴39a,第2バ
イパス穴39bを通じて圧縮途中冷媒ガスが吐出室32
へ一部排出して過圧縮を防止することができる。圧縮機
運転圧縮比が設定圧縮比以下の時、開閉弁106が遮断
されて冷媒インジェクション作用は停止する。当然のこ
とながら、圧縮機起動直後および圧縮機停止後は、開閉
弁106が遮断され、圧縮機起動直後の冷媒液圧縮を阻
止して起動負荷を軽減する。
In the above construction, when the compressor operating compression ratio is larger than the set compression ratio (compression insufficiency state), part of the non-evaporated refrigerant (refrigerant mixture of liquid and gas) flows into the second compression chamber 2b. Then, it merges with the refrigerant gas in the middle of compression via the suction chamber 31 to cool the compression section, increase the compression completion pressure to eliminate the insufficient compression state, and increase the pressure in the discharge chamber 32. The refrigerant gas passing through the discharge chamber 32 can lower the temperature of the motor 3 and increase the efficiency of the motor 3. When this refrigeration cycle is used for the heating operation of the air conditioner, it is possible to raise the temperature of the air blown into the room and improve the heating capacity.
When the pressure of the refrigerant gas during compression becomes higher than the pressure of the discharge chamber 32, the refrigerant gas during compression passes through the first bypass hole 39a and the second bypass hole 39b in the same manner as described above.
It can be partially discharged to prevent overcompression. When the compressor operating compression ratio is less than or equal to the set compression ratio, the on-off valve 106 is shut off and the refrigerant injection action is stopped. As a matter of course, immediately after the compressor is started and after the compressor is stopped, the on-off valve 106 is shut off to prevent the refrigerant liquid compression immediately after the compressor is started and reduce the starting load.

【0030】[0030]

【発明の効果】上記実施例から明らかなように、請求項
1記載の発明は、吐出室にも吸入室にも間欠的に連通し
ない空間が存在しない渦巻状の圧縮空間の形態におい
て、吐出口に最も近い圧縮室が吐出口に連通する直前の
状態と、吐出口に最も近い圧縮室がその状態から150
度前進した状態とで、旋回スクロールラップによってバ
イパス穴の一部が閉塞されない位置に、圧縮室と吐出室
との間を連通するバイパス穴を設けたもので、この構成
によれば運転圧縮比が設定圧縮比より大きい場合には、
吐出口に開口直前の圧縮室内気体の吐出室への一部排出
を促進させて吐出口から気体を排出する際の過圧縮を抑
制して圧縮入力を低減することができる。また運転圧縮
比が設定圧縮比より小さい場合には、圧縮途中気体を吐
出室に一部排出して過圧縮を防止して圧縮入力の低減と
圧縮機破損を防止することができる。
As is apparent from the above-described embodiments, the invention according to claim 1 has a discharge port in the form of a spiral compression space in which there is no space that does not communicate with the discharge chamber or the suction chamber intermittently. The state immediately before the compression chamber that is closest to the discharge port communicates with the discharge port, and the compression chamber that is closest to the discharge port is 150
In the state in which the bypass scroll hole is partially closed by the orbiting scroll wrap in the state of being moved forward, a bypass hole communicating between the compression chamber and the discharge chamber is provided. If it is larger than the set compression ratio,
It is possible to promote partial discharge of gas in the compression chamber immediately before opening to the discharge port to the discharge chamber and suppress overcompression when discharging gas from the discharge port to reduce compression input. When the operating compression ratio is smaller than the set compression ratio, it is possible to partially discharge the gas in the middle of the compression to the discharge chamber to prevent overcompression, thereby reducing the compression input and preventing the compressor from being damaged.

【0031】請求項2記載の発明は、単一のバイパス弁
装置が複数のバイパス穴を同時に開閉すべくバイパス穴
を接近させて配置するもので、この構成によればバイパ
ス穴を分散して圧縮途中気体を継続的に吐出室に排出さ
せて吐出音を低減することができる。また、バイパス穴
の通路を確保してバイパス作用の効果を一層高めること
ができる。
According to the second aspect of the present invention, the single bypass valve device arranges the bypass holes close to each other so as to simultaneously open and close the plurality of bypass holes. According to this configuration, the bypass holes are dispersed and compressed. The gas can be continuously discharged to the discharge chamber during the process to reduce the discharge noise. Further, the passage of the bypass hole can be secured to further enhance the effect of the bypass action.

【0032】請求項3記載の発明は、吐出口を開閉する
逆止弁装置がバイパス弁装置を兼ねたもので、この構成
によればバイパス穴開設位置の自由度を広げて広い範囲
の運転圧縮比領域に対してバイパス作用を発揮させるこ
とができる。また、バイパス弁装置を省くことによりコ
スト低減を図ることができる。
According to the third aspect of the present invention, the check valve device for opening and closing the discharge port also serves as the bypass valve device. According to this configuration, the degree of freedom of the bypass hole opening position is widened and the operation compression in a wide range is performed. A bypass effect can be exerted on the specific area. Further, the cost can be reduced by omitting the bypass valve device.

【0033】請求項4記載の発明は、吐出口に最も近い
バイパス穴から360度以内に後退した位置で且つ圧縮
開始から360度以内の位置に別の補助バイパス穴と補
助バイパス穴を開閉する補助バイパス弁装置を鏡板に配
置するもので、この構成によれば閉塞した圧縮空間の領
域を少なくして過圧縮発生頻度を減少し、圧縮機起動入
力を低減することができる。この結果、圧縮機耐久性の
向上と圧縮機の小型化を図ることができる。
According to a fourth aspect of the present invention, another auxiliary bypass hole and an auxiliary bypass hole which is opened and closed at a position retracted within 360 degrees from the bypass hole closest to the discharge port and within 360 degrees from the start of compression. By arranging the bypass valve device on the end plate, this configuration can reduce the area of the closed compression space, reduce the frequency of overcompression, and reduce the compressor starting input. As a result, the durability of the compressor can be improved and the size of the compressor can be reduced.

【0034】請求項5記載の発明は、バイパス穴と補助
バイパス穴との間の圧縮室に旋回スクロールラップで全
開全閉される状態で開口し且つ他端が冷凍サイクルの減
圧装置の途中に通じたインジェクション穴を鏡板に設け
たもので、この構成によれば圧縮機運転圧縮比が設定圧
縮比よりも大きい時(圧縮不足状態)に、未蒸発冷媒
(液と気体の混合冷媒)の一部を圧縮途中の圧縮室に流
入させて圧縮部を冷却するとともに、圧縮完了圧力を高
めて圧縮不足状態を解消し、吐出圧力を上昇させること
ができるので、この冷凍サイクルを空調装置の暖房運転
に使用する時、室内吹き出し空気温度を高めて暖房能力
を向上することができる。また、冷媒インジェクション
穴を通じて圧縮途中圧縮室に多少過剰に流入する場合で
も、バイパス弁装置を介する吐出室へのバイパス作用に
よって過剰な過圧縮を生じることがないので、冷媒イン
ジェクション効果を有効発揮させるための微量な冷媒イ
ンジェクション調整をする必要がない。この結果、運転
圧縮比の広い領域で冷媒インジェクション効果を発揮さ
せることができる。
According to a fifth aspect of the present invention, the compression chamber between the bypass hole and the auxiliary bypass hole is opened with the orbiting scroll wrap fully closed and the other end is connected to the middle of the decompression device of the refrigeration cycle. With this configuration, the injection hole is provided in the end plate. According to this configuration, when the compressor operating compression ratio is higher than the set compression ratio (insufficient compression), part of the unevaporated refrigerant (mixed refrigerant of liquid and gas) It can flow into the compression chamber during compression to cool the compression section, raise the compression completion pressure to eliminate the insufficient compression state, and raise the discharge pressure, so this refrigeration cycle can be used for heating operation of the air conditioner. When used, the temperature of air blown indoors can be increased to improve heating capacity. In addition, even when the refrigerant is slightly excessively flowing into the compression chamber through the refrigerant injection hole, excessive overcompression does not occur due to the bypass action to the discharge chamber via the bypass valve device, so that the refrigerant injection effect is effectively exhibited. It is not necessary to adjust the injection amount of the refrigerant. As a result, the refrigerant injection effect can be exhibited in a wide range of the operation compression ratio.

【0035】請求項6記載の発明は、冷凍サイクルの減
圧装置とインジェクション穴との間の冷媒インジェクシ
ョン配管の途中に開閉弁を設け、圧縮機運転圧縮比が設
定圧縮比よりも大きい時に、開閉弁を開通せしめ、それ
以外の圧縮機運転時に開閉弁を遮断すべく制御する冷凍
サイクルに接続したもので、この構成によれば圧縮機起
動直後の冷媒液圧縮を阻止して圧縮機の耐久性向上と起
動負荷を軽減することができるという効果を奏する。
According to a sixth aspect of the present invention, an opening / closing valve is provided in the middle of the refrigerant injection pipe between the pressure reducing device of the refrigeration cycle and the injection hole, and the opening / closing valve is provided when the compressor operating compression ratio is larger than the set compression ratio. Is connected to a refrigeration cycle that controls to shut off the on-off valve during compressor operation other than that.With this configuration, refrigerant liquid compression is prevented immediately after the compressor is started and the durability of the compressor is improved. With this, it is possible to reduce the starting load.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すスクロール冷媒圧縮機
の部分縦断面図
FIG. 1 is a partial vertical cross-sectional view of a scroll refrigerant compressor showing an embodiment of the present invention.

【図2】図1におけるA−A線に沿った断面図FIG. 2 is a sectional view taken along the line AA in FIG.

【図3】図2における圧縮空間が150度前進した時の
状態図
FIG. 3 is a state diagram when the compression space in FIG. 2 is advanced by 150 degrees.

【図4】(a)は図2における圧縮空間の順次変化を示
した状態図 (b)は同状態図 (c)は同状態図 (d)は同状態図
4A is a state diagram showing a sequential change of the compression space in FIG. 2, FIG. 4B is the same state diagram, FIG. 4C is the same state diagram, and FIG.

【図5】逆止弁装置とバイパス弁装置と補助バイパス弁
装置の配置図
FIG. 5 is a layout diagram of a check valve device, a bypass valve device, and an auxiliary bypass valve device.

【図6】圧縮機運転速度と圧力の関係を示す特性図FIG. 6 is a characteristic diagram showing the relationship between compressor operating speed and pressure.

【図7】圧縮室の容積変化と圧力変化状態を示す特性図FIG. 7 is a characteristic diagram showing a volume change and a pressure change state of the compression chamber.

【図8】本発明の他の実施例を示す逆止弁装置と補助バ
イパス弁装置の配置図
FIG. 8 is a layout view of a check valve device and an auxiliary bypass valve device according to another embodiment of the present invention.

【図9】本発明のスクロール気体圧縮機を冷凍サイクル
に接続した配管系統図
FIG. 9 is a piping system diagram in which the scroll gas compressor of the present invention is connected to a refrigeration cycle.

【符号の説明】[Explanation of symbols]

4 駆動軸 5 本体フレーム 7 固定スクロール 7a 鏡板 7b 固定スクロールラップ 13 旋回スクロール 13a 旋回スクロールラップ 13b ラップ支持円盤/ラップ支持円板 19 スラスト軸受 30 吐出口 31 吸入室 32 吐出室 35 逆止弁装置 39a 第1バイパス穴 39b 第2バイパス穴 40 バイパス弁装置 42 補助バイパス弁装置 49 補助バイパス穴 98 インジェクション穴 103 減圧装置 105 冷媒インジェクション配管 106 開閉弁 4 Drive Shaft 5 Body Frame 7 Fixed Scroll 7a End Plate 7b Fixed Scroll Wrap 13 Orbiting Scroll 13a Orbiting Scroll Wrap 13b Lap Support Disc / Lap Support Disc 19 Thrust Bearing 30 Discharge Port 31 Suction Chamber 32 Discharge Chamber 35 Check Valve Device 39a No. 1 Bypass hole 39b Second bypass hole 40 Bypass valve device 42 Auxiliary bypass valve device 49 Auxiliary bypass hole 98 Injection hole 103 Pressure reducing device 105 Refrigerant injection pipe 106 Open / close valve

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】固定スクロールの一部をなす鏡板の一面に
直立して形成された渦巻き状の固定スクロールラップに
対して、旋回スクロールの一部をなすラップ支持円板上
に直立し且つ前記固定スクロールラップに類似した形状
の旋回スクロールラップを互いに噛み合わせて、両スク
ロール間に渦巻き形の一対の圧縮空間を形成し、前記固
定スクロールラップの中心部に吐出室に通じる吐出口を
設け、前記固定スクロールラップの外側には吸入室を設
け、駆動軸と係合する前記ラップ支持円板と、前記固定
スクロールを締結し且つ前記駆動軸を支持する本体フレ
ームとに係合する前記旋回スクロールの自転阻止部材を
介して、前記旋回スクロールが前記固定スクロールに対
し公転運動を行うことによって、前記各圧縮空間が吸入
側より吐出側に向けて連続移行する複数個の圧縮室に区
画されて流体を圧縮すべく容積変化するスクロール圧縮
機構を形成し、前記ラップ支持円板の反圧縮空間側が前
記本体フレームに設けたスラスト軸受に支持される形
態、または前記旋回スクロールが前記固定スクロールの
側に背圧付勢される形態とし、前記吐出口から前記鏡板
に隣接する吐出室へのみの流体流れを許容する逆止弁装
置を前記鏡板に配置し、圧縮途中の前記圧縮室に前記旋
回スクロールラップで全開全閉される状態で開口し且つ
他端が前記吐出室に通じる少なくとも一対以上のバイパ
ス穴を前記鏡板に対称配置するとともに、前記バイパス
穴を介して前記圧縮室から前記吐出室へのみ流体の排出
を許容するバイパス弁装置を前記鏡板に設けた構成で、
前記圧縮空間は前記吐出室にも前記吸入室にも間欠的に
連通しない空間が存在せず、前記バイパス穴は、前記吐
出口に最も近い圧縮室が前記吐出口に連通する直前の状
態と、前記最も近い圧縮室がその状態から150度前進
した状態とで、前記旋回スクロールラップによって前記
バイパス穴の一部が閉塞されない位置に設けられたスク
ロール気体圧縮機。
1. A spiral fixed scroll wrap which is formed upright on one surface of a mirror plate which is a part of a fixed scroll, and which is upright and fixed on a lap support disk which is a part of an orbiting scroll. Orbiting scroll wraps similar in shape to scroll wraps are meshed with each other to form a pair of spiral compression spaces between the scrolls, and a discharge port communicating with a discharge chamber is provided in the center of the fixed scroll wrap, and the fixed scroll is fixed. A suction chamber is provided outside the scroll wrap to prevent rotation of the orbiting scroll that engages with the wrap support disc that engages with the drive shaft and the body frame that fastens the fixed scroll and supports the drive shaft. When the orbiting scroll revolves with respect to the fixed scroll through the member, the compression spaces are directed from the suction side to the discharge side. Forming a scroll compression mechanism that is divided into a plurality of compression chambers that continuously move to change the volume so as to compress the fluid, and the anti-compression space side of the lap support disk is supported by a thrust bearing provided in the main body frame. Or a configuration in which the orbiting scroll is biased to the fixed scroll side by back pressure, and a check valve device is disposed on the end plate to allow a fluid flow only from the discharge port to the discharge chamber adjacent to the end plate. Then, at least one pair of bypass holes, which are opened in the compression chamber in the middle of compression in a state where they are fully opened and fully closed by the orbiting scroll wrap and whose other end communicates with the discharge chamber, are symmetrically arranged on the end plate, and the bypass hole is provided. With a configuration in which the end plate is provided with a bypass valve device that allows the discharge of fluid only from the compression chamber to the discharge chamber via
The compression space does not have a space that does not intermittently communicate with either the discharge chamber or the suction chamber, and the bypass hole is in a state immediately before the compression chamber closest to the discharge port communicates with the discharge port, A scroll gas compressor provided at a position where a part of the bypass hole is not closed by the orbiting scroll wrap when the closest compression chamber is advanced by 150 degrees from that state.
【請求項2】単一のバイパス弁装置が複数のバイパス穴
を同時に開閉すべく前記バイパス穴を接近して配置した
請求項1記載のスクロール気体圧縮機。
2. The scroll gas compressor according to claim 1, wherein a single bypass valve device arranges the bypass holes close to each other so as to simultaneously open and close the plurality of bypass holes.
【請求項3】逆止弁装置がバイパス弁装置を兼ねた請求
項1または2記載のスクロール気体圧縮機。
3. The scroll gas compressor according to claim 1, wherein the check valve device also serves as a bypass valve device.
【請求項4】吐出口に最も近いバイパス穴から360度
以内に後退した位置で且つ圧縮開始から360度以内の
位置の別の一対以上の補助バイパス穴と前記補助バイパ
ス穴を開閉するバイパス弁装置を鏡板に配置した請求項
1または2記載のスクロール気体圧縮機。
4. A pair of auxiliary bypass holes at a position retracted within 360 degrees from the bypass hole closest to the discharge port and within 360 degrees from the start of compression, and a bypass valve device for opening and closing the auxiliary bypass hole. The scroll gas compressor according to claim 1, wherein the scroll gas compressor is arranged on an end plate.
【請求項5】バイパス穴と補助バイパス穴との間の圧縮
室に旋回スクロールラップで全開全閉される状態で開口
し且つ他端が冷凍サイクルの減圧装置の途中に通じたイ
ンジェクション穴を鏡板に設けた請求項1または4記載
のスクロール気体圧縮機。
5. An injection hole, which is opened in a compression chamber between the bypass hole and the auxiliary bypass hole in a state where it is fully opened and closed by an orbiting scroll wrap and the other end of which is communicated with the decompression device of the refrigeration cycle, is used as an end plate. The scroll gas compressor according to claim 1, wherein the scroll gas compressor is provided.
【請求項6】冷凍サイクルの減圧装置とインジェクショ
ン穴との間の冷媒インジェクション配管の途中に開閉弁
を設け、圧縮機運転圧縮比が設定圧縮比よりも大きい時
に、前記開閉弁を開通せしめ、それ以外の圧縮機運転時
に前記開閉弁を遮断すべく制御する冷凍サイクルに接続
した請求項5記載のスクロール気体圧縮機。
6. An on-off valve is provided in the middle of the refrigerant injection pipe between the decompression device of the refrigeration cycle and the injection hole, and the on-off valve is opened when the compressor operating compression ratio is larger than the set compression ratio. The scroll gas compressor according to claim 5, wherein the scroll gas compressor is connected to a refrigerating cycle that controls to shut off the on-off valve during operation of the compressor other than.
JP33299295A 1995-12-05 1995-12-21 Scroll gas compressor Expired - Lifetime JP2959457B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP33299295A JP2959457B2 (en) 1995-12-21 1995-12-21 Scroll gas compressor
US08/761,085 US5855475A (en) 1995-12-05 1996-12-04 Scroll compressor having bypass valves
MYPI96005076A MY119499A (en) 1995-12-05 1996-12-04 Scroll compressor having bypass valves
CN96118600A CN1086778C (en) 1995-12-05 1996-12-05 Eddy gas compressor with by-pass valve
KR1019960064063A KR100210230B1 (en) 1995-12-05 1996-12-05 Scroll compressor having bypass valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33299295A JP2959457B2 (en) 1995-12-21 1995-12-21 Scroll gas compressor

Publications (2)

Publication Number Publication Date
JPH09170574A true JPH09170574A (en) 1997-06-30
JP2959457B2 JP2959457B2 (en) 1999-10-06

Family

ID=18261096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33299295A Expired - Lifetime JP2959457B2 (en) 1995-12-05 1995-12-21 Scroll gas compressor

Country Status (1)

Country Link
JP (1) JP2959457B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1114043C (en) * 1997-09-04 2003-07-09 松下电器产业株式会社 Vortex compressor
JP2005180206A (en) * 2003-12-16 2005-07-07 Mitsubishi Heavy Ind Ltd Horizontal scroll type compressor
JP2007023842A (en) * 2005-07-13 2007-02-01 Mitsubishi Electric Corp Scroll compressor
KR100844153B1 (en) * 2006-03-14 2008-07-04 엘지전자 주식회사 Bypass device for scroll compressor
WO2008142825A1 (en) 2007-05-17 2008-11-27 Daikin Industries, Ltd. Scroll compressor
JP2011047368A (en) * 2009-08-28 2011-03-10 Sanyo Electric Co Ltd Scroll compressor
JP2012241680A (en) * 2011-05-24 2012-12-10 Panasonic Corp Scroll compressor
CZ305898B6 (en) * 2012-06-11 2016-04-27 Mitsubishi Electric Corporation Screw-type compressor
JP2016109033A (en) * 2014-12-05 2016-06-20 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Scroll compressor
WO2018096823A1 (en) * 2016-11-24 2018-05-31 パナソニックIpマネジメント株式会社 Asymmetrical scroll compressor
WO2018096824A1 (en) * 2016-11-24 2018-05-31 パナソニックIpマネジメント株式会社 Scroll compressor
WO2020008747A1 (en) * 2018-07-05 2020-01-09 ダイキン工業株式会社 Scroll compressor
CN112567136A (en) * 2019-02-08 2021-03-26 松下知识产权经营株式会社 Scroll compressor having a discharge port
WO2021192238A1 (en) * 2020-03-27 2021-09-30 三菱電機株式会社 Scroll compressor
KR20240021024A (en) * 2022-08-09 2024-02-16 엘지전자 주식회사 Scroll compressor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1114043C (en) * 1997-09-04 2003-07-09 松下电器产业株式会社 Vortex compressor
JP2005180206A (en) * 2003-12-16 2005-07-07 Mitsubishi Heavy Ind Ltd Horizontal scroll type compressor
JP4672254B2 (en) * 2003-12-16 2011-04-20 三菱重工業株式会社 Horizontal scroll type compressor
JP2007023842A (en) * 2005-07-13 2007-02-01 Mitsubishi Electric Corp Scroll compressor
KR100844153B1 (en) * 2006-03-14 2008-07-04 엘지전자 주식회사 Bypass device for scroll compressor
WO2008142825A1 (en) 2007-05-17 2008-11-27 Daikin Industries, Ltd. Scroll compressor
US8408888B2 (en) 2007-05-17 2013-04-02 Daikin Industries, Ltd. Scroll compressor having relief ports to open first and second compression chambers
JP2011047368A (en) * 2009-08-28 2011-03-10 Sanyo Electric Co Ltd Scroll compressor
US8475148B2 (en) 2009-08-28 2013-07-02 Sanyo Electric Co., Ltd. Scroll compressor having through holes with a set depth
JP2012241680A (en) * 2011-05-24 2012-12-10 Panasonic Corp Scroll compressor
CZ305898B6 (en) * 2012-06-11 2016-04-27 Mitsubishi Electric Corporation Screw-type compressor
JP2016109033A (en) * 2014-12-05 2016-06-20 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Scroll compressor
WO2018096823A1 (en) * 2016-11-24 2018-05-31 パナソニックIpマネジメント株式会社 Asymmetrical scroll compressor
WO2018096824A1 (en) * 2016-11-24 2018-05-31 パナソニックIpマネジメント株式会社 Scroll compressor
CN109996961A (en) * 2016-11-24 2019-07-09 松下知识产权经营株式会社 Scroll compressor
JPWO2018096824A1 (en) * 2016-11-24 2019-10-17 パナソニックIpマネジメント株式会社 Scroll compressor
JPWO2018096823A1 (en) * 2016-11-24 2019-10-17 パナソニックIpマネジメント株式会社 Asymmetric scroll compressor
US11098715B2 (en) 2016-11-24 2021-08-24 Panasonic Intellectual Property Management Co., Ltd. Asymmetrical scroll compressor
WO2020008747A1 (en) * 2018-07-05 2020-01-09 ダイキン工業株式会社 Scroll compressor
CN112567136A (en) * 2019-02-08 2021-03-26 松下知识产权经营株式会社 Scroll compressor having a discharge port
CN112567136B (en) * 2019-02-08 2023-03-28 松下知识产权经营株式会社 Scroll compressor having a discharge port
WO2021192238A1 (en) * 2020-03-27 2021-09-30 三菱電機株式会社 Scroll compressor
JPWO2021192238A1 (en) * 2020-03-27 2021-09-30
KR20240021024A (en) * 2022-08-09 2024-02-16 엘지전자 주식회사 Scroll compressor

Also Published As

Publication number Publication date
JP2959457B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
JP3635794B2 (en) Scroll gas compressor
US4545747A (en) Scroll-type compressor
JPH09170574A (en) Scroll gas compressor
JPH08193583A (en) Scroll gas compressor
JPH11141483A (en) Electric gas compressor
JP4519489B2 (en) Scroll compressor
JP3028054B2 (en) Scroll gas compressor
JP3764261B2 (en) Scroll compressor
JPS61218792A (en) Scroll compressor
JP3027930B2 (en) Scroll gas compressor
JPH09217690A (en) Scroll gas compressor
JP2956555B2 (en) Scroll gas compressor
JPH1122664A (en) Scroll compressor
JPH0584394B2 (en)
JP2674562B2 (en) Scroll refrigerant compressor with refueling control means
JP3255441B2 (en) Control device of heat pump air conditioner using scroll compressor
JP3635826B2 (en) Scroll compressor
JP2001041183A (en) Scroll gas compressor
JP2004270667A (en) Scroll compressor
JP2001304152A (en) Scroll compressor
JPH0742945B2 (en) Scroll gas compressor
JP2009002223A (en) Scroll compressor
JPH05133356A (en) Closed type scroll compressor and oil supply device thereof
JPH04308382A (en) Compressor
JPH06317268A (en) Closed type scroll compressor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140730

Year of fee payment: 15

EXPY Cancellation because of completion of term