Nothing Special   »   [go: up one dir, main page]

JPH0917429A - Nickel hydroxide for non-sintered nickel positive electrode of alkaline storage battery - Google Patents

Nickel hydroxide for non-sintered nickel positive electrode of alkaline storage battery

Info

Publication number
JPH0917429A
JPH0917429A JP7185055A JP18505595A JPH0917429A JP H0917429 A JPH0917429 A JP H0917429A JP 7185055 A JP7185055 A JP 7185055A JP 18505595 A JP18505595 A JP 18505595A JP H0917429 A JPH0917429 A JP H0917429A
Authority
JP
Japan
Prior art keywords
nickel
nickel hydroxide
positive electrode
storage battery
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7185055A
Other languages
Japanese (ja)
Inventor
Eiji Funatsu
英司 船津
Yoshinari Yamauchi
巧也 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP7185055A priority Critical patent/JPH0917429A/en
Publication of JPH0917429A publication Critical patent/JPH0917429A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To make a tap density as high as possible without degrading a discharging property and a life characteristics, by causing powder particles of nickel hydroxide including Co or Cd dissolved therein to have a spherical or spheroidal shape of specific properties. CONSTITUTION: Powder particles of nickel hydroxide for a non-sintered nickel positive electrode of an alkaline storage battery are caused to have a spherical or spheroidal shape and to include Co or Cd dissolved therein, the specific surface area thereof being 5 to 10m<2> /g, the averaged particle diameter thereof being 1 to 30μm, and the half-power band width thereof being 0.9 to 1.3 deg.. Preferably, content quantity of the above-mentioned Co is 0.5 to 2wt.%, and content quantity of Cd is 1.5 to 5%. This nickel hydroxide powder can realize a tap density more than 2.1g/ml.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池の非焼
結式ニッケル正極用に用いて好適な水酸化ニッケルに関
する。
TECHNICAL FIELD The present invention relates to nickel hydroxide suitable for use in a non-sintered nickel positive electrode of an alkaline storage battery.

【0002】[0002]

【従来の技術】近年、電子機器の小型化・ポータブル化
が進むにつれて、それに搭載されるアルカリ蓄電池に対
しても小型化・軽量化が要求されている。そのため、ア
ルカリ蓄電池の高容量化が急速に進んでいる。この高容
量化の技術の一つに、多孔性のニッケル基板中に活物質
である水酸化ニッケルを充填した非焼結式ニッケル正極
が実用化されている(特公昭60−40667号公報参
照)。この非焼結式ニッケル正極は、旧来の焼結式ニッ
ケル正極に比べて、活物質である水酸化ニッケルを高密
度に極板中に保持できる。非焼結式ニッケル正極の活物
質である水酸化ニッケルの特性としては、(1)タップ
密度が十分に高い、(2)結晶度が低いことが必要であ
るとされている。上記(1)が必要とされるのは、
(a)水酸化ニッケルの充填量と非焼結式ニッケル正極
のエネルギー密度とが正の相関をもつ、(b)水酸化ニ
ッケルの充填量は、多孔性のニッケル基板の多孔度と水
酸化ニッケルのタップ密度に比例する、(c)多孔性の
ニッケル基板の多孔度には上限があるからである。ま
た、上記(2)が必要とされるのは、結晶度が高すぎる
水酸化ニッケルを用いて作成した正極では、放電反応に
不可欠なプロトンの移動が束縛され、充電時に電流密度
が増大して、放電特性および寿命特性を悪化させる原因
となる高次酸化物γ−NiOOHが多量に生成するよう
になるからである。従来、上記(1)および(2)を満
足する水酸化ニッケルについて種々の検討が行われ、例
えば、特公平4−68249号公報に記載された水酸化
ニッケルが知られている。すなわち、この水酸化ニッケ
ルは、球形状ないし楕円球形状の粒子からなる粉末であ
り、比表面積が10〜30m2 /g、平均粒径が2〜5
0μm、タップ密度が1.8〜2.02g/mlであ
る。しかしながら、非焼結式ニッケル正極の活物質とし
て上記水酸化ニッケルを使用すると、上記(1)におけ
る非焼結式ニッケル正極のエネルギー密度は、満足すべ
きものとはなっていない。
2. Description of the Related Art In recent years, as electronic devices have become smaller and more portable, the alkaline storage batteries mounted therein have been required to be smaller and lighter. Therefore, the capacity of alkaline storage batteries is rapidly increasing. As one of the technologies for increasing the capacity, a non-sintered nickel positive electrode in which a porous nickel substrate is filled with nickel hydroxide as an active material has been put into practical use (see Japanese Patent Publication No. 60-40667). . This non-sintered nickel positive electrode can hold nickel hydroxide, which is an active material, in the electrode plate at a higher density than the conventional sintered nickel positive electrode. As characteristics of nickel hydroxide, which is an active material of a non-sintered nickel positive electrode, it is said that (1) tap density is sufficiently high and (2) crystallinity is low. The above (1) is required
(A) The filling amount of nickel hydroxide and the energy density of the non-sintered nickel positive electrode have a positive correlation, and (b) the filling amount of nickel hydroxide is the porosity of the porous nickel substrate and the nickel hydroxide. This is because the porosity of the porous nickel substrate (c), which is proportional to the tap density of, has an upper limit. Further, the above (2) is required because in the positive electrode prepared by using nickel hydroxide having too high crystallinity, the movement of protons, which is indispensable for the discharge reaction, is restricted, and the current density increases during charging. This is because a large amount of high-order oxide γ-NiOOH, which causes deterioration of discharge characteristics and life characteristics, is generated. Conventionally, various studies have been made on nickel hydroxide satisfying the above (1) and (2), and for example, nickel hydroxide described in Japanese Patent Publication No. 4-68249 is known. That is, this nickel hydroxide is a powder composed of spherical or ellipsoidal particles, having a specific surface area of 10 to 30 m 2 / g and an average particle diameter of 2 to 5
0 μm, tap density is 1.8 to 2.02 g / ml. However, when the above nickel hydroxide is used as the active material of the non-sintered nickel positive electrode, the energy density of the non-sintered nickel positive electrode in (1) above is not satisfactory.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
事情に鑑み、上記(2)における放電特性および寿命特
性を悪化させることなく、タップ密度を可及的に高くす
るアルカリ蓄電池の非焼結式ニッケル正極用水酸化ニッ
ケルを提供することにある。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to non-burn an alkaline storage battery in which the tap density is as high as possible without deteriorating the discharge characteristics and life characteristics in (2) above. (EN) Provided is nickel hydroxide for a bonded nickel positive electrode.

【0004】[0004]

【課題を解決するための手段】本発明は、上記目的を達
成するものであり、コバルトおよび/またはカドミウム
を固溶させて含む球状ないし楕円球状の粒子からなる粉
末であり、比表面積が5〜10m2 /g、平均粒径が1
〜30μmおよびX線回折で測定した(101)面の回
折ピークの半価幅が0.9〜1.3°であるアルカリ蓄
電池の非焼結式ニッケル正極用水酸化ニッケルである。
上記本発明のアルカリ蓄電池の非焼結式ニッケル正極用
水酸化ニッケルに含まれるコバルトの含有量は、0.5
〜2重量%、カドミウムの含有量は、1.5〜5重量%
であることが好ましい。上記本発明のアルカリ蓄電池の
非焼結式ニッケル正極用水酸化ニッケルの粉末は、比表
面積が5〜10m2 /gであるので、タップ密度が2.
1g/ml以上になる。
The present invention achieves the above object, and is a powder comprising spherical or elliptic spherical particles containing cobalt and / or cadmium as a solid solution, and having a specific surface area of 5 to 5. 10 m 2 / g, average particle size is 1
The nickel hydroxide for a non-sintered nickel positive electrode of an alkaline storage battery having a half-value width of a diffraction peak of (101) plane measured by X-ray diffraction of ˜30 μm and 0.9-1.3 °.
The content of cobalt contained in the nickel hydroxide for a non-sintered nickel positive electrode of the alkaline storage battery of the present invention is 0.5
~ 2 wt%, cadmium content is 1.5-5 wt%
It is preferred that The nickel hydroxide powder for non-sintered nickel positive electrode of the alkaline storage battery of the present invention has a specific surface area of 5 to 10 m 2 / g, and therefore has a tap density of 2.
1g / ml or more.

【0005】[0005]

【作用】本発明のアルカリ蓄電池の非焼結式ニッケル正
極用水酸化ニッケルは、コバルトおよび/またはカドミ
ウムを固溶させて含む球状ないし楕円球状の粒子からな
る粉末であることが必要である。水酸化ニッケル粒子中
にコバルトおよび/またはカドミウムを固溶させるの
は、コバルトおよび/またはカドミウムを固溶させない
と、(1)充放電サイクルの繰り返しによりニッケル正
極が膨潤する、(2)水酸化ニッケルの結晶度が適度に
低くならず、放電反応に不可欠なプロトンの移動が束縛
され、充電時に電流密度が増大するため、放電特性およ
び寿命特性を悪化させる原因となる高次酸化物γ−Ni
OOHが多量に生成するようになるので、コバルトおよ
び/またはカドミウムを含有させて上記放電特性および
寿命特性の悪化を防止する。コバルトのみを含有させる
場合、その含有量は0.5〜2重量%、カドミウムのみ
を含有させる場合、その含有量は1.5〜5重量%、コ
バルトとカドミウムを含有させる場合、各々の含有量の
和は2〜7重量%であることが好ましい。それぞれの下
限未満では、上記コバルトおよび/またはカドミウムの
作用が十分でなく、一方、それぞれの上限を超えると、
Ni含有量が低減してニッケル正極のエネルギー密度が
減少する。また、本発明の水酸化ニッケル粒子の形状
は、球状ないし楕円球状であることが必要であり、それ
以外の角状などの不規則な形状のものでは、充分高いタ
ップ密度を得ることができない。
The nickel hydroxide for the non-sintered nickel positive electrode of the alkaline storage battery of the present invention must be a powder composed of spherical or elliptic spherical particles containing cobalt and / or cadmium as a solid solution. Cobalt and / or cadmium is solid-dissolved in nickel hydroxide particles, unless cobalt and / or cadmium is solid-dissolved, (1) nickel positive electrode swells due to repeated charge / discharge cycles, (2) nickel hydroxide Does not have an appropriately low crystallinity, the movement of protons, which is indispensable for the discharge reaction, is restricted, and the current density increases during charging.
Since a large amount of OOH is generated, cobalt and / or cadmium is contained to prevent the deterioration of the above discharge characteristics and life characteristics. When only cobalt is contained, the content is 0.5 to 2% by weight, when only cadmium is contained, the content is 1.5 to 5% by weight, and when cobalt and cadmium are contained, the respective contents are Is preferably 2 to 7% by weight. Below the respective lower limits, the action of cobalt and / or cadmium is not sufficient, while above the respective upper limits,
The Ni content is reduced and the energy density of the nickel positive electrode is reduced. Further, the shape of the nickel hydroxide particles of the present invention needs to be spherical or elliptic spherical, and if the shape is other than this, such as angular shape, a sufficiently high tap density cannot be obtained.

【0006】本発明のアルカリ蓄電池の非焼結式ニッケ
ル正極用水酸化ニッケル粉末は、比表面積が5〜10m
2 /g、平均粒径が1〜30μmおよびX線回折で測定
した(101)面の回折ピークの半価幅が0.9〜1.
3°であることも重要である。比表面積が5m2 /g未
満では、一次粒子(結晶子)が凝集して形成している水
酸化ニッケル粒子内部の空間体積、つまり細孔容積が少
なくなりすぎて電池反応で必要なプロトンの移動が阻止
され易くなり、一方、10m2 /gを超えると、充分高
いタップ密度を得ることができない。また、平均粒径が
1μm未満では、水酸化ニッケルが多孔性のニッケル基
板から脱落してニッケル正極のエネルギー密度が減少し
易くなり、一方、30μmを超えると、充分高いタップ
密度を得ることができない。さらに、X線回折で測定し
た(101)面の回折ピークの半価幅が0.9°未満で
は、電池反応で必要なプロトンの移動が阻止され易くな
り、一方、1.3°を超えると、充分高いタップ密度を
得ることができない。以上のような水酸化ニッケル粉末
は、タップ密度が2.1g/ml以上であり、通常2.
3g/ml以下である。
The nickel hydroxide powder for the non-sintered nickel positive electrode of the alkaline storage battery of the present invention has a specific surface area of 5 to 10 m.
2 / g, the average particle size is 1 to 30 μm, and the half width of the diffraction peak of the (101) plane measured by X-ray diffraction is 0.9 to 1.
It is also important that it is 3 °. If the specific surface area is less than 5 m 2 / g, the space volume inside the nickel hydroxide particles formed by agglomeration of primary particles (crystallites), that is, the pore volume becomes too small, and the transfer of protons necessary for the battery reaction However, if it exceeds 10 m 2 / g, a sufficiently high tap density cannot be obtained. If the average particle size is less than 1 μm, nickel hydroxide will fall off from the porous nickel substrate, and the energy density of the nickel positive electrode will tend to decrease. On the other hand, if it exceeds 30 μm, a sufficiently high tap density will not be obtained. . Further, when the half width of the diffraction peak of the (101) plane measured by X-ray diffraction is less than 0.9 °, the movement of protons necessary for the battery reaction is likely to be blocked, while when it exceeds 1.3 °. However, it is impossible to obtain a sufficiently high tap density. The nickel hydroxide powder as described above has a tap density of 2.1 g / ml or more, and usually 2.
It is 3 g / ml or less.

【0007】本発明のアルカリ蓄電池の非焼結式ニッケ
ル正極用水酸化ニッケル粉末は、従来のアルカリ蓄電池
の非焼結式ニッケル正極用水酸化ニッケル粉末と比べ
て、次の点で相違する。すなわち、従来の水酸化ニッケ
ル粉末は、タップ密度を2.1g/ml以上に増大しよ
うとして比表面積を10m2 /g以下に減少すると、X
線回折で測定した(101)面の回折ピークの半価幅が
0.9°未満になってしまうのに対して、本発明の水酸
化ニッケル粉末は、比表面積を10m2 /g以下に減少
しても、X線回折で測定した(101)面の回折ピーク
の半価幅が0.9°以上を保持し得る点に上記相違があ
る。その理由は、明らかではないが、本発明の水酸化ニ
ッケル粒子では、従来の水酸化ニッケル粒子に比べて、
凝集して該粒子を形成している一次粒子(結晶子)の大
きさが大幅に減少したためであると推察される。
The non-sintered nickel hydroxide powder for a non-sintered nickel positive electrode of an alkaline storage battery of the present invention differs from the conventional nickel hydroxide powder for a non-sintered nickel positive electrode of an alkaline storage battery in the following points. That is, when the conventional nickel hydroxide powder reduces the specific surface area to 10 m 2 / g or less in an attempt to increase the tap density to 2.1 g / ml or more, X
The half-value width of the diffraction peak of the (101) plane measured by line diffraction is less than 0.9 °, whereas the nickel hydroxide powder of the present invention reduces the specific surface area to 10 m 2 / g or less. However, there is the above difference in that the full width at half maximum of the diffraction peak of the (101) plane measured by X-ray diffraction can be maintained at 0.9 ° or more. The reason is not clear, but in the nickel hydroxide particles of the present invention, compared to conventional nickel hydroxide particles,
It is inferred that this is because the size of the primary particles (crystallites) that aggregate to form the particles was significantly reduced.

【0008】次に、本発明のアルカリ蓄電池の非焼結式
ニッケル正極用水酸化ニッケル粉末の製造方法について
説明する。ニッケルを含む水溶液と、コバルトおよび/
またはカドミウムを含む水溶液と、水酸化アルカリ水溶
液と、アンモニア水とを、同時に、かつ、連続的に供給
し、激しい撹拌を行いながら反応させて製造する。その
際の反応条件としては、(1)反応液中のニッケルイオ
ン濃度:1〜20mg/l、(2)反応液液温:40〜
70℃の範囲内で一定の温度、(3)撹拌機のインペラ
の吐出ヘッドおよび吐出流量(反応槽容積1m3 当た
り):それぞれ15〜30m2 /s2 、0.2m3 /s
以上、(4)生成粉末の反応槽での滞留時間:8時間以
上などである。
Next, a method for producing the nickel hydroxide powder for the non-sintered nickel positive electrode of the alkaline storage battery of the present invention will be described. Aqueous solution containing nickel, cobalt and /
Alternatively, an aqueous solution containing cadmium, an aqueous alkali hydroxide solution, and aqueous ammonia are simultaneously and continuously supplied, and reacted with vigorous stirring to produce them. The reaction conditions at that time are: (1) nickel ion concentration in the reaction liquid: 1 to 20 mg / l, (2) reaction liquid temperature: 40 to
Constant temperature within the range of 70 ° C., (3) Discharge head and discharge flow rate of impeller of stirrer (per 1 m 3 of reaction tank volume): 15 to 30 m 2 / s 2 , 0.2 m 3 / s, respectively
As described above, (4) residence time of the produced powder in the reaction tank is 8 hours or more.

【0009】[0009]

【実施例】【Example】

[実施例1]モル比でNi:Cd=1.6:0.04で
ある硫酸ニッケルと硫酸カドミウムの混合水溶液、22
重量%の水酸化ナトリウム水溶液(pH調整用)および
25重量%のアンモニア水を用いて、激しい撹拌を行い
ながらカドミウムが固溶した水酸化ニッケル粉末を連続
的に生成させた。この際の反応条件は次の通りであっ
た。 硫酸ニッケルと硫酸カドミウムの混合水溶液の添加速度 27.6 リットル/hr アンモニア水の添加速度 2.0 リットル/hr 反応液中のニッケルイオン濃度 10〜20 mg/l 反応液液温 50 ℃ 反応液pH 12.4 撹拌機のインペラの吐出ヘッド 16.3 m2 /s2 撹拌機のインペラの吐出流量(反応槽容積1m3 当たり) 0.23 m3 /s 生成粉末の反応槽での滞留時間 11 時間 生成した水酸化ニッケル粉末を連続的に取り出した後、
濾過、水洗、乾燥した。得られた粉末について、カドミ
ウム含有量の分析、並びに粒子形状、タップ密度、比表
面積、平均粒径およびX線回折で測定した(101)面
の回折ピークの半価幅の測定を行った。なお、平均粒径
は、コールターカウンターTA−II型により、また、使
用したX線回折装置は、リガク製ロータフレックスRU
−200B型を使用し、管電圧を50kV、管電流を5
0mA、ターゲット材をCuとした。そして、得られた
回折チャートから2θ=37〜39°の回折ピークの半
価幅を求めた。得られた結果を表1に示す。
Example 1 A mixed aqueous solution of nickel sulfate and cadmium sulfate having a molar ratio of Ni: Cd = 1.6: 0.04, 22
A nickel hydroxide powder in which cadmium was solid-dissolved was continuously produced while vigorously stirring using a weight% sodium hydroxide aqueous solution (for pH adjustment) and 25 weight% ammonia water. The reaction conditions at this time were as follows. Addition rate of mixed aqueous solution of nickel sulfate and cadmium sulfate 27.6 liter / hr Addition rate of ammonia water 2.0 liter / hr Nickel ion concentration in reaction solution 10-20 mg / l Reaction solution temperature 50 ° C Reaction solution pH 12.4 Discharge head of impeller of stirrer 16.3 m 2 / s 2 Discharge flow rate of impeller of stirrer (per reaction tank volume of 1 m 3 ) 0.23 m 3 / s Residence time of generated powder in reaction tank 11 After continuously taking out the generated nickel hydroxide powder,
It was filtered, washed with water and dried. The obtained powder was analyzed for cadmium content, and the particle shape, tap density, specific surface area, average particle diameter, and half-value width of the diffraction peak of the (101) plane measured by X-ray diffraction were measured. The average particle size is based on Coulter Counter TA-II type, and the X-ray diffractometer used is Rigaku Rotaflex RU.
-200B type, tube voltage 50kV, tube current 5
0 mA and the target material was Cu. Then, the full width at half maximum of the diffraction peak at 2θ = 37 to 39 ° was obtained from the obtained diffraction chart. Table 1 shows the obtained results.

【0010】[0010]

【表1】 添加元素含 粒子 タップ密 比表面積 平均粒径 (101)面 有量(重量%) 形状 度(g/ml) (m2/g) (μm) の半価幅 (°) 実施例1 Cd:2.5 球形 2.22 8.6 7.7 1.07 実施例2 Cd:2.7 球形 2.20 5.8 6.9 0.97 実施例3 Cd:3.1 球形 2.18 9.4 12.2 0.98 実施例4 Cd:3.2 球形 2.12 9.7 10.0 1.17 実施例5 Cd:3.0 Co:1.5 球形 2.15 7.8 7.3 1.00 比較例1 Cd:3.2 球形 2.08 20.7 9.6 0.96 比較例2 Zn:3.1 Co:1.5 球形 2.05 15.0 8.2 0.96 従来例1 添加せず 球形 2.04 25.8 17.7 0.99 従来例2 添加せず 球形 2.08 15.6 13.2 1.01 従来例3 添加せず 球形 1.90 21.2 16.4 1.11 従来例4 添加せず 球形 1.79 31.9 18.9 1.23 [Table 1] Additive element-containing particles Tap dense specific surface area Average particle size (101) surface content (% by weight) Form factor (g / ml) (m 2 / g) (μm) half width (°) Example 1 Cd: 2.5 spherical 2.22 8.6 7.7 1.07 Example 2 Cd: 2.7 spherical 2.20 5.8 6.9 0.97 Example 3 Cd: 3.1 spherical 2 .18 9.4 12.2 0.98 Example 4 Cd: 3.2 Spherical 2.12 9.7 10.0 1.17 Example 5 Cd: 3.0 Co: 1.5 Spherical 2.157 7.8 7.3 1.00 Comparative Example 1 Cd: 3.2 Spherical 2.08 20.7 9.6 0.96 Comparative Example 2 Zn: 3.1 Co: 1.5 Spherical 2.05 15.08 .2 0.96 Conventional Example 1 No addition spherical 2.04 25.8 17.7 0.99 Conventional Example 2 no addition spherical 2.08 15.6 13.2 1.01 Conventional 3 no addition spherical 1.90 21.2 16.4 1.1 1 Conventional Example 4 No addition, spherical 1.79 31.9 18.9 1.23

【0011】次に、上で得た水酸化ニッケル粉末を電極
活物質として非焼結式ニッケル電極を次のようにして作
成した。すなわち、上で得た水酸化ニッケル粉末90重
量部、ニッケル粉末8重量部、コバルト粉末2重量部お
よびこれらに増粘剤としてカルボキシルメチルセルロー
スを含むペーストを作成し、次に、このペーストを多孔
性の耐アルカリニッケル基板中に充填し、さらに、この
ニッケル基板を乾燥、圧縮することにより非焼結式ニッ
ケル電極を作成した。そして、このニッケル電極を正極
とし、正極より大過剰の容量をもつカドミウム電極を負
極とし、30重量%の水酸化カリウム水溶液を電解液と
し、ガラスフィルターで仕切られたガラス製の二極電解
セルを用いて、開放系のモデルセルを組み立てた。この
モデルセルを用い、次のようにして電極活物質の利用率
を測定した。すなわち、このモデルセルに0.1C相当
の電流で12時間充電した後、0.5C相当の電流で1
0Vまで放電することにより、放電容量を測定する。そ
の放電容量と使用した水酸化ニッケル粉末の理論電気容
量とから初期(1サイクル目)の利用率を求めた。ま
た、上記充放電サイクルを1サイクルとする100サイ
クルを繰り返した100サイクル目の利用率を求めた。
得られた結果を表2に示す。
Next, using the nickel hydroxide powder obtained above as an electrode active material, a non-sintered nickel electrode was prepared as follows. That is, 90 parts by weight of the nickel hydroxide powder obtained above, 8 parts by weight of nickel powder, 2 parts by weight of cobalt powder and a paste containing carboxymethyl cellulose as a thickening agent are prepared, and then the paste is made porous. A non-sintered nickel electrode was prepared by filling an alkali-resistant nickel substrate and further drying and compressing the nickel substrate. Then, this nickel electrode was used as a positive electrode, a cadmium electrode having a large excess capacity as compared with the positive electrode was used as a negative electrode, and a 30 wt% potassium hydroxide aqueous solution was used as an electrolytic solution, and a glass bipolar electrolytic cell partitioned by a glass filter was used. Was used to assemble an open model cell. Using this model cell, the utilization rate of the electrode active material was measured as follows. That is, after charging this model cell with a current equivalent to 0.1 C for 12 hours, it is charged with a current equivalent to 0.5 C to 1
The discharge capacity is measured by discharging to 0V. From the discharge capacity and the theoretical electric capacity of the nickel hydroxide powder used, the initial utilization rate (first cycle) was determined. In addition, the utilization rate at the 100th cycle was calculated by repeating 100 cycles with the charge / discharge cycle as one cycle.
Table 2 shows the obtained results.

【0012】[0012]

【表2】 1サイクル目の活物質 100サイクル目の活物質 の利用率(%) の利用率(%) 実施例1 94 93 実施例2 97 95 実施例3 95 92 実施例4 93 92 実施例5 95 93 比較例1 92 87 比較例2 94 89 従来例1 83 52 従来例2 88 64 従来例3 81 46 従来例4 91 59Table 2 Active material at 1st cycle Active material at 100th cycle (%) Utilization rate (%) Example 1 94 93 Example 2 97 95 Example 3 95 92 Example 4 93 92 Example 5 95 93 Comparative Example 1 92 87 Comparative Example 2 94 89 Conventional Example 1 83 52 Conventional Example 2 88 64 Conventional Example 3 81 46 Conventional Example 4 91 59

【0013】[実施例2〜4]水酸化ニッケル粉末を連
続的に生成させる際の反応条件を、反応液液温55℃、
撹拌機のインペラの吐出ヘッド20.9m2/s2、撹拌
機のインペラの吐出流量(反応槽容積1m3当たり)
0.26m3/sとした以外は、実施例1と同様に試験
した。得られた結果を表1および表2に示す。
Examples 2 to 4 The reaction conditions for continuously producing nickel hydroxide powder were as follows: reaction liquid temperature 55 ° C.
Discharge head 20.9 m 2 / s 2 of impeller of stirrer, discharge flow rate of impeller of stirrer (per 1 m 3 of reaction tank volume)
The test was performed in the same manner as in Example 1 except that the amount was 0.26 m 3 / s. The obtained results are shown in Tables 1 and 2.

【0014】[実施例5]硫酸ニッケルと硫酸カドミウ
ムの混合水溶液の代りに、モル比でNi:Cd:Co=
1.6:0.04:0.04である硫酸ニッケルと硫酸
カドミウムと硫酸コバルトの混合水溶液を用いた以外
は、実施例1と同様に試験した。得られた結果を表1お
よび表2に示す。
Example 5 Instead of a mixed aqueous solution of nickel sulfate and cadmium sulfate, a molar ratio of Ni: Cd: Co =
The test was performed in the same manner as in Example 1 except that a mixed aqueous solution of nickel sulfate, cadmium sulfate, and cobalt sulfate having a ratio of 1.6: 0.04: 0.04 was used. The obtained results are shown in Tables 1 and 2.

【0015】[比較例1]水酸化ニッケル粉末を連続的
に生成させる際の反応条件を、撹拌機のインペラの吐出
ヘッド11.7m2/s2、撹拌機のインペラの吐出流量
(反応槽容積1m3当たり)0.19m3/sとした以外
は、実施例1と同様に試験した。得られた結果を表1お
よび表2に示す。
[Comparative Example 1] The reaction conditions for continuously producing nickel hydroxide powder were as follows: discharge head 11.7 m 2 / s 2 of impeller of stirrer, discharge flow rate of impeller of stirrer (reaction tank volume except that the 1 m 3 per) 0.19 m 3 / s were tested as in example 1. The obtained results are shown in Tables 1 and 2.

【0016】[比較例2]硫酸ニッケルと硫酸カドミウ
ムの混合水溶液の代りに、モル比でNi:Zn:Co=
1.6:0.07:0.04である硫酸ニッケルと硫酸
亜鉛と硫酸コバルトの混合水溶液を用いた以外は、実施
例1と同様に試験した。得られた結果を表1および表2
に示す。
[Comparative Example 2] Instead of a mixed aqueous solution of nickel sulfate and cadmium sulfate, a molar ratio of Ni: Zn: Co =
A test was performed in the same manner as in Example 1 except that a mixed aqueous solution of nickel sulfate, zinc sulfate, and cobalt sulfate having a ratio of 1.6: 0.07: 0.04 was used. The obtained results are shown in Table 1 and Table 2.
Shown in

【0017】[従来例1〜4]42重量%の硫酸ニッケ
ル水溶液、22重量%の水酸化ナトリウム水溶液(pH
調整用)および25重量%のアンモニア水を用いて、水
酸化ニッケル粉末を連続的に生成させた。また、生成し
た水酸化ニッケル粉末を取り出した後も、実施例1と同
様に試験した。得られた結果を表1および表2に示す。
[Conventional Examples 1 to 4] 42 wt% nickel sulfate aqueous solution, 22 wt% sodium hydroxide aqueous solution (pH
Nickel hydroxide powder was continuously produced using (for adjustment) and 25% by weight of aqueous ammonia. Further, after taking out the produced nickel hydroxide powder, the same test as in Example 1 was conducted. The obtained results are shown in Tables 1 and 2.

【0018】表1に示した結果のうち、実施例1〜5、
比較例1、2および従来例1〜4における、タップ密度
と比表面積との関係を図1に、比表面積とX線回折で測
定した(101)面の回折ピークの半価幅との関係を、
実施例と従来例とに層別して図2に示す。図1から、
(1)タップ密度は、比表面積が減少する程増大する、
(2)実施例1〜4においてCdを2.5〜3.2重量
%含有させた水酸化ニッケル粉末、および実施例5にお
いてCdとCoを4.5重量%含有させた水酸化ニッケ
ル粉末は、タップ密度が2.1g/ml以上の高い値を
示すことが分かる。また、図2から、次のことが分か
る。すなわち、比表面積とX線回折で測定した(10
1)面の回折ピークの半価幅との関係は、添加元素を含
有させた実施例の場合と含有させない従来例の場合で相
違し、従来例の場合、(101)面の半価幅が0.99
〜1.23°で結晶度が適度に低くても、タップ密度
2.1g/ml以上を達成する比表面積10m2 /g以
下の水酸化ニッケル粉末粒子が得られないのに対して、
実施例の場合は、比表面積が10m2 /g以下となって
も(101)面の半価幅が0.9〜1.3°の値を示
し、結晶度が従来通り適度に低い水酸化ニッケル粉末粒
子が得られている。さらに、表1および表2から、次の
ことが分かる。すなわち、実施例の水酸化ニッケルは、
タップ密度が十分に高く、結晶度が適度に低いために、
優れたエネルギー密度、放電特性および寿命特性を示す
のに対し、比較例および従来例の水酸化ニッケルは、表
1中の諸特性が本発明の要件と必ずしも一致しないため
に、比較例1および2におけるエネルギー密度以外、エ
ネルギー密度、放電特性および寿命特性のいずれも優れ
ているとはいい難い。
Of the results shown in Table 1, Examples 1-5,
FIG. 1 shows the relationship between the tap density and the specific surface area in Comparative Examples 1 and 2 and Conventional Examples 1 to 4, and shows the relationship between the specific surface area and the half width of the diffraction peak of the (101) plane measured by X-ray diffraction. ,
FIG. 2 shows the example and the conventional example in layers. From FIG.
(1) The tap density increases as the specific surface area decreases,
(2) The nickel hydroxide powder containing 2.5 to 3.2 wt% of Cd in Examples 1 to 4 and the nickel hydroxide powder containing 4.5 wt% of Cd and Co in Example 5 It can be seen that the tap density shows a high value of 2.1 g / ml or more. Further, the following can be seen from FIG. That is, it was measured by specific surface area and X-ray diffraction (10
1) The relationship with the half width of the diffraction peak of the plane is different between the case of the example containing the additive element and the case of the conventional example not containing the additive element. In the case of the conventional example, the half width of the (101) plane is 0.99
Even if the crystallinity is appropriately low at 1.23 °, nickel hydroxide powder particles having a specific surface area of 10 m 2 / g or less that achieves a tap density of 2.1 g / ml or more cannot be obtained.
In the case of the examples, the half value width of the (101) plane shows a value of 0.9 to 1.3 ° even if the specific surface area is 10 m 2 / g or less, and the degree of crystallinity is moderately low as usual. Nickel powder particles are obtained. Furthermore, the following can be seen from Tables 1 and 2. That is, the nickel hydroxide of the example,
Because the tap density is high enough and the crystallinity is low,
While excellent energy density, discharge characteristics and life characteristics are exhibited, the nickel hydroxides of Comparative Example and Conventional Example have various characteristics in Table 1 that do not necessarily match the requirements of the present invention. It is hard to say that all of the energy density, the discharge characteristics and the life characteristics other than the above energy density are excellent.

【0019】[0019]

【発明の効果】以上から明らかなように、本発明によ
り、(1)タップ密度が2.1g/ml以上のため、ニ
ッケル正極のエネルギー密度を高くする、(2)X線回
折で測定した(101)面の回折ピークの半価幅が0.
9〜1.3°で結晶度が適度に低いため、優れた放電特
性および寿命特性を有するアルカリ蓄電池の非焼結式ニ
ッケル正極用水酸化ニッケルを提供することができる。
As is apparent from the above, according to the present invention, (1) since the tap density is 2.1 g / ml or more, the energy density of the nickel positive electrode is increased, and (2) it is measured by X-ray diffraction ( The full width at half maximum of the diffraction peak of the (101) plane is 0.
Since the crystallinity is appropriately low at 9 to 1.3 °, it is possible to provide nickel hydroxide for a non-sintered nickel positive electrode for alkaline storage batteries, which has excellent discharge characteristics and life characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例、比較例および従来例における、タップ
密度と比表面積との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between tap density and specific surface area in Examples, Comparative Examples and Conventional Examples.

【図2】比表面積とX線回折で測定した(101)面の
回折ピークの半価幅との関係を、実施例および従来例に
層別して示すグラフである。
FIG. 2 is a graph showing the relationship between the specific surface area and the half-value width of the diffraction peak of the (101) plane measured by X-ray diffraction, stratified into Examples and Conventional Examples.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コバルトおよび/またはカドミウムを固
溶させて含む球状ないし楕円球状の粒子からなる粉末で
あり、比表面積が5〜10m2 /g、平均粒径が1〜3
0μmおよびX線回折で測定した(101)面の回折ピ
ークの半価幅が0.9〜1.3°であるアルカリ蓄電池
の非焼結式ニッケル正極用水酸化ニッケル。
1. A powder comprising spherical or elliptic spherical particles containing cobalt and / or cadmium in a solid solution, having a specific surface area of 5 to 10 m 2 / g and an average particle diameter of 1 to 3.
Nickel hydroxide for a non-sintered nickel positive electrode of an alkaline storage battery in which the half-value width of the diffraction peak of the (101) plane measured by 0 μm and X-ray diffraction is 0.9 to 1.3 °.
【請求項2】 コバルトの含有量は、0.5〜2重量%
である請求項1に記載のアルカリ蓄電池の非焼結式ニッ
ケル正極用水酸化ニッケル。
2. The cobalt content is 0.5 to 2% by weight.
The nickel hydroxide for a non-sintered nickel positive electrode of an alkaline storage battery according to claim 1.
【請求項3】 カドミウムの含有量は、1.5〜5重量
%である請求項1に記載のアルカリ蓄電池の非焼結式ニ
ッケル正極用水酸化ニッケル。
3. The nickel hydroxide for a non-sintered nickel positive electrode of an alkaline storage battery according to claim 1, wherein the content of cadmium is 1.5 to 5% by weight.
【請求項4】 粉末は、タップ密度が2.1g/ml以
上である請求項1に記載のアルカリ蓄電池の非焼結式ニ
ッケル正極用水酸化ニッケル。
4. The nickel hydroxide for a non-sintered nickel positive electrode of an alkaline storage battery according to claim 1, wherein the powder has a tap density of 2.1 g / ml or more.
JP7185055A 1995-06-29 1995-06-29 Nickel hydroxide for non-sintered nickel positive electrode of alkaline storage battery Pending JPH0917429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7185055A JPH0917429A (en) 1995-06-29 1995-06-29 Nickel hydroxide for non-sintered nickel positive electrode of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7185055A JPH0917429A (en) 1995-06-29 1995-06-29 Nickel hydroxide for non-sintered nickel positive electrode of alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH0917429A true JPH0917429A (en) 1997-01-17

Family

ID=16164020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7185055A Pending JPH0917429A (en) 1995-06-29 1995-06-29 Nickel hydroxide for non-sintered nickel positive electrode of alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0917429A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery
EP0872904A3 (en) * 1997-04-14 2005-09-28 Matsushita Electric Industrial Co., Ltd. Nickel/metal hydride storage battery
EP1447868A4 (en) * 2001-11-22 2009-12-16 Sony Corp Non-aqueous primary battery
JP2014240355A (en) * 2014-09-30 2014-12-25 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872904A3 (en) * 1997-04-14 2005-09-28 Matsushita Electric Industrial Co., Ltd. Nickel/metal hydride storage battery
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery
EP1447868A4 (en) * 2001-11-22 2009-12-16 Sony Corp Non-aqueous primary battery
JP2014240355A (en) * 2014-09-30 2014-12-25 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide and method for producing the same

Similar Documents

Publication Publication Date Title
JPH1064537A (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
US6066416A (en) Nickel hydroxide positive electrode active material having a surface layer containing a solid solution nickel hydroxide with manganese incorporated therein
JPH0777129B2 (en) Nickel electrode active material and method for producing the same, nickel electrode and method for producing alkaline battery using the same
CN1163990C (en) Cathode active material for alkaline storage battery and cathode using same
JPH10125318A (en) Cathode active material and cathode for alkaline storage batteries
US7335445B2 (en) Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery
JP3324781B2 (en) Alkaline secondary battery
JPH0917429A (en) Nickel hydroxide for non-sintered nickel positive electrode of alkaline storage battery
JP2002056844A (en) Method for producing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP3080441B2 (en) Paste nickel electrode and alkaline storage battery
JP3239410B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JP3877179B2 (en) Nickel positive electrode for alkaline storage battery
JP2679274B2 (en) Nickel-hydrogen battery
JP3183073B2 (en) Active material for nickel electrode and method for producing the same
JPH0685325B2 (en) Active material for nickel electrode, nickel electrode and alkaline battery using the same
JPH08236110A (en) Non-sintered nickel electrode for alkaline storage battery
JP2001126722A (en) Iron compound oxide electrode and alkali cell using the same
JP3481068B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JPH1021902A (en) Manufacture of paste type nickel electrode for alkaline secondary battery
JPH05254847A (en) Production of nickel hyroxide powder for nickel electrode
JP3407983B2 (en) Method for producing non-sintered positive electrode for alkaline storage battery
JPH0613075A (en) Nickel electrode for alkaline storage battery
KR100288472B1 (en) Nickel electrode active material, nickel electrode using same, nickel alkaline storage battery and manufacturing method thereof
JPH01187768A (en) Nickel electrode for alkali battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040309