JPH09167642A - Electric cable joining device by explosion of explosive compound - Google Patents
Electric cable joining device by explosion of explosive compoundInfo
- Publication number
- JPH09167642A JPH09167642A JP34701095A JP34701095A JPH09167642A JP H09167642 A JPH09167642 A JP H09167642A JP 34701095 A JP34701095 A JP 34701095A JP 34701095 A JP34701095 A JP 34701095A JP H09167642 A JPH09167642 A JP H09167642A
- Authority
- JP
- Japan
- Prior art keywords
- explosion
- explosive
- container
- stress
- sound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Electrical Connectors (AREA)
- Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、その内部で爆薬の
爆発圧力を利用して2本の電線の端部を接合する、所謂
電線の爆発圧接や、更に広範には金属やセラミックの爆
発加工を、従来安全確保や騒音公害を避けるため、人里
離れた山間僻地でしか行なうことが出来なかった作業
を、安全に、かつ爆発騒音を極端に低減して、市街地で
も実施できるようにするための装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the so-called explosive pressure welding of electric wires, in which the ends of two electric wires are joined by utilizing the explosive pressure of explosives therein, and more broadly, the explosive processing of metals and ceramics. In order to ensure safety and avoid noise pollution, work that could only be done in remote remote areas of the mountains, safely, and with extremely low explosion noise, can be performed in urban areas. Of equipment.
【0002】[0002]
【従来の技術】従来爆発圧接や爆発加工(以後爆発圧接
等)を実施するについては、爆発圧接等を行なう材料と
爆薬を地上に置いて行なうか、”爆発消音装置の開
発”、「圧力技術」1988年3月、37ページに記載
されるような、定置式の大型の爆発消音装置内で行なう
のが通例で、装置を任意の地点に運搬して利用すること
によって、作業の安全性や騒音による公害を避ける等の
利便を受けることは出来なかった。2. Description of the Related Art Conventionally, for carrying out explosive pressure welding and explosive processing (hereinafter, explosive pressure welding, etc.), materials for explosive pressure welding and explosives are placed on the ground, or "development silencer", "pressure technology" It is usually carried out in a large stationary explosion-muffling device as described on page 37, March 1988. By transporting the device to an arbitrary point and using it, the safety of work can be improved. I was not able to receive the convenience of avoiding pollution caused by noise.
【0003】[0003]
【発明が解決しようとする課題】爆薬の爆発に伴って発
生する高圧ガスの膨張や、飛散物の発生、大音響等を避
けるために、主として鋼製の爆発室、爆発消音装置或い
は爆発容器等(以後装置)と呼ばれる、密閉或いは準密
閉状態に周囲から遮断した装置内で爆薬を爆発させるこ
とは行われてきた。ここで密閉と称する状態は、装置内
のガス等が装置のによって周囲から遮断されている状
態、準密閉とはほぼ密閉されているが、特定の僅かな気
体の通過出来る通路を設定している状態とする。従来の
技術によると、爆薬の爆発が極めて大きい応力を装置に
与え、時には高速の固体飛散物を周囲に投射し、大音響
を発生する等の問題を解決するため、装置の壁を頑丈に
作り、かつ爆発源から出来るだけ離すようにするため、
大型となることが避けられなかった。よって、装置を電
線の接続を必要とする電線架設作業をする場所に運んで
その利便を享受することは困難であった。この問題を解
決し、軽量、小型でありながら、上記の爆発に伴う諸現
象を制御して、可搬で安全な装置を開発するには、以下
の問題点がある。SUMMARY OF THE INVENTION In order to avoid expansion of high-pressure gas caused by explosion of explosives, generation of scattered matter, loud noise, etc., mainly an explosion chamber made of steel, an explosion silencer or an explosion container, etc. It has been performed to explode explosives in a device, which is called a device (hereinafter referred to as a device), which is shielded from the surroundings in a sealed or semi-sealed state. Here, the state referred to as a closed state is a state in which the gas and the like in the device is blocked from the surroundings by the device, and is almost closed from the semi-closed state, but a passage through which a specific slight amount of gas can pass is set. State. According to the conventional technology, the wall of the device is made sturdy in order to solve the problem that the explosive explosive exerts extremely large stress on the device, sometimes projects high-speed solid debris to the surroundings, and produces a loud sound. , And as far as possible from the explosion source,
It was inevitable that it would become large. Therefore, it has been difficult to carry the device to a place where an electric wire erection work is required to connect the electric wires and enjoy the convenience. In order to solve this problem and control a variety of phenomena associated with the above explosion while being lightweight and small in size, and developing a portable and safe device, there are the following problems.
【0004】1)爆発に伴う大音響を抑制するには、強
固な金属製の容器内に爆薬を密閉して爆発させれば、爆
発音響はほぼ完全に抑制でき、外部には微かな音響しか
伝わらないが、そのような密閉容器を使用すると、爆発
によって生じた爆発ガスが容器内に閉じ込められ、容器
を開放する際に内圧によって急激に開くと共にガスが噴
出し、作業者に危険が及ぶ恐れがあり、また、電線の様
に表面に細かい凹凸があるものの一部を内部に導入しつ
つ密閉することには困難がある。1) In order to suppress the loud sound caused by the explosion, the explosive sound can be suppressed almost completely by enclosing the explosive in a strong metal container to explode it, and only a faint sound is emitted outside. Although not transmitted, if such an airtight container is used, the explosive gas generated by the explosion will be trapped inside the container, and when the container is opened, it will suddenly open due to the internal pressure and the gas will blow out, which may be dangerous to the operator. In addition, it is difficult to introduce a part of a wire having fine irregularities on its surface like an electric wire and to seal it.
【0005】2)電線を接合する場合には、長い電線同
士を結合する必要があるため、電線の両端が容器から突
き出した状態で施工し、施工後は容器を分割して取り出
す必要がある。そのような場合、分割された容器を結合
する部分が特異点となるため、強度を充分に持たせる必
要があり、重量増加要因となる。すなわち、従来、電線
を爆薬の爆発によって接合するための装置に於いては、
分割した装置を結合する手段として、ボルト締めによっ
て結合し、ボルトの抗張力と、ボルトを取り付けたフラ
ンジの強度で爆発衝撃と爆発ガスの圧力に耐えるように
したものが殆どであった。そのような手段を取ることに
よって、応力に対する配慮さえ適切であれば確実に爆発
衝撃と爆発ガスの圧力に耐える装置を得られるが、強大
な応力に耐えるためのボルトとフランジが重量増加要因
であり、また、作業の度にボルトを締め、また弛める手
間が作業の能率を阻害していた。2) When joining electric wires, it is necessary to connect long electric wires to each other. Therefore, it is necessary to carry out the work with both ends of the electric wires protruding from the container, and to divide the container after taking out the work. In such a case, a portion connecting the divided containers serves as a singular point, so that it is necessary to have sufficient strength, which causes a weight increase. That is, conventionally, in a device for joining electric wires by explosive explosion,
As a means for connecting the divided devices, most of them are connected by bolting so that the tensile strength of the bolt and the strength of the flange to which the bolt is attached can withstand the explosion impact and the pressure of the explosion gas. By taking such measures, it is possible to obtain a device that can withstand explosive shock and the pressure of explosive gas if the consideration for stress is appropriate, but the bolts and flanges for withstanding the great stress are the factors that increase the weight. Also, the trouble of tightening and loosening the bolt every time the work hinders the work efficiency.
【0006】[0006]
【課題を解決するための手段】上記の各問題点につき以
下の対策を講ずれば、解決できると考えられる。各番号
は上記問題点の番号に対応する。 1)容器を準密閉状態として、明らかな解放部分は電線
が容器から突出した部分に意図的に設けられた隙間のみ
とし、その隙間の面積の電線に対する割合を一定値以下
とすることによって準密閉式とし、電線の表面が凹凸で
あることを利用して、電線表面を伝って爆発ガスが内圧
によって装置から自動的に噴出する際、絞られ、かつ流
路抵抗がある通路を通すことによって、噴出するガスに
よる危害を充分に軽減し、大音響を避けられることが判
明した。[Means for Solving the Problems] It is considered that the above problems can be solved by taking the following measures. Each number corresponds to the above-mentioned problem number. 1) With the container in a semi-sealed state, the only obvious open part is the gap intentionally provided in the part where the electric wire protrudes from the container, and the ratio of the area of the gap to the electric wire is a certain value or less to make the semi-sealed state. By utilizing the fact that the surface of the wire is uneven, when explosive gas is automatically ejected from the device by the internal pressure along the surface of the wire, it passes through a passage that is narrowed and has flow resistance. It was found that the harm caused by the ejected gas can be sufficiently reduced and loud noise can be avoided.
【0007】2)従来多く用いられてきた、ボルトとフ
ランジによる結合方式を廃し、容器を組み合わせる際に
は、容器の結合部が相互に入り込み、その上で回転させ
ることによって結合部が噛み合って分離できない状態に
なる、所謂バヨネット方式による結合構造を採ることに
よって、充分な強度を有しつつ、簡単な構造で軽量な装
置が得られる。2) Abolishing the connection method using bolts and flanges, which has been widely used in the past, when the containers are combined, the connection parts of the containers enter into each other, and the connection parts are engaged and separated by rotating on top of each other. By adopting a so-called bayonet type coupling structure that cannot be used, it is possible to obtain a lightweight device having a simple structure while having sufficient strength.
【0008】[0008]
【発明の実施の形態】以下、図によって本発明を説明す
る。図1は本発明による装置内に電線の接合部と爆薬を
その中央部に入れ、円筒形の装置の壁面に180゜の位
置に設けられた通路を通って電線が装置の外に導かれて
いる状況を示す断面図で、1は爆薬、2は電線を接合す
るための金属管、3は電線、4は装置の上部、5は装置
の下部で、電線3に隠れて分割部は見えないが、装置は
4と5の2つの部分に分割されて、接合後の電線3を装
置から出せるようにしてある。また、6は電線の通路、
7は電気雷管、8は電気雷管に通電して起爆するための
電線である。装置の形状は仮に円筒形としてあるが、例
えば円筒形の替りに多角形の断面を有する容器でも、球
形の容器についても、材料力学に関する基礎的な知識を
有するものであれば、本発明明細書と材料力学の教科書
等を用いて、容易に適切な設計をすることが可能であ
る。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to the drawings. FIG. 1 shows that the electric wire joint and explosive are placed in the center of the apparatus according to the present invention, and the electric wire is guided to the outside of the apparatus through a passage provided at a position of 180 ° on the wall surface of the cylindrical apparatus. 1 is an explosive, 2 is a metal tube for joining electric wires, 3 is an electric wire, 4 is an upper part of the device, 5 is a lower part of the device, and the divided part cannot be seen because it is hidden by the electric wire 3. However, the device is divided into two parts 4 and 5 so that the electric wire 3 after joining can be taken out from the device. In addition, 6 is the passage of the electric wire,
Reference numeral 7 is an electric detonator, and 8 is an electric wire for energizing the electric detonator to detonate. The shape of the device is assumed to be a cylindrical shape, but for example, a container having a polygonal cross section instead of a cylindrical shape and a spherical container as long as they have basic knowledge about material mechanics, the present invention It is possible to easily make an appropriate design by using a textbook of material mechanics and the like.
【0009】まず、爆薬1が爆発することによって装置
の壁面に負荷される衝撃応力とそれによって装置に負荷
される応力は、次の手続きによって求められる。一般に
爆薬の爆発によって発生する衝撃波の圧力は、距離の3
乗に反比例し、爆薬量に比例することが知られている。
そこで、どのような距離、どのような薬量についても衝
撃波圧力を容易に求められるようにするため、等価薬量
という観念を導入すると、等価薬量Zは次式で表わすこ
とができる。 Z=R/W1/3 ・・・・・・・・・・・・・・・・・・ 1) ここで、Rは爆薬中心からの距離;m、Wは爆薬量;k
gである。First, the impact stress applied to the wall surface of the device by the explosion of the explosive 1 and the stress applied to the device by the impact stress are obtained by the following procedure. Generally, the pressure of the shock wave generated by the explosion of explosive is 3
It is known to be inversely proportional to the power and proportional to the amount of explosive.
Therefore, if the concept of equivalent dose is introduced in order to easily obtain the shock wave pressure for any distance and any dose, the equivalent dose Z can be expressed by the following equation. Z = R / W 1/3 ... 1) where R is the distance from the center of the explosive; m, W is the amount of explosive; k
g.
【0010】最初に装置胴部の半径方向への応力を求め
ることを考える。この場合、まず装置4または5の胴部
の内壁面に負荷される運動エネルギ等を求める必要があ
るから、Rは爆薬の中心から装置壁面までの距離、Wは
容器内で爆発させる爆薬の重量に相当する。容器の強度
を求めるについては、最終的にはその歪みまたは負荷応
力を知ることが要求される。静的圧力による負荷または
歪みについては、壁面に対する静的負荷圧力と、それに
よる容器の変形応力が釣り合う値を求めることによって
得られるが、衝撃圧力が負荷される場合は、それが過渡
現象であるため、静的釣合によって求めることはできな
い。このような場合、衝撃圧力によって壁面に与えられ
る運動エネルギと、その運動エネルギによって壁面が変
位し容器が変形することによって容器に蓄えられる変形
エネルギが釣り合う値を求め、その際の容器の歪みまた
は負荷応力を知る。その手続のためには、まず反射イン
パルスIrを知る必要がある。広範な等価薬量Zの値に
ついて、米国政府刊行物のSupressive Shields(HNDM111
0-1-2)Jan.23、1978の3-15,16ページ、Fig.3-6に等価薬
量Zを横軸に、反射インパルスを薬量の1/3乗で割った
値Ir/W1/3を縦軸にしたグラフが示され、計算した等
価薬量Zから容易にIr/W1/3を求めることが出来る。First, let us consider obtaining the stress in the radial direction of the apparatus body. In this case, first, it is necessary to obtain the kinetic energy applied to the inner wall surface of the body of the device 4 or 5, so R is the distance from the center of the explosive to the device wall, and W is the weight of the explosive to be detonated in the container. Equivalent to. When determining the strength of a container, it is finally required to know its strain or load stress. The load or strain due to static pressure can be obtained by finding a value that balances the static load pressure against the wall surface and the resulting deformation stress of the container, but when impact pressure is applied, it is a transient phenomenon. Therefore, it cannot be determined by static balance. In such a case, the kinetic energy given to the wall surface by the impact pressure and the deformation energy stored in the container when the wall surface is displaced by the kinetic energy are deformed and the deformation energy stored in the container is found. Know the stress. For the procedure, it is first necessary to know the reflected impulse Ir. For a wide range of equivalent dose Z values, US Government published Supressive Shields (HNDM111
0-1-2) Jan. 23, 1978, pages 3-15, 16 and Fig. 3-6, with the equivalent dose Z on the horizontal axis, the reflex impulse divided by the 1/3 power of the dose I r A graph in which / W 1/3 is plotted on the vertical axis is shown, and I r / W 1/3 can be easily obtained from the calculated equivalent dose Z.
【0011】上記1)によって、等価薬量Zを計算し
て、その値に相当する反射インパルスIrをW1/3で割っ
た値を知り、それにW1/3を掛ければIrを得ることが出
来る。ただし、同グラフの単位は等価薬量Zはft/l
b1/3であり、反射インパルスを薬量の1/3乗で割った値
Ir/W1/3の単位は、psi・sec/lb1/3である
ので、物理単位で計算するためには、kg−m系に換算
する必要がある。換算後の単位は等価薬量Zはm/kg
1/3であり、Ir/W1/3はkg・m/m2・sec2/k
g1/3であるが、この程度の換算は、技術計算に習熟し
た当業者であれば、本発明明細書を参考にして容易に実
施できる。According to the above 1), the equivalent dose Z is calculated, the value obtained by dividing the reflection impulse I r corresponding to that value by W 1/3 is obtained, and it is multiplied by W 1/3 to obtain I r . You can However, the unit of the graph is equivalent dose Z is ft / l
b 1/3 , and the unit of the value I r / W 1/3 obtained by dividing the reflex impulse by the 1/3 power of the dose is psi · sec / lb 1/3 , so it is calculated in physical units. Therefore, it is necessary to convert to kg-m system. The unit after conversion is equivalent dose Z is m / kg
1/3 , and I r / W 1/3 is kg · m / m 2 · sec 2 / k
Although it is g 1/3 , this level of conversion can be easily performed by those skilled in the art of technical calculation with reference to the present specification.
【0012】更に、反射インパルスIrと圧力を負荷さ
れる材料の質量Mから式2)によって、系が与えられる
運動エネルギKEを誘導することができる。 KE=Ir 2/2M ・・・・・・・・・・・・・・・・・・ 2) 一方、装置円筒部分の歪みεによる変形エネルギΔEi
は、3)式で表わされる。 ΔEi=2σεπRht/2=σεπRht ・・・・・・ 3) ただし、σ;円筒に対する負荷応力、ε;円筒の歪み
率、R;円筒の内半径、h;円筒の高さ、t;円筒の肉
厚、π;円周率 これは円筒が薄肉であると仮定したものであり、また、
円筒の長さが径に対して余り長くない場合に適用できる
ものであるが、厚肉の場合や、径に対して長さが十分に
長い、例えば長さが径の3倍を越えるような場合には、
厚肉円筒の式を用い、更に長さが径の3倍を越える部分
については爆薬中心からの距離Rが変わり、圧力の負荷
方向が変わることによる修正を加える必要がある。しか
し、この程度のことは当業者であれば、材料力学の教科
書等を参考にして容易に修正できるし、簡単には全面に
垂直応力がかかるとして計算しても実用上の問題はな
い。Furthermore, the kinetic energy KE given to the system can be derived from the reflected impulse I r and the mass M of the material under pressure by equation 2). KE = I r 2 / 2M ... 2) On the other hand, the deformation energy ΔEi due to the strain ε of the cylindrical portion of the device.
Is expressed by the equation 3). ΔEi = 2σεπRht / 2 = σεπRht (3) where σ: load stress on the cylinder, ε: strain rate of the cylinder, R: inner radius of the cylinder, h: height of the cylinder, t: meat of the cylinder Thickness, π; Circularity This assumes that the cylinder is thin, and
It can be applied when the length of the cylinder is not too long with respect to the diameter, but when it is thick or the length is sufficiently long with respect to the diameter, for example, when the length exceeds three times the diameter. in case of,
It is necessary to use the formula of a thick-walled cylinder, and to correct the portion where the length exceeds 3 times the diameter by changing the distance R from the center of the explosive and changing the pressure load direction. However, those skilled in the art can easily correct this amount by referring to a textbook of material mechanics or the like, and there is no practical problem even if it is simply calculated that vertical stress is applied to the entire surface.
【0013】ここで、2)式によって得られる運動エネ
ルギKEと容器が変形することによって蓄えられるエネ
ルギΔEiは釣り合うとすれば、 Ir 2/2M=σεπRht と置くことができ、更に、 ε=σ/Ey ・・・・・・・・・・・・・・・・・ 4) ただし、Eyはヤング率、鋼の場合、2.1×1011k
g・m/sec2であるから、 σ=[Ir 2Ey/2MπRht]1/2 ・・・・・・・ 5) が得られる。ここで、円筒の歪みεを求める場合は、σ
の値を式3)に代入することによって与えられる。Here, if the kinetic energy KE obtained by the equation 2) and the energy ΔEi stored by the deformation of the container are balanced, then I r 2 / 2M = σεπRht can be set, and further, ε = σ / Ey ···· 4) However, Ey is Young's modulus, in the case of steel, 2.1 × 10 11 k
Since g · m / sec 2 , σ = [I r 2 Ey / 2MπRht] 1/2 ... 5) is obtained. Here, when obtaining the strain ε of the cylinder, σ
Is given by substituting the value of
【0014】以上は円筒形装置4及び5の内壁面に負荷
される胴部の半径方向への応力またはそれによる歪みを
求める手続きであるが、この値はそのまま球形の容器に
応用しても差し支えない。ただし、球形容器の場合に
は、応力は壁面のX軸Y軸方向に均等にかかるので、そ
の点に関しての配慮が必要であるが、材料力学に関して
基礎的な知識を有する当業者であれば、材料力学に関す
る教科書等を参考にすれば容易に応用し得る問題であ
る。次に装置の下部と上部に負荷される運動エネルギに
よって上下装置の連結部に垂直に負荷される応力または
歪みの求め方について説明する。基本的には、球形の容
器の場合は、内壁面への負荷の垂直方向分力を内壁面に
沿って積分すればよいが、簡単には、爆薬中心からの距
離Rにある爆発衝撃の伝播方向に直角に置かれた平坦な
壁面に応力が負荷されたものと同等に扱って差し支えな
い。すなわち、爆薬中心からの距離と薬量、底部と蓋部
の質量から運動エネルギKEを求めることについては変
わりはない。ただし、装置4の上部は装置5の下部と円
筒形胴部と装置4と5の結合部(図1には示されていな
い)を介して一体であるので、装置4の上部と装置5の
下部は胴部と装置4と5の結合部を介して引張りあうと
考えればよい。つまり装置4の上部と装置5の下部にか
かる運動エネルギは、胴部と結合部の垂直方向への歪み
エネルギに変換されることになる。装置4の上部と装置
5の下部に付与される単位面積あたり運動エネルギKE
は式2)から得られ、装置4の上部と装置5の下部の質
量をそれぞれM4、M5とし、簡単のためそれぞれに対
する反射インパルスIrは等しいとすると、それぞれの
単位面積当り運動エネルギKE4とKE5は、次のよう
になる。 KE4=Ir2/2M4 ・・・・・・・・・・・・・・・ 6) KE5=Ir2/2M5 ・・・・・・・・・・・・・・・ 7)The above is the procedure for obtaining the radial stress of the body portion loaded on the inner wall surfaces of the cylindrical devices 4 and 5 or the strain due to the stress. However, this value can be directly applied to a spherical container. Absent. However, in the case of a spherical container, the stress is applied evenly in the X-axis and Y-axis directions of the wall surface, so it is necessary to consider that point, but a person skilled in the art who has a basic knowledge of material mechanics, This is a problem that can be easily applied by referring to textbooks on material mechanics. Next, how to obtain the stress or strain vertically applied to the connecting portion of the upper and lower devices by the kinetic energy applied to the lower part and the upper part of the device will be described. Basically, in the case of a spherical container, the vertical component force of the load on the inner wall surface may be integrated along the inner wall surface, but simply the propagation of the explosion impact at a distance R from the explosive center. It may be treated in the same way as stress is applied to a flat wall placed at right angles to the direction. That is, there is no difference in obtaining the kinetic energy KE from the distance from the center of the explosive and the dose, and the mass of the bottom and the lid. However, since the upper part of the device 4 is integral with the lower part of the device 5 and the cylindrical body and the connecting part of the devices 4 and 5 (not shown in FIG. 1), the upper part of the device 4 and the device 5 are integrated. It may be considered that the lower part is pulled through the joint between the body and the devices 4 and 5. That is, the kinetic energy applied to the upper part of the device 4 and the lower part of the device 5 is converted into the strain energy in the vertical direction of the body and the joint. Kinetic energy KE per unit area applied to the upper part of the device 4 and the lower part of the device 5.
Is obtained from equation (2), and assuming that the masses of the upper part of the device 4 and the lower part of the device 5 are M4 and M5, respectively, and the reflected impulses Ir are the same for the sake of simplicity, the kinetic energies KE4 and KE5 per unit area are , Like this: KE 4 = Ir2 / 2M 4・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 6) KE 5 = Ir2 / 2M 5・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 7)
【0015】更に、装置4の上部と装置5の下部の受圧
部分の半径は胴部の半径と等しいから、受圧面積は共に
πR2である。従って、それをKE4とKE5に乗ずれ
ば各々の運動エネルギが与えられる。よって合計の運動
エネルギKETは、 KET=πR2Ir 2(M4+M5)/(2M4M5) ・・・・ 8) となり、それを支えるのは円筒形容器の変形エネルギで
あるから、胴部の垂直軸に直角な断面積をA、長さを
L、結合を仮に数箇所のバヨネット構造によるとし、バ
ヨネット部は変形しないものとして扱えば、容器の変形
エネルギは全て容器上部4と下部5の垂直壁面の変形エ
ネルギとして扱える。容器壁面の合計の断面積をA’、
長さをL’、それぞれの歪をεとε’、共通の垂直方向
への応力をσVとすると、変形エネルギΔEiは、 ΔEi=EyΣεn 2AnLn ・・・・・・・・・・・・・ 9) である。胴部に対する半径方向への負荷の計算と同様に
して、運動エネルギと歪みエネルギを等しいと置き、
4)を導入することによって、胴部と結合部の垂直方向
への応力σVを求めることができる。Further, since the radii of the pressure receiving portions of the upper portion of the device 4 and the lower portion of the device 5 are equal to the radius of the body portion, both the pressure receiving areas are πR 2 . Therefore, multiplying it by KE4 and KE5 gives each kinetic energy. Thus the kinetic energy KE T the total, KE T = πR 2 I r 2 (M 4 + M 5) / (2M 4 M 5) ···· 8) is established, and support it in the deformation energy of the cylindrical container Therefore, assuming that the cross-sectional area perpendicular to the vertical axis of the body is A, the length is L, and the connection is based on the bayonet structure at several places, and the bayonet part is treated as if it does not deform, the deformation energy of the container is all above the container. It can be treated as the deformation energy of the vertical wall surfaces of 4 and the lower part 5. The total cross-sectional area of the container wall is A ',
If the length is L ', the respective strains are ε and ε', and the common stress in the vertical direction is σV, the deformation energy ΔEi is ΔEi = E y Σε n 2 A n L n ... ......... 9). Similar to the calculation of the radial load on the torso, kinetic energy and strain energy are set equal,
By introducing 4), the stress σ V in the vertical direction between the body and the joint can be obtained.
【0016】ここで問題となることは、胴部には半径方
向の応力と円筒軸方向の応力が、同時に負荷されること
である。すなわち、負荷は3軸応力状態となる。3軸応
力が負荷され、かつ本発明で問題とする衝撃負荷状態の
場合、材料は容易に脆性破壊することが知られている。
しかし、経験的に負荷応力が使用する材料の抗張力の5
0%未満好ましくは30%未満であり、設計が適切であ
れば、使用中に応力集中が発生するような疵を作らない
限り104回程度の寿命範囲で使用可能である。また、
上下平面とシリンダの交差部分が応力集中によって危険
な状態になるので、十分につなぎ部に大きな曲率を与え
るか、応力集中を緩和する工夫をして、脆性破壊を防止
する必要がある。具体的にどの程度の曲率が必要である
か、どの様な工夫によって応力集中を緩和できるかとい
うことについては、容器の形状、負荷の程度、要求され
る寿命、使用する材質等によって異なるので、一概に規
定することは困難であるが、材料力学に関する基礎的な
知識を有するものであれば、本発明明細書と材料力学の
教科書等を参考にして、適切な設計をすることが可能で
ある。しかし、どのような適切な設計をしても、使用中
に被った感知しない疵や、材料に潜在した欠陥によって
容器が破損することがあり得る。そのような事故に対す
る安全策として、容器が破損して飛散するようなことが
あっても人身、設備等に危害が及ばないように、例えば
頑丈な掩体中で実施するような配慮が必要である。The problem here is that radial stress and cylindrical axial stress are simultaneously applied to the body. That is, the load is in a triaxial stress state. It is known that when triaxial stress is applied and the impact load condition which is a problem in the present invention, the material easily undergoes brittle fracture.
However, empirically, the load stress is 5% of the tensile strength of the material used.
It is less than 0%, preferably less than 30%, and if the design is appropriate, it can be used within a life range of about 10 4 times unless a flaw that causes stress concentration during use is created. Also,
Since the intersection of the upper and lower planes and the cylinder becomes dangerous due to stress concentration, it is necessary to prevent the brittle fracture by giving a sufficient curvature to the joint or by devising a method for relaxing the stress concentration. As for how much curvature is required and how the stress concentration can be relaxed, it depends on the shape of the container, the degree of load, the required life, the material used, etc. It is difficult to specify in a general way, but if you have basic knowledge about material mechanics, you can design appropriately by referring to the specification of the present invention and textbooks of material mechanics. . However, with any suitable design, it is possible that the container may be damaged by imperfect flaws in use or latent defects in the material. As a safety measure against such accidents, it is necessary to consider, for example, in a sturdy cover so as not to injure the human body or equipment even if the container is broken and scattered. .
【0017】以上、爆薬が密閉或いは準密閉装置内で爆
発した場合、発生する衝撃波によって装置が受ける応力
の求め方について説明したが、装置はそれ以外に爆薬か
ら発生する高圧ガスによって静的内圧を受ける。静的内
圧PSは、式10)で得られる。 PS=f・W/V ・・・・・・・・・・・・・・・・・・・ 10) ここで、PS;発生内圧、f;火薬力、W、薬量、V;
容器容積 これによって容器に負荷される内圧PSを知れば、材料
力学の教科書や本発明明細書実施例等を参考にして、内
圧が負荷される容器の歪みまたは応力を求めることがで
きるので、容易に容器強度の適、不適を知ることができ
る。ただし、殆どの場合、容器に負荷される内圧PSに
よる容器の歪みまたは応力は、a.で検討した衝撃によ
るそれより小さく、問題とする必要はない。問題となる
場合は、比較的容積の大きな容器中で、衝撃圧が低く、
ガス量が多い爆薬、例えばANFOを爆発させるような
場合で、容器に対する静的応力が動的応力を上回る場合
がある。そのような場合は、静的応力に対処した設計を
するべきであるが、本発明による装置の場合は、対象と
する必要がないので、ここでは具体的な例による説明は
避けるが、必要な場合は、当業者であれば上記の説明と
適切な爆薬に関する参考書及び本発明明細書を参考にし
て、容易に算出、設計することが出来る。The method for obtaining the stress applied to the device by the shock wave generated when the explosive explodes in the closed or semi-closed device has been described above. receive. The static internal pressure PS is obtained by the equation 10). P S = f · W / V ··················· 10) Here, P S; generating internal pressure, f; explosive force, W, dose, V;
Container volume By knowing the internal pressure P S applied to the container by this, the strain or stress of the container to which the internal pressure is applied can be obtained by referring to the textbook of material mechanics and the examples of the present specification. It is possible to easily know whether the container strength is suitable or not. However, in most cases, the strain or stress of the container due to the internal pressure P S applied to the container is a. It is smaller than that due to the impact discussed in, and does not need to be a problem. When it becomes a problem, in a container with a relatively large volume, the impact pressure is low,
In the case of detonating explosive with a large amount of gas, such as ANFO, the static stress on the container may exceed the dynamic stress. In such a case, the design should be made to deal with static stress, but in the case of the device according to the present invention, it is not necessary to make it a target, and therefore a description by a concrete example is avoided here, but it is necessary. In this case, a person skilled in the art can easily calculate and design by referring to the above description, the reference book on appropriate explosive and the specification of the present invention.
【0018】次に、課題1)の爆発音響の漏洩と爆発ガ
スの噴出対策として、密閉式とすることによる危険を避
けるため準密閉式とすることとした。具体的には、装置
の電線の通路をある程度気体の通過が可能なものとし、
電線表面の凹凸を伝って爆発ガスが内圧によって装置か
ら自動的に噴出することにより、内圧を緩和し、ある程
度の音響の漏洩を認めることとした。そのような手段に
よる場合、電線を通す通路の断面積が電線の断面積の2
00%未満であれば、爆発音響の漏洩、爆発ガスの噴出
共に殆ど問題とならないことが分った。ここで言う電線
の断面積とは、電線の半径の自乗に円周率を掛けた値
で、撚り線からなる電線の個々の撚り線の断面積を足し
合わせた実断面積ではない。また、通路の断面積とは、
電線の通路の面積の最大部で、電線の長手軸に直角な面
の面積を言う。Next, as a measure against the leakage of the explosion sound and the ejection of the explosion gas in the problem 1), the semi-closed type is adopted in order to avoid the danger caused by the closed type. Specifically, the passage of the electric wire of the device shall be able to pass some gas,
It was decided to explode the explosive gas along the irregularities on the surface of the electric wire automatically from the device due to the internal pressure, thereby relaxing the internal pressure and allowing some acoustic leakage. When using such means, the cross-sectional area of the passage through which the electric wire passes is 2 times the cross-sectional area of the electric wire.
It has been found that if it is less than 00%, there is almost no problem with explosion sound leakage and explosion gas ejection. The cross-sectional area of the electric wire mentioned here is a value obtained by multiplying the square of the radius of the electric wire by the pi, and is not the actual cross-sectional area obtained by adding the cross-sectional areas of the individual twisted wires of the twisted wire. The cross-sectional area of the passage is
It is the maximum part of the area of the passage of the electric wire and is the area of the surface perpendicular to the longitudinal axis of the electric wire.
【0019】図2は、課題2)の装置結合部の構造と強
度について説明するための装置下部5’の平面図で、装
置内部へ突き出した9は結合のためのバヨネットの片
側、Bは装置上部5に備えられたバヨネットを組み立て
時に差し込むための凹みである。図3は図2のA−Aで
示した線に沿った断面を示す図で、9’は図2の9の下
面を示し、その部分に装置上部5に備えられたバヨネッ
トが噛み合って結合される部分である。図4は、装置結
合部の構造と強度について説明するための装置上部4’
の平面図で、9”は図2のB部に差し込まれた後、45
゜回転することによって図3の9’と噛み合って結合さ
れる。図5は図4のC−Cで示した線に沿った断面を示
す図で、9”’は図4の9”の下面を示し、その部分に
図3の装置下部5”に備えられたバヨネットの下面9’
が噛み合って結合される。FIG. 2 is a plan view of the lower part 5'of the device for explaining the structure and strength of the device connecting part of the problem 2). 9 protruding to the inside of the device is one side of the bayonet for connecting, and B is the device. It is a recess for inserting the bayonet provided in the upper portion 5 during assembly. 3 is a cross-sectional view taken along the line AA of FIG. 2, and 9'shows the lower surface of 9 of FIG. 2, to which the bayonet provided in the upper part 5 of the apparatus is meshed and coupled. It is the part that FIG. 4 is a top view 4 ′ of the device for explaining the structure and strength of the device coupling part.
In the plan view of FIG. 9, 9 "is inserted into the part B of FIG.
By rotating by a degree, it is engaged with and coupled with 9'of FIG. FIG. 5 is a view showing a cross section taken along the line CC shown in FIG. 4, and 9 "'indicates the lower surface of 9" of FIG. 4, and that portion is provided on the lower part 5 "of the apparatus of FIG. Bottom of bayonet 9 '
Are engaged and joined.
【0020】図6は、図3の装置下部5”と図5の装置
上部4”を組み合わせ、バヨネットによる結合部を噛み
合わせた状態を示す図である。以下に実施例によってよ
り詳細に説明し、更に比較例と対比する。FIG. 6 is a view showing a state in which the lower part 5 "of FIG. 3 and the upper part 4" of FIG. Hereinafter, the present invention will be described in more detail with reference to Examples and will be compared with Comparative Examples.
【0021】<実施例1>内部で爆薬100gを爆発さ
せて、直径18.2mmのアルミニウム撚り線からなる
電線を接合するための電線の爆発接合装置を製作した。
装置胴部の上部4として、外径230mm、内径200
mm、高さ100mmの抗張力が100kgf/mm2
の高張力鋼製の円筒を用意し、円筒の片側の開口部を厚
さ15mmの同材質の鋼材で塞ぎ、装置の天井部を構成
した。円筒部と天井部は、内半径20mm、外半径35
mmの円弧でつながれるようにした。その結果、天井部
の反対側の円筒開口部の端から、天井の装置内側の距離
は120mmとなった。円筒開口部の縁には、幅20m
mで深さ25mmの溝で溝の下端を10mmの半径の半
円形をとしたものを対称位置に2ヶ所設けて、電線の通
路とした。この寸法による通路の断面積は、電線の断面
積に対して176%に相当する。<Example 1> An explosive 100 g of an explosive was detonated inside to produce an electric wire explosion joining device for joining an electric wire made of a stranded aluminum wire having a diameter of 18.2 mm.
The upper part 4 of the device body has an outer diameter of 230 mm and an inner diameter of 200.
mm, height 100 mm tensile strength is 100 kgf / mm 2
A high-tensile steel cylinder was prepared, and the opening on one side of the cylinder was closed with a steel material of the same material with a thickness of 15 mm to form the ceiling of the device. Inner radius 20 mm, outer radius 35
It is designed to be connected by an arc of mm. As a result, the distance from the end of the cylindrical opening on the opposite side of the ceiling to the inside of the apparatus on the ceiling was 120 mm. 20m wide on the edge of the cylindrical opening
A groove having a depth of 25 mm and a depth of 25 mm and a semicircular shape having a lower end with a radius of 10 mm was provided at two symmetrical positions to form a wire passage. The cross-sectional area of the passage according to this dimension corresponds to 176% of the cross-sectional area of the wire.
【0022】装置上部4と下部5を結合するためのバヨ
ネットとして、下部側には内壁面に対する接合部高さ4
0mm、幅50mm、内壁面からの突出量15mmのバ
ヨネットを円周対称に4ヶ所設け、上部にはそれに適合
する高さ60mm、幅50mm、突出量25mm、下部
バヨネット部への引っ掛かり部寸法が50mm×10m
mのバヨネットを設けた。As a bayonet for connecting the upper part 4 and the lower part 5 of the device, the height of the joint part 4 to the inner wall surface is on the lower part side.
0mm, width 50mm, four bayonets with a projection of 15mm from the inner wall surface are provided symmetrically in four places, and a height of 60mm, a width of 50mm, a projection of 25mm, and a catching dimension of 50mm on the lower bayonet are fitted on the upper part. × 10m
m bayonet was set up.
【0023】外径18.2mmで直径2.6mmのアル
ミニウム線30本を直径2.6mmの鋼線7本の周囲に
撚りあわせた電線で、長さ0.6mのものを2本用意
し、それぞれの端を外径25mm、内径19mm、長さ
100mmのアルミニウム管に挿し込み、管の中央に突
き合せた部分が位置するようにして、管の端の部分で塩
化ビニールの接着テープで固定した。更に、アルミニウ
ム管の中央部に外径49mm、内径25mm、長さ60
mmの黒カーリット爆薬95gを、外側を厚さ0.2m
mの紙筒に入れて取り付け、その一端に6号電気雷管を
同じくテープで固定した。そのようにして組合わせた、
電線とアルミニウム管、爆薬、電気雷管を、電線が装置
通路6を通るようにし、爆薬が装置の中央に位置するよ
うにして装置下部に設置し、電気雷管の被覆線を接合を
要する電線に沿わせて通路6から装置外部に導いた。装
置上部を装置下部に差し込み、45゜回転してバヨネッ
トを噛み合わせて固定した。Three aluminum wires having an outer diameter of 18.2 mm and a diameter of 2.6 mm are twisted around seven steel wires having a diameter of 2.6 mm, and two wires having a length of 0.6 m are prepared. Each end was inserted into an aluminum tube having an outer diameter of 25 mm, an inner diameter of 19 mm, and a length of 100 mm, and the abutted portion was positioned at the center of the tube, and the ends of the tube were fixed with an adhesive tape of vinyl chloride. . Furthermore, in the center of the aluminum pipe, the outer diameter is 49 mm, the inner diameter is 25 mm, and the length is 60 mm.
mm 95mm black carlit explosive, 0.2m outside
It was put in a paper cylinder of m and attached, and the No. 6 electric detonator was also fixed with tape at one end. Combined in that way,
Install the electric wire and the aluminum tube, explosive, and electric detonator in the lower part of the device so that the electric wire passes through the device passage 6 and the explosive is located in the center of the device. In addition, it was led from the passage 6 to the outside of the apparatus. The upper part of the device was inserted into the lower part of the device and rotated by 45 ° to engage and fix the bayonet.
【0024】装置を地上に置き、平行ビニール被覆電線
を電気雷管の導線に取り付けて通電し、電気雷管を起爆
して爆薬を爆発させた。その結果、小さな、低い爆発音
が聴かれると共に、電線と電線通路の隙間から爆発ガス
が吹き出す擦過音が1秒程度聞こえ、20m離れた地点
で測定した音響レベルは、A特性で76ホンであった。
また、ガスが1秒程度の時間をかけて吹き出したことか
ら、吹き出し口である電線通路出口では、爆発ガスの圧
力は充分に減圧されていることが推測され、電線通路で
あり、かつ膨張室と消音室を兼ねる通路6はその目的を
達していると判断された。装置上部4と下部5を相対的
に45゜回転させて外し、電線をとりだしたところ、2
本の電線はアルミニウム管によって締め付けられて接合
していた。爆薬量を100gから60gの範囲で変え
て、そのような実験を繰り返したが、爆発音響は常に同
程度であり、装置には全く損傷が見られず、充分に実用
性があるものと判断された。The apparatus was placed on the ground, a parallel vinyl-coated electric wire was attached to a conductor of an electric detonator, and electricity was supplied to detonate the electric detonator to explode the explosive. As a result, a small, low explosion sound was heard, and a rubbing sound of explosive gas blown out from the gap between the electric wire and the electric wire passage was heard for about 1 second. The acoustic level measured at a distance of 20 m was 76 phon in A characteristics. It was
In addition, since the gas was blown out for about 1 second, it is estimated that the pressure of the explosion gas was sufficiently reduced at the outlet of the electric wire passage, which is the outlet, which is the electric wire passage and the expansion chamber. It was judged that the passage 6, which doubles as a muffling room, has achieved its purpose. Rotating the upper part 4 and the lower part 5 of the device relative to each other by 45 ° and taking them out, the electric wire was taken out.
The electric wire of the book was clamped and joined by an aluminum tube. Although such an experiment was repeated by changing the amount of explosive in the range of 100 g to 60 g, the explosion sound was always the same, the device was not damaged at all, and it was judged to be sufficiently practical. It was
【0025】ここで、この実験によって装置に与えられ
た負荷を求める。まず式1)から、等価薬量Zを求め
た。ただし、同表はTNT爆薬を基準としてあり、黒カ
ーリット爆薬の場合、爆発衝撃はTNTの0.6倍程度
と考えてよいので、黒カーリット爆薬の薬量WBCからT
NT換算相当薬量WTNTにするには、その倍数を掛ける
必要がある。各種の爆薬をTNTを基準とした薬量に置
き換えるについては、その爆薬の爆発エネルギのTNT
の爆発エネルギに対する比率を爆薬のエネルギに掛けれ
ばよく、各種爆薬の爆発エネルギ値は、爆薬に関するハ
ンドブックや、参考書から容易に知ることが出来る。 WTNT=0.6WBC=0.6×95g=57g 爆薬中心から装置壁面までの距離Rは0.1mであるの
で、 Z=R/W1/3=0.1m/(0.057kg)1/3=0.
2598m/kg1/3 この値をフィート−ポンドに換算すると、Z=0.65
52ft/lb1/3となり、前述の米国政府刊行物の表
から、相当するIr/W1/3は0.4psi・sec/l
b1/3であることが分る。これをm-kg単位に換算する
と、3.59×103kg・m/m2・sec2/kg1/3
である。これから反射インパルスIrを得るには、W1/3
を掛ければよいから、 Ir=3.59×103kg・m/m2・sec2/kg1/3×(0.057kg)1/3 =1.38×103kg・m/m2・secHere, the load applied to the device by this experiment is obtained. First, the equivalent dose Z was obtained from the formula 1). However, the same table is based on the TNT explosive, in the case of black Carlit explosives, since explosive shock may be considered to 0.6 times the TNT, T from dose W BC black Carlit explosive
To obtain the NT equivalent equivalent dose W TNT , it is necessary to multiply by that multiple. For replacing various explosives with a dosage based on TNT, see the TNT of the explosive energy of the explosive.
It is only necessary to multiply the explosive energy by the ratio of the explosive energy to the explosive energy, and the explosive energy values of various explosives can be easily known from a handbook or reference books on explosives. W TNT = 0.6W BC = 0.6 × 95g = 57g Since the distance R from the center of the explosive to the device wall is 0.1m, Z = R / W 1/3 = 0.1m / (0.057kg) 1/3 = 0.
2598m / kg 1/3 If this value is converted into feet-pounds, Z = 0.65
52 ft / lb 1/3 , and the corresponding I r / W 1/3 is 0.4 psi · sec / l from the table of the above-mentioned US government publication.
It turns out that it is b 1/3 . Converting this to m-kg units, it is 3.59 × 10 3 kg · m / m 2 · sec 2 / kg 1/3
It is. To obtain the reflected impulse I r from this, W 1/3
I r = 3.59 × 10 3 kg · m / m 2 · sec 2 / kg 1/3 × (0.057 kg) 1/3 = 1.38 × 10 3 kg · m / m 2・ Sec
【0026】壁の厚さが15mm、上半分と下半分のそ
れぞれの高さが100mmであり、簡単のため、装置上
下は一体のものと仮定すると、装置の円筒形胴部内壁の
面積Sは、0.126m2、胴部の重量はフランジを含
めて約28kgである。従って装置の円筒形胴部内壁の
受ける衝撃Ir0は、 Ir0=Ir×S=1.38×103kg・m・sec/sec2・m2×0.126m2 =1.74×102kg・m・sec/sec2 であり、運動エネルギKEは式3)から、 KE=Ir0 2/2M=(1.74×102kg・m/sec)2/(2×28kg ) =5.40×102J 簡単のため、構造を薄肉円筒と考え、3)式と4)式か
ら、 ΔEi=σεπRht ε=σ/Ey σ=(ΔEiEy/πRht)1/2 であり、ΔEi=KEであるから、Rは円筒の内外径の
平均を取ってR=0.108m、t=0.015m、h
=0.2mより、 σ=[5.4×102kg・m2・sec×2.1×1011kg・m/m2・sec2/ (π×0.108m×0.015m×0.2m)]1/2 =3.34×108kg・m/m・sec2 =334MPa=34.0kgf/mm2 Assuming that the thickness of the wall is 15 mm and the height of each of the upper half and the lower half is 100 mm, and for simplicity, the upper and lower parts of the device are integrated, the area S of the inner wall of the cylindrical body of the device is , 0.126 m 2 , and the weight of the body including the flange is about 28 kg. Therefore, the impact I r0 received by the inner wall of the cylindrical body of the device is I r0 = I r × S = 1.38 × 10 3 kg · m · sec / sec 2 · m 2 × 0.126 m 2 = 1.74 × It is 10 2 kg · m · sec / sec 2 , and the kinetic energy KE is calculated from the equation 3) as follows: KE = I r0 2 /2M=(1.74×10 2 kg · m / sec) 2 / (2 × 28 kg) = 5.40 × 10 2 J For simplicity, consider the structure as a thin cylinder, and from Equations 3) and 4), ΔEi = σεπRht ε = σ / Ey σ = (ΔEiEy / πRht) 1/2 , and ΔEi = KE, R is the average of the inner and outer diameters of the cylinder, and R = 0.108 m, t = 0.015 m, h
= 0.2 m, σ = [5.4 × 10 2 kg · m 2 · sec × 2.1 × 10 11 kg · m / m 2 · sec 2 / (π × 0.108 m × 0.015 m × 0 .2 m)] 1/2 = 3.34 × 10 8 kg · m / m · sec 2 = 334 MPa = 34.0 kgf / mm 2
【0027】即ち、装置胴部にかかる応力は334MP
a=34.0kgf/mm2 で、抗張力は100kgf
/mm2の鋼を使用したので、充分に耐えられることが
分る。That is, the stress applied to the body of the apparatus is 334MP.
a = 34.0 kgf / mm 2 , tensile strength is 100 kgf
Since steel of / mm 2 was used, it can be seen that it can withstand it sufficiently.
【0028】ただし、負荷が衝撃応力であること、繰り
返し使用による疲労に耐える必要があることを考える
と、この程度の負荷が与えられる場合には、抗張力が1
00kgf/mm2以上の高張力鋼を使用することが適
当である。However, considering that the load is impact stress and it is necessary to endure fatigue due to repeated use, the tensile strength is 1 when a load of this level is applied.
It is suitable to use high-strength steel of 00 kgf / mm 2 or more.
【0029】次に、装置の天井部と底部への負荷とそれ
によって装置に負荷される応力について計算する。胴部
への応力を求めた場合と同様に、まず、等価薬量Zにつ
いて計算する。爆薬中心から装置壁面までの距離Rは
0.12mであるので、 Z=R/W1/3=0.12m/(0.057kg)1/3=
0.3118m/kg1/3 であり、フィート−ポンドに換算すると、Z=0.78
62ft/lb1/3となり、米国政府刊行物の表から、
相当するIr/W1/3は0.3psi・sec/lb1/3で
あることが分る。これをm−kg単位に換算すると、
2.69×103kg・m/m2・sec2/kg1/3であ
る。反射インパルスIrを得るために、W1/3を掛け、 Ir=2.69×103kg・m/m2・sec2/kg1/3×(0.057kg)1/3 =1.04×103kg・m/m2・secNext, the load on the ceiling and bottom of the apparatus and the stress applied to the apparatus by the load will be calculated. Similar to the case where the stress on the body is obtained, first, the equivalent dose Z is calculated. Since the distance R from the center of the explosive to the wall surface of the device is 0.12 m, Z = R / W 1/3 = 0.12 m / (0.057 kg) 1/3 =
It is 0.3118 m / kg 1/3, which is Z = 0.78 when converted to feet-pounds.
It becomes 62 ft / lb 1/3 , and from the table of US government publications,
It can be seen that the corresponding I r / W 1/3 is 0.3 psi · sec / lb 1/3 . Converting this to m-kg units,
It is 2.69 × 10 3 kg · m / m 2 · sec 2 / kg 1/3 . To obtain the reflected impulse I r , multiply by W 1/3 and I r = 2.69 × 10 3 kg · m / m 2 · sec 2 / kg 1/3 × (0.057 kg) 1/3 = 1 0.04 × 10 3 kg ・ m / m 2・ sec
【0030】装置の天井部と底部は、共に厚さが15m
m、内半径が100mmであるので、装置の天井及び底
面の面積S’は各々、0.031m2、重量は約3.7
kgである。従って装置の天井及び底面の受ける衝撃I
r1は、 Ir1=Ir×S’=1.04×103kg・m・/sec・m2×0.031m2 =32kg・m・sec/sec2 であり、運動エネルギKEは式3)から、 KE=Ir1 2/2M=(32kg・m/sec)2/(2×3.7kg) =1.40×102JThe ceiling and bottom of the device both have a thickness of 15 m.
m, and the inner radius is 100 mm, the areas S ′ of the ceiling and the bottom of the device are 0.031 m 2 and the weight is about 3.7, respectively.
kg. Therefore, the impact I on the ceiling and bottom of the device I
r1 is I r1 = I r × S ′ = 1.04 × 10 3 kg · m · / sec · m 2 × 0.031 m 2 = 32 kg · m · sec / sec 2 , and the kinetic energy KE is given by Equation 3 ), KE = I r1 2 / 2M = (32 kg · m / sec) 2 /(2×3.7 kg) = 1.40 × 10 2 J
【0031】この応力或いは運動エネルギは、装置上半
分の胴部の天井との繋ぎ目からバヨネットまでの部分及
び装置下半分の胴部の底との繋ぎ目までの部分に応力と
して負荷され、負荷による変形エネルギとして一時的に
蓄えられることになる。また、上記の運動エネルギは天
井又は底の一方に与えられるものなので、装置全体の引
張り応力による変形量は上の2倍となる。胴部の断面積
Aは0.01m2、長さLは装置上部と下部を合わせて
0.16m、バヨネットの引張応力を受ける部分の断面
積の合計A’は0.003m2、有効長さL’は0.0
6mであり、装置の胴部に受ける応力とボルトに受ける
応力は等しいから、各部分が同種の材料からなるとする
と、11)式が成り立つ。 Eyεn-1An-1=EyεnAn ・・・・・・・・・・・・・・・・・ 11) また、胴部の断面積をA0、バヨネットの断面積をA1と
すると、上記のデータから A0/A1=0.01m2/0.003cm2=3.3 11)から、 ε1=3.3ε0 ΔEi=EyΣεn 2AnLn=Ey[ε0 2A0L0+ε1 2A1L1] =ε0 2Ey[A0L0+10.9A1L1]This stress or kinetic energy is applied as a stress to the portion from the joint of the upper half of the device to the ceiling to the bayonet and the portion of the lower half of the device to the joint to the bottom of the body, and the load is applied. Will be temporarily stored as deformation energy. Further, since the above-mentioned kinetic energy is applied to either the ceiling or the bottom, the amount of deformation due to the tensile stress of the entire device is doubled above. The cross-sectional area A of the body is 0.01 m 2 , the length L is 0.16 m including the upper and lower parts of the device, and the total cross-sectional area A ′ of the bayonet-bearing portion is 0.003 m 2 , effective length. L'is 0.0
Since it is 6 m, and the stress applied to the body of the device is equal to the stress applied to the bolt, assuming that each part is made of the same kind of material, the expression 11) is established. E y ε n-1 A n-1 = E y ε n A n ... 11) In addition, the cross-sectional area of the body is A 0 , and the bayonet is broken. Assuming that the area is A 1 , from the above data, A 0 / A 1 = 0.01 m 2 /0.003 cm 2 = 3.3 11), and ε 1 = 3.3 ε 0 ΔE i = E y Σε n 2 A n L n = E y [ε 0 2 A 0 L 0 + ε 1 2 A 1 L 1 ] = Ε 0 2 E y [A 0 L 0 + 10.9A 1 L 1 ]
【0032】胴部の引張応力がかかる部分の長さL0は
125mm、バヨネットの引張応力がかかる部分の長さ
L1は60mmであるから、 ΔEi=1.40×102kg・m2/sec2=ε0 2×2.1×1011kg・ m/m2・sec2[0.01m2×0.125m+11×0.003m2×0.06 m] =6.78×108ε0 2kg・m2/sec2 ε0=[1.40×102/6.78×108]1/2=4.54×10-4 ε1=3.3ε0=1.5×10-3 となり、これから胴部にかかる引張応力σ0とバヨネッ
トにかかる引張応力σ1を求めると、 σ0=Eyε0=2.1×1011kg・m/m2・sec2×4.54×10-4 =9.53×107kg・m/m2・sec2=95MPa=9.7kgf/mm2 σ1=3.3σ0=314MPa=32.1kgf/mm2 であり、共に抗張力が100kgf/mm2の高張力鋼
の抗張力より充分に低く、耐えられる応力である。Since the length L 0 of the portion of the body on which the tensile stress is applied is 125 mm and the length L 1 of the portion of the bayonet on which the tensile stress is applied is 60 mm, ΔEi = 1.40 × 10 2 kg · m 2 / sec 2 = ε 0 2 × 2.1 × 10 11 kg · m / m 2 · sec 2 [0.01m 2 × 0.125m + 11 × 0.003m 2 × 0.06 m] = 6.78 × 10 8 ε 0 2 kg · m 2 / sec 2 ε 0 = [1.40 × 10 2 /6.78×10 8 ] 1/2 = 4.54 × 10 -4 ε 1 = 3.3 ε 0 = 1.5 × 10 -3, and determine the stress sigma 1 tensile now according to such tensile stress sigma 0 and bayonet the barrel, σ 0 = E y ε 0 = 2.1 × 10 11 kg · m / m 2 · sec 2 × 4.54 × 10 −4 = 9.53 × 10 7 kg · m / m 2 · sec 2 = 95 MPa = 9.7 kgf / mm 2 σ 1 = 3.3 σ 0 = 314 MPa = 32 A .1kgf / mm 2, both tensile strength is sufficiently lower than the tensile strength of the high-tensile steel 100 kgf / mm 2, a withstand stress.
【0033】<比較例>同じ電線の接合実験を装置を使
用しないで実施した。爆薬を爆発させると、20m離れ
た地点での音響は130ホンを越え、爆薬と接合する電
線の組み合わせ体を置いた、高さ約30cm、直径約2
mの砂を積み上げた台から、砂が飛散し、接合された電
線は地上から2mの高さを飛んで約15m離れた地点に
落下した。この状況と比較して、装置の音響を低減さる
と共に、爆発によって発生する高圧ガスの圧力を低下さ
せつつ装置内部の圧力を低減させる能力と、周囲の物体
や電線の飛散を防ぐ能力は充分にあると判断された。<Comparative Example> A bonding experiment of the same electric wire was carried out without using the apparatus. When the explosive is exploded, the sound at a distance of 20 m exceeds 130 phons, and a combination of electric wires that joins the explosive is placed, height of about 30 cm, diameter of about 2
Sand spattered from the m pile of sand, and the joined electric wire flew 2 m above the ground and dropped about 15 m away. Compared to this situation, the sound of the device is reduced, the ability to reduce the pressure inside the device while lowering the pressure of the high pressure gas generated by the explosion, and the ability to prevent scattering of surrounding objects and electric wires are sufficient. It was decided that there was.
【0034】[0034]
【発明の効果】本発明による電線の爆発接合装置は、爆
薬の爆発音を周囲に騒音公害の影響を及ぼすことがない
程度まで低減でき、爆発接合した電線や、爆薬の周囲の
物体が飛散せず、小型、軽量であり、更に組み立てが容
易な装置であるため作業が容易な装置であるから、例え
ば鉄塔上や地下配設路での電線接合作業にも使用できる
等、電線接合の作業効率、安全性及び経済性を向上させ
て、電線の爆発結合作業の利用可能範囲を拡大する効果
を有する。INDUSTRIAL APPLICABILITY The explosive joining device for electric wires according to the present invention can reduce the explosion sound of explosives to the extent that noise pollution is not affected in the surroundings, and the explosively joined electric wires and objects around explosives scatter. Since it is a device that is easy to work because it is small, lightweight, and easy to assemble, it can also be used for wire joining work on towers and underground passages, for example, work efficiency of wire joining It has the effect of improving safety and economic efficiency and expanding the usable range of electric wire explosive coupling work.
【図1】本発明に係る装置の概略断面図である。1 is a schematic cross-sectional view of an apparatus according to the present invention.
【図2】本発明に係る装置上部の平面図である。FIG. 2 is a plan view of the upper part of the device according to the present invention.
【図3】本発明に係る装置上部の断面図である。FIG. 3 is a cross-sectional view of the upper part of the device according to the present invention.
【図4】本発明に係る装置下部の平面図である。FIG. 4 is a plan view of the lower portion of the device according to the present invention.
【図5】本発明に係る装置下部の断面図である。FIG. 5 is a cross-sectional view of the lower portion of the device according to the present invention.
【図6】本発明に係る装置を組んだ状態の断面図であ
る。FIG. 6 is a cross-sectional view of a state in which the device according to the present invention is assembled.
1 爆薬 2 電線を
接合するための金属管 3、 電線 4、4’、4”、4”’ 装置の
上部 5、5’、5”、5”’ 装置の
下部 6、 6’ 電線の
通路 7、 電気雷
管 8、 電気雷
管の導線 9、9’、9”、9”’、9””、9””’ 起爆の
ための導電用回路1 Explosive 2 Metal tube for joining electric wires 3, Electric wires 4, 4 ', 4 ", 4"' Upper part of device 5, 5 ', 5 ", 5"' Lower part of device 6, 6'Wire passage 7 , Electric detonator 8, Electric detonator conductor 9, 9 ', 9 ", 9"', 9 "", 9 ""'Conductive circuit for detonation
フロントページの続き (72)発明者 荒木 正任 愛知県半田市岩滑西町2丁目31番地31 株 式会社スターシップ内Continued on the front page (72) Inventor Masato Araki 2-31, Iwanamesaicho, Handa-shi, Aichi 31 Starship Co., Ltd.
Claims (1)
準密閉容器を備えた装置で、以下の要件を満たすことを
特徴とする爆発装置。 a.容器の垂直位置の略中心で上部と下部に2分割でき
るか、容器の水平位置又は垂直位置の略中心で左右に2
分割出来る装置で、 b.分割される部分に電線を通すことが出来る2個の通
路を備え、 c.通路の断面積は、電線の断面積の200%を越え
ず、 d.電線を通すことが出来る通路以外の部分は、爆薬の
爆発によって生じる爆発ガスの漏洩と爆発音響の伝播に
対して密閉状態にあり、 e.2分割された装置を組み立てる際には、分割された
装置を、嵌め合わせてから回転することにより、それぞ
れに設けられた、食い違い構造の締結金具を噛み合わせ
ることによって、装置内部に収納した爆薬を爆発させた
際に、爆発衝撃と爆 発ガスの圧力に耐え、 f.爆発音響と爆発ガスの圧力は電線と通路の間の隙間
を通過して、装置外部に漏洩することにより低減される1. An explosive device provided with a closed or semi-closed container for detonating explosives therein, which satisfies the following requirements. a. It can be divided into two parts, the upper part and the lower part, at the approximate center of the vertical position of the container, or 2 at the left and right at the approximate center of the horizontal or vertical position.
A splittable device, b. Two passages through which electric wires can be passed through the divided portion, c. The cross-sectional area of the passage does not exceed 200% of the cross-sectional area of the wire, d. The parts other than the passages through which the electric wire can pass are hermetically sealed against the leakage of explosive gas caused by the explosion of explosives and the propagation of explosive sound. E. When assembling a device divided into two parts, the divided device is fitted and then rotated, so that the fasteners of the staggered structure provided for each are engaged with each other, so that the explosive stored in the device is removed. Withstands the shock of explosion and the pressure of explosive gas when exploding, f. Explosive sound and explosive gas pressure are reduced by passing through the gap between the wire and passage and leaking out of the device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34701095A JPH09167642A (en) | 1995-12-14 | 1995-12-14 | Electric cable joining device by explosion of explosive compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34701095A JPH09167642A (en) | 1995-12-14 | 1995-12-14 | Electric cable joining device by explosion of explosive compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09167642A true JPH09167642A (en) | 1997-06-24 |
Family
ID=18387312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34701095A Pending JPH09167642A (en) | 1995-12-14 | 1995-12-14 | Electric cable joining device by explosion of explosive compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09167642A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021162783A2 (en) | 2019-12-20 | 2021-08-19 | Quanta Associates, L.P. | Implosion shield apparatus and method |
-
1995
- 1995-12-14 JP JP34701095A patent/JPH09167642A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021162783A2 (en) | 2019-12-20 | 2021-08-19 | Quanta Associates, L.P. | Implosion shield apparatus and method |
EP4078752A4 (en) * | 2019-12-20 | 2023-06-14 | Quanta Associates, L.P. | Implosion shield apparatus and method |
US11713954B2 (en) | 2019-12-20 | 2023-08-01 | Quanta Associates, L.P. | Implosion shield apparatus and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4005046B2 (en) | How to explode chemical ammunition | |
US4339995A (en) | Method for destroying structures such as concrete walls | |
US3737975A (en) | Arrangement for explosively formed connections and method of making such connections | |
Liu et al. | Dynamic response of cylindrical explosion containment vessels subjected to internal blast loading | |
US4478126A (en) | Chamber for containing explosions, deflagrations or detonation and method of manufacture | |
RU2337311C2 (en) | Implosion protection chamber | |
EP0028141B1 (en) | Building for detonating explosives | |
JPH09167642A (en) | Electric cable joining device by explosion of explosive compound | |
US8413564B1 (en) | Portable vented suppressive shield for protective tactical emplacement over suspected explosive devices | |
US3277766A (en) | Explosively releasable bolt | |
JPH09167639A (en) | Explosive joining device for electric wire | |
Shipovskii et al. | Numerical simulation of the stress-strain state of a coal seam caused by an explosion of a blast-hole charge with an annular gap | |
US4474052A (en) | Laboratory barricade | |
DE3061143D1 (en) | Method of welding metal pipe sections with explosives | |
US3397756A (en) | Reduction of explosive shock and noise by dispersion of water particles | |
RU2194944C2 (en) | Device for joining and subsequent separation of structural members | |
RU2244909C2 (en) | Method and device for impact testing | |
CA1176571A (en) | Blast attenuator | |
Sulfredge et al. | Calculating the effect of surface or underwater explosions on submerged equipment and structures | |
RU2337339C1 (en) | Test bench for apparatus and equipment for high intensive impact effects | |
JPH04254200A (en) | Explosion device | |
Lozano | Design and analysis of a personnel blast shield for different explosives applications | |
RU2094754C1 (en) | Gear localizing explosion | |
RU2289801C1 (en) | Stand for falling weight tests | |
RU2781094C1 (en) | Pyrotechnic impact device |