Nothing Special   »   [go: up one dir, main page]

JPH09167589A - Transmission electron microscope and signal detection device - Google Patents

Transmission electron microscope and signal detection device

Info

Publication number
JPH09167589A
JPH09167589A JP7330099A JP33009995A JPH09167589A JP H09167589 A JPH09167589 A JP H09167589A JP 7330099 A JP7330099 A JP 7330099A JP 33009995 A JP33009995 A JP 33009995A JP H09167589 A JPH09167589 A JP H09167589A
Authority
JP
Japan
Prior art keywords
optical fiber
electrons
electron microscope
conductive film
scintillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7330099A
Other languages
Japanese (ja)
Inventor
Soichiro Hayashi
聰一郎 林
Isao Matsui
功 松井
Kenichi Myochin
健一 明珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7330099A priority Critical patent/JPH09167589A/en
Publication of JPH09167589A publication Critical patent/JPH09167589A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the breakage of an optical fiber by using the optical fiber in which a conductive film for preventing electrostatic breakage is formed in a scintillator containing a fluorescent material, arranged for taking a photograph of an image of an electron microscope with TV camera. SOLUTION: When electrons accelerated at high voltage, especially electrons having uniform energy entered a substance layer (a fluorescent material 12 or an optical fiber 13), the relation of effective range and energy of the electron in the substance is represented by the specified empirical formula. When the empirical formula applicable at 1-3MeV is referenced, and electrons accelerated at 1, 2, 3MeV enter the optical fiber 13 having a density of 4.6g/cm<3> , each range distance becomes 0.92, 2.07, and 3.23mm. By arranging a conductive film 15 in the position corresponding to these range distances of the optical fiber, almost all entered electrons are returned from the conductive film 15 to an electron gun.an accelerating tube through an earthing conductor 16, and dielectric breakdown of the optical fiber 13 caused by accumulation of electrons is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電子顕微鏡や加速器
等電子ビームやイオンビームのインテンシティ等を検出
・分析するような装置の信号検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal detection apparatus for an apparatus such as an electron microscope and an accelerator for detecting and analyzing the intensity of an electron beam or an ion beam.

【0002】[0002]

【従来の技術】透過型電子顕微鏡は電子ビームに含まれ
る試料情報を、蛍光板等のシンチレータで可視光像に変
換し、オペレータがその像を直接目視観察していた。ま
た一部の装置には明るい像が観察できるよう、シンチレ
ータとTVカメラとの間を光ファイバで接続し、シンチ
レータの光学像を効率良くTVカメラに伝達できるよう
にした装置もある。
2. Description of the Related Art A transmission electron microscope converts the sample information contained in an electron beam into a visible light image by a scintillator such as a fluorescent plate, and an operator directly visually observes the image. Some devices have an optical fiber between the scintillator and the TV camera so that a bright image can be observed, so that the optical image of the scintillator can be efficiently transmitted to the TV camera.

【0003】[0003]

【発明が解決しようとする課題】光ファイバを使用した
シンチレータにおいて、シンチレータに照射される電子
ビームの単位時間当りの電流値が大きくなると、光ファ
イバが破壊されることがある。
In a scintillator using an optical fiber, if the current value of the electron beam with which the scintillator is irradiated per unit time becomes large, the optical fiber may be broken.

【0004】本発明の目的は、ここに使用した光ファイ
バの破壊防止を可能にするシンチレータを提供すること
にある。
An object of the present invention is to provide a scintillator capable of preventing breakage of the optical fiber used here.

【0005】[0005]

【課題を解決するための手段】シンチレータに照射され
た電子ビームは、そのエネルギで蛍光板等に光信号を発
生させる。また光信号の発生に寄与しない残りの電子は
蛍光板を通過し光ファイバ内に入射する。電気的に絶縁
物である光ファイバ内に入射した電子は、入射時の運動
エネルギに見合った距離だけ進行し、一部リーク電流を
除きその位置に蓄積される。この蓄積電子がある一定の
電位に達すると、その部位の光ファイバには静電破壊が
発生し、シンチレータは破損すると考えられる。
The electron beam with which the scintillator is irradiated causes its energy to generate an optical signal on a fluorescent screen or the like. The remaining electrons that do not contribute to the generation of the optical signal pass through the fluorescent plate and enter the optical fiber. Electrons that have entered the optical fiber, which is an electrically insulating material, travel a distance corresponding to the kinetic energy at the time of injection, and are accumulated at that position except for some leakage current. It is considered that when the accumulated electrons reach a certain potential, electrostatic scatter occurs in the optical fiber at that portion, and the scintillator is damaged.

【0006】電子顕微鏡は解像度を向上させるために、
極めて安定な高電圧で電子を加速しているから、光ファ
イバ内に進入する電子の距離はほぼ一定している。この
ことから、光ファイバには加速電圧に見合った位置に進
入した電子を放電させる導電膜を形成し、その位置に電
子が蓄積されない構造にして絶縁破壊を防止する。また
加速電圧を変える時には、加速電圧に合致した寸法の光
ファイバを使用すること、すなわち設定した加速電圧の
飛程に見合った長さの光ファイバに交換することで対応
できる。
In order to improve the resolution of the electron microscope,
Since the electrons are accelerated by a very stable high voltage, the distance of the electrons entering the optical fiber is almost constant. For this reason, a conductive film for discharging the electrons that have entered the position corresponding to the acceleration voltage is formed in the optical fiber, and the structure is such that electrons are not accumulated at the position to prevent dielectric breakdown. Further, when changing the accelerating voltage, it is possible to use an optical fiber having a size that matches the accelerating voltage, that is, replace the optical fiber with a length that matches the range of the set accelerating voltage.

【0007】この導電膜によって光ファイバの絶縁破壊
が防止でき、信頼性の高いシンチレータを有する電子顕
微鏡等の検出器が提供できる。
The conductive film can prevent the dielectric breakdown of the optical fiber and provide a detector such as an electron microscope having a highly reliable scintillator.

【0008】[0008]

【発明の実施の形態】図3は一般的な電子顕微鏡の構成
を示す。電子銃・加速管1からの電子ビ−ム2はコンデ
ンサ−レンズ3で所望の電流値とスポットサイズにし
て、試料4に照射する。試料4を透過した電子ビ−ム2
は対物レンズ5で焦点合わせをし、中間レンズ6,投射
レンズ7で拡大し、蛍光板8に試料5の電顕像9を得
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 shows the structure of a general electron microscope. The electron beam 2 from the electron gun / accelerator tube 1 is irradiated onto the sample 4 with a condenser lens 3 having a desired current value and spot size. Electronic beam 2 transmitted through sample 4
Is focused by the objective lens 5, enlarged by the intermediate lens 6 and the projection lens 7, and an electron microscope image 9 of the sample 5 is obtained on the fluorescent plate 8.

【0009】また電子顕微鏡には、蛍光板8の下部に電
顕像のフィルム撮影するカメラ室10と、電顕像をTV
カメラで撮影する目的で配置したシンチレータ11等が
ある。電顕像9の撮影やTVカメラでの観察は、蛍光板
8を開閉し実行する。
In the electron microscope, a camera room 10 for photographing a film of an electron microscope image under the fluorescent plate 8 and a TV for displaying the electron microscope image.
There is a scintillator 11 arranged for the purpose of photographing with a camera. The electron microscope image 9 is photographed and observed with a TV camera by opening and closing the fluorescent plate 8.

【0010】TVカメラでの電顕像の撮影には、シンチ
レータ最上部の蛍光体12で可視光の電顕像に変換し、
光ファイバ13でTVカメラ18に結像させ、CRTモ
ニタ19でその像を観察することできる。
For photographing an electron microscope image with a TV camera, the phosphor 12 on the top of the scintillator converts the electron microscope image into visible light,
An image can be formed on the TV camera 18 by the optical fiber 13, and the image can be observed on the CRT monitor 19.

【0011】図4はシンチレータ11の構造の一例を示
す。シンチレータ11の主要部である蛍光体12には薄
いアルミニウム膜14が蒸着され、蛍光体12を保護す
ると共に発生した光を有効にする等の機能を果たしてい
る。また、光ファイバ13の全面には導電膜15が蒸着
され、外部に接地線16で接地される。これは絶縁物で
ある光ファイバ13の電気抵抗を下げ、チャージアップ
等を防止する処置である。さらに、光ファイバ13はT
Vカメラ18の撮像管に接続され、電子ビーム2が蛍光
体12で発生させた光信号を効率良く伝達する。
FIG. 4 shows an example of the structure of the scintillator 11. A thin aluminum film 14 is vapor-deposited on the phosphor 12 which is the main part of the scintillator 11 to protect the phosphor 12 and perform the function of making the generated light effective. A conductive film 15 is vapor-deposited on the entire surface of the optical fiber 13 and is grounded to the outside by a ground wire 16. This is a measure to reduce the electric resistance of the optical fiber 13 which is an insulator and prevent charge-up. Further, the optical fiber 13 is T
The electron beam 2 is connected to the image pickup tube of the V camera 18 and efficiently transmits the optical signal generated by the phosphor 12.

【0012】図5は電子ビーム2がシンチレータ11に
照射された時、シンチレータ11の内部における電子の
挙動や軌跡を推定した図である(ここに図4に示したア
ルミニウム膜14は説明の必要がないので省略した)。
電子ビーム2の各電子は高電圧で加速されているため蛍
光体12に照射されると、一部の電子は蛍光体12の粒
子にエネルギを与え、電子顕微鏡の像情報を含んだ光信
号31の発生に寄与する。
FIG. 5 is a diagram in which the behavior and locus of electrons inside the scintillator 11 are estimated when the electron beam 2 is applied to the scintillator 11 (the aluminum film 14 shown in FIG. 4 needs to be described here). I omitted it because it doesn't exist).
Since each electron of the electron beam 2 is accelerated by a high voltage, when the fluorescent substance 12 is irradiated, some of the electrons give energy to the particles of the fluorescent substance 12 and an optical signal 31 including image information of the electron microscope 31. Contribute to the occurrence of.

【0013】光信号31は光ファイバ13内を透過し、
TVカメラ18の撮像面に電子顕微鏡像の信号として照
射検出され、CRTモニタ19に表示する。(光ファイ
バ13とTVカメラ18との間には、通常イメージ・イ
ンテンシファイアのような、光信号31を増幅するよう
な素子を介在させたり、照射した光信号31を効率良く
検出できるように、TVカメラ18の撮像面に特殊な構
造を形成したりする)。
The optical signal 31 is transmitted through the optical fiber 13,
The image pickup surface of the TV camera 18 is irradiated and detected as a signal of an electron microscope image and displayed on the CRT monitor 19. (A device, such as an image intensifier, that amplifies the optical signal 31 is interposed between the optical fiber 13 and the TV camera 18, and the irradiated optical signal 31 can be detected efficiently. , A special structure is formed on the image pickup surface of the TV camera 18).

【0014】また、蛍光体12に照射され光信号31の
発生に貢献しなかった残りの電子21は、蛍光体12内
部でほとんどエネルギを消耗することなく透過し、光フ
ァイバ13の内部に入射する。この入射電子22は光フ
ァイバ13内の端面から一定距離Lだけ進行した位置に
停止し、そこに蓄積電子23として留まる。しかし蓄積
電子23は光ファイバ13内からリーク電子24として
導電膜15に流れ、さらに接地線16やアースを経由し
電子銃・加速管1に戻る。
The remaining electrons 21, which have not been contributed to the generation of the optical signal 31 by irradiating the phosphor 12, pass through the phosphor 12 with almost no energy consumption and enter the inside of the optical fiber 13. . The incident electrons 22 stop at a position where they travel a certain distance L from the end face in the optical fiber 13, and remain there as accumulated electrons 23. However, the stored electrons 23 flow from the inside of the optical fiber 13 as leak electrons 24 to the conductive film 15, and further return to the electron gun / accelerator tube 1 via the ground wire 16 and the ground.

【0015】この時、入射電子22の単位時間の入射量
とリーク電子24の単位時間の漏れ量の関係を検討する
と、後者が前者に比べて大きい場合には、蓄積電子2
3の電位は低い値を継続し維持し、後者と前者が等し
い場合は電位の変化はなく、後者が前者に比べて小さ
い場合には、蓄積電子23の電位は時間の経過で徐々に
増加することは容易に想像できる。
At this time, considering the relationship between the incident amount of the incident electrons 22 per unit time and the leakage amount of the leak electrons 24 per unit time, when the latter is larger than the former, the accumulated electrons 2
The potential of 3 continues to maintain a low value, and when the latter and the former are equal, there is no change in the potential, and when the latter is smaller than the former, the potential of the stored electrons 23 gradually increases over time. It's easy to imagine.

【0016】その結果としての場合、すなわち、光フ
ァイバ13内から接地にリークする電子24より、蛍光
体12に照射される電子ビーム2の電子量が多い場合に
は、蓄積電子23の位置における静電電位は時間と共に
上昇し、光ファイバ13の絶縁破壊電圧を越えると、一
気に蓄積電子23は放電し光ファイバを破壊させると考
えられる。従って、入射電子22が蓄積しないような光
ファイバ13の構造にできれば、この光ファイバ13の
破壊を防止することができる筈である。
In the case as a result, that is, when the electron amount of the electron beam 2 with which the phosphor 12 is irradiated is larger than the electron 24 leaking from the inside of the optical fiber 13 to the ground, the static electricity at the position of the accumulated electron 23 is generated. It is considered that the electric potential rises with time, and when the dielectric breakdown voltage of the optical fiber 13 is exceeded, the accumulated electrons 23 are discharged at once and the optical fiber is destroyed. Therefore, if the structure of the optical fiber 13 that the incident electrons 22 do not accumulate can be formed, the destruction of the optical fiber 13 should be prevented.

【0017】図1に本発明の光ファイバを示す。図の中
で本発明を示す部位は、光ファイバの光進行方向におけ
る寸法が発明そのものである。ここではそれぞれ1,
2,3MeVの例に対応する光ファイバの寸法と条件を
示した。
FIG. 1 shows the optical fiber of the present invention. In the figure, the part showing the present invention is the invention itself in the dimension in the light traveling direction of the optical fiber. Here, respectively 1,
The dimensions and conditions of the optical fiber corresponding to the examples of a few MeV are shown.

【0018】高電圧等で加速した電子、特に均一エネル
ギを持つ電子が物質層(ここでは蛍光体12や光ファイ
バ13)に入射した時に、その電子の物質内の実用飛程
RとエネルギMeVとの関係は、以下に示すような実験
式があてはまることが良く知られている。ここには加速
電圧の例として、1MeVから3MeVの間で当てはま
る実験式を引用した。
When an electron accelerated by a high voltage or the like, particularly an electron having uniform energy is incident on the material layer (here, the phosphor 12 or the optical fiber 13), the practical range R and energy MeV of the electron in the material are obtained. It is well known that the empirical formula shown below applies to the relationship of. As an example of the accelerating voltage, an empirical formula applied between 1 MeV and 3 MeV is cited here.

【0019】R(mg/cm2)=530E(MeV)−1
06であり、また密度をρ(mg/cm3)、飛程距離をL(c
m)とするとR(mg/cm2)=ρ(mg/cm3)・L(cm)
の関係から ρ(mg/cm3)・L(cm)=(530E−106)(mg
/cm2) L(cm)=(530E−106)(mg/cm2)/ρ(mg
/cm3)と展開でき、これは1MeVで加速した電子の
場合ではL(cm)=424/ρとなり、密度ρ=424
(mg/cm3)の物質内に電子を入射すれば、1cmの深さま
で到達することを示している。
R (mg / cm 2 ) = 530E (MeV) -1
06, density ρ (mg / cm 3 ), and range L (c
m) R (mg / cm 2 ) = ρ (mg / cm 3 ) L (cm)
From the relationship of ρ (mg / cm 3 ) L (cm) = (530E-106) (mg
/ Cm 2 ) L (cm) = (530E-106) (mg / cm 2 ) / ρ (mg
/ Cm 3 ), which is L (cm) = 424 / ρ in the case of electrons accelerated at 1 MeV, and density ρ = 424
It is shown that when an electron is injected into a substance of (mg / cm 3 ), it reaches a depth of 1 cm.

【0020】いま密度4.6(g/cm3)の光ファイバ1
3に、それぞれ1,2,3MeVで加速した電子を入射
すると、飛程距離は0.92,2.07,3.23(mm)と
なる。これは光ファイバに入射した電子は、入射面から
それぞれ0.92mm,2.07 mm,3.23mm の位置で停止
することを意味する。すなわち、電子顕微鏡のように均
一なエネルギを持った電子は、ほとんどこの位置に進入
して蓄積される。
An optical fiber 1 now having a density of 4.6 (g / cm 3 ).
When electrons accelerated by 1, 2, 3 MeV are incident on 3, the range becomes 0.92, 2.07, 3.23 (mm). This means that the electrons incident on the optical fiber stop at positions of 0.92 mm, 2.07 mm, and 3.23 mm from the incident surface, respectively. That is, most electrons having uniform energy as in an electron microscope enter and accumulate at this position.

【0021】従って、光ファイバのこの位置に導電膜1
5を配置すれば、入射した電子22のほとんどは導電膜
15から接地線16を経由して、図1には記述しないが
図3の電子銃・加速管1に戻り、蓄積して光ファイバ1
3の絶縁破壊を招くことはなくなる。
Therefore, the conductive film 1 is provided at this position of the optical fiber.
If 5 is arranged, most of the incident electrons 22 return from the conductive film 15 through the ground wire 16 to the electron gun / accelerator tube 1 in FIG.
3 will not cause dielectric breakdown.

【0022】また、通常電子顕微鏡では種々な加速電圧
に設定して使用するが、加速電圧毎に光ファイバの寸法
を変えたシンチレータに交換することで対応できる。ま
た、ここでは、3種類の加速電圧に対応して記述した
が、これは2種類でもn種類でも同様に構成できる。
Further, usually, in an electron microscope, various accelerating voltages are set and used, but it can be dealt with by exchanging with a scintillator in which the size of the optical fiber is changed for each accelerating voltage. Further, although the description has been made here in correspondence with three types of acceleration voltages, this can be similarly configured with two types or n types.

【0023】図2には従来のシンチレータ同様に、本発
明においても同一に構成できることを示した。まず、
(a)はシンチレータ13にイメージインテンシファイ
ア51を接続しTVカメラ18に構成した例である。さ
らに、(b)はイメージインテンシファイア41とTV
カメラ18を光学レンズ42で接続した例であり、光学
像の伝達率を別にして機能的には同様の効果が期待でき
る。
FIG. 2 shows that, like the conventional scintillator, the same structure can be used in the present invention. First,
(A) is an example in which the image intensifier 51 is connected to the scintillator 13 and the TV camera 18 is configured. Further, (b) is an image intensifier 41 and a TV.
This is an example in which the camera 18 is connected by the optical lens 42, and the same effect can be expected in terms of functionality except for the transmissibility of the optical image.

【0024】図2には、本発明の説明に重要な関係がな
いために、TVカメラ18の撮像面における詳細な構造
を示さなかったが、実際には光学像の伝達効率や反射等
による問題が存在する。そのため本図に示したような原
理的な構成のみでは、TVカメラとしての解像度や分解
能は得られないことを記して置く。
FIG. 2 does not show the detailed structure of the image pickup surface of the TV camera 18 because it has no relation to the explanation of the present invention. However, in reality, there are problems due to the transmission efficiency and reflection of the optical image. Exists. Therefore, it should be noted that the resolution or resolution as a TV camera cannot be obtained only by the theoretical configuration shown in this figure.

【0025】[0025]

【発明の効果】本発明によって、電子顕微鏡等に使用す
る信頼性の高いシンチレータを提供することができる。
According to the present invention, a highly reliable scintillator used for an electron microscope or the like can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるシンチレータの構造の説明図。FIG. 1 is an explanatory diagram of a structure of a scintillator according to the present invention.

【図2】本発明の応用例の説明図。FIG. 2 is an explanatory diagram of an application example of the present invention.

【図3】一般的な電子顕微鏡の光学系と観察系の構成原
理の説明図。
FIG. 3 is an explanatory diagram of a configuration principle of an optical system and an observation system of a general electron microscope.

【図4】シンチレータとTVカメラの構成の説明図。FIG. 4 is an explanatory diagram of configurations of a scintillator and a TV camera.

【図5】光ファイバ内における電子の挙動と軌跡の推定
の説明図。
FIG. 5 is an explanatory diagram of the behavior of electrons in the optical fiber and the estimation of the trajectory.

【符号の説明】[Explanation of symbols]

12…蛍光体、13…光ファイバ、15…導電膜、16
…接地線、18…TVカメラ。
12 ... Phosphor, 13 ... Optical fiber, 15 ... Conductive film, 16
… Grounding wire, 18… TV camera.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電子銃・加速管,コンデンサレンズ,試料
ホルダ,対物レンズ,中間レンズそして投影レンズを含
む電子光学系,写真撮影をするカメラ室を含む透過型電
子顕微鏡において、電子顕微鏡の像をTVカメラで撮影
するために設けた蛍光体を含むシンチレータに、静電破
壊を防止するための導電膜処理を施した光ファイバを使
用したことを特徴とする透過型電子顕微鏡。
1. A transmission electron microscope including an electron optical system including an electron gun / accelerating tube, a condenser lens, a sample holder, an objective lens, an intermediate lens and a projection lens, and a transmission electron microscope including a camera room for taking a picture, showing an image of the electron microscope. A transmission electron microscope characterized in that a scintillator including a phosphor provided for shooting with a TV camera uses an optical fiber treated with a conductive film to prevent electrostatic breakdown.
【請求項2】請求項1において、前記シンチレータを構
成する前記光ファイバに、加速電子の飛程から計算され
る距離の前記光ファイバ全面に導電膜を設け、入射した
電子をアースに容易に流し出せるように構成した信号検
出装置。
2. The conductive film according to claim 1, wherein a conductive film is provided on the entire surface of the optical fiber at a distance calculated from the range of accelerated electrons in the optical fiber forming the scintillator, and the incident electrons are easily flown to the ground. A signal detection device configured to emit.
【請求項3】請求項2において、前記シンチレータを各
加速電圧毎に保有し、複数の加速電圧の使用時にも対応
する透過型電子顕微鏡。
3. The transmission electron microscope according to claim 2, wherein the scintillator is held for each accelerating voltage and is compatible even when a plurality of accelerating voltages are used.
JP7330099A 1995-12-19 1995-12-19 Transmission electron microscope and signal detection device Pending JPH09167589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7330099A JPH09167589A (en) 1995-12-19 1995-12-19 Transmission electron microscope and signal detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7330099A JPH09167589A (en) 1995-12-19 1995-12-19 Transmission electron microscope and signal detection device

Publications (1)

Publication Number Publication Date
JPH09167589A true JPH09167589A (en) 1997-06-24

Family

ID=18228787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7330099A Pending JPH09167589A (en) 1995-12-19 1995-12-19 Transmission electron microscope and signal detection device

Country Status (1)

Country Link
JP (1) JPH09167589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002505794A (en) * 1997-06-13 2002-02-19 ガタン・インコーポレーテッド Method and apparatus for improving resolution and reducing noise of an electron microscope image detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002505794A (en) * 1997-06-13 2002-02-19 ガタン・インコーポレーテッド Method and apparatus for improving resolution and reducing noise of an electron microscope image detector

Similar Documents

Publication Publication Date Title
JP3836519B2 (en) Electron detector
JP4996805B2 (en) Semiconductor wafer and mask inspection apparatus using a low energy electron microscope having two illumination beams
US5990483A (en) Particle detection and particle detector devices
JP4037533B2 (en) Particle beam equipment
JP4176159B2 (en) Environmentally controlled SEM using magnetic field for improved secondary electron detection
US5517033A (en) Apparatus for improved image resolution in electron microscopy
US4249077A (en) Ion charge neutralization for electron beam devices
JPH0736321B2 (en) Spectrometer-objective lens system for quantitative potential measurement
JPS586263B2 (en) image forming device
US2928943A (en) Electronic microscope for top illumination of surfaces
US5932880A (en) Scintillator device and image pickup apparatus using the same
JPS63221549A (en) Charged particle detector
US6194719B1 (en) Methods and apparatus for improving resolution and reducing noise in an image detector for an electron microscope
JPH09167589A (en) Transmission electron microscope and signal detection device
JPH10188868A (en) Gun lens and particle beam device
US3946268A (en) Field emission gun improvement
JP3492772B2 (en) X-ray image intensifier
JPS5835854A (en) Secondary electron detection unit
US3370168A (en) Anode aperture plate for a television camera tube in an electron microscope comprising a stainless steel foil
Kruglov et al. A beam diagnostic system for low-intensity radioactive beams
JP2002203506A (en) Substrate testing device and its control method
US3551671A (en) Ion-electron image converter for use with ion microanalyzers
JPH10134753A (en) Transmission electron microscope and scintillator
JPH1054878A (en) Fluorescent device and image pickup device and inspection device using the fluorescent device
JPS586945B2 (en) Ionography