JPH0915136A - Laser diffraction/scattering type particle size distribution measuring apparatus - Google Patents
Laser diffraction/scattering type particle size distribution measuring apparatusInfo
- Publication number
- JPH0915136A JPH0915136A JP7163638A JP16363895A JPH0915136A JP H0915136 A JPH0915136 A JP H0915136A JP 7163638 A JP7163638 A JP 7163638A JP 16363895 A JP16363895 A JP 16363895A JP H0915136 A JPH0915136 A JP H0915136A
- Authority
- JP
- Japan
- Prior art keywords
- suspension
- dispersion tank
- particle size
- concentration
- size distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 83
- 239000000725 suspension Substances 0.000 claims abstract description 88
- 239000006185 dispersion Substances 0.000 claims abstract description 71
- 239000007788 liquid Substances 0.000 claims abstract description 70
- 238000005259 measurement Methods 0.000 claims abstract description 42
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000013480 data collection Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はレーザ回折/散乱式の粒
度分布測定装置に関し、特に土木、建築の分野で用いら
れる土砂等の粒度分布を測定するのに適したレーザ回折
/散乱式の粒度分布測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser diffraction / scattering type particle size distribution measuring apparatus, and more particularly to a laser diffraction / scattering type particle size measuring device suitable for measuring the particle size distribution of earth and sand used in the field of civil engineering and construction. The present invention relates to a distribution measuring device.
【0002】[0002]
【従来の技術】レーザ回折/散乱式の粒度分布測定装置
においては、一般に、被測定粒子群を媒液中に分散させ
た試料懸濁液を透光性材料からなるフローセル中に流
し、このフローセルを介して試料懸濁液にレーザ光を照
射することによって得られる回折/散乱光をリングデテ
クタ等の光センサアレイで受光してその空間強度分布を
測定し、その測定結果をミーの散乱理論ないしはフラウ
ンホーファ回折理論を用いて被測定粒子群の粒度分布に
換算する。2. Description of the Related Art In a laser diffraction / scattering type particle size distribution measuring apparatus, generally, a sample suspension in which a group of particles to be measured is dispersed in a liquid medium is made to flow into a flow cell made of a translucent material, Diffracted / scattered light obtained by irradiating the sample suspension with laser light through the light is received by an optical sensor array such as a ring detector and the spatial intensity distribution thereof is measured, and the measurement result is analyzed by Mie's scattering theory or It is converted to the particle size distribution of the measured particle group using the Fraunhofer diffraction theory.
【0003】この種の測定装置においては、通常、攪拌
装置や超音波振動子等を備えた分散槽を設け、その分散
槽内に被測定粒子群と媒液を投入して、測定に最適な濃
度範囲内に収まるよう、被測定粒子群を媒液中に均一に
分散させるとともに、その状態で試料懸濁液を分散槽と
フローセル中との間を循環させながら、フローセルにレ
ーザ光を照射して回折/散乱光の測定を行う。In this type of measuring apparatus, a dispersion tank equipped with a stirrer, an ultrasonic vibrator, etc. is usually provided, and the particle group to be measured and the liquid medium are put into the dispersion tank to make the optimum measurement. The particles to be measured are uniformly dispersed in the medium so that the concentration falls within the concentration range, and while the sample suspension is circulated between the dispersion tank and the flow cell in that state, the flow cell is irradiated with laser light. And measure the diffracted / scattered light.
【0004】[0004]
【発明が解決しようとする課題】ところで、土木や建築
の分野において用いられる土砂などの粒度分布の測定に
際しては、従来、フルイを用いた測定が主として採用さ
れていたが、近年、その測定の迅速化および省力化を図
るべく、測定時間が短く、操作が簡単なレーザ回折/散
乱法に置き換えようとする動きがある。By the way, in measuring the particle size distribution of earth and sand, etc. used in the field of civil engineering and construction, conventionally, the measurement using a sieve has been mainly adopted. There is a movement to replace the laser diffraction / scattering method, which has a short measurement time and is easy to operate, in order to save power and save labor.
【0005】この土木や建築の分野における土砂等の粒
度分布の測定にあっては、JIS等の規格においてその
サンプル量が定められており、そのサンプル量は、フル
イを用いた測定を想定しているため、相当大量となって
いる。[0005] In measuring the particle size distribution of earth and sand in the field of civil engineering and construction, the sample amount is defined in the standards such as JIS, and the sample amount is assumed to be measured using a sieve. Therefore, it is quite large.
【0006】前記した従来のレーザ回折/散乱式粒度分
布測定装置を用いて、このような大量のサンプルを分散
槽内に収容し、これを媒液によって測定に最適な濃度範
囲内に収めてフローセルとの間で循環させるためには、
分散槽を非常に大きなものとする必要があり、装置が極
めて大型になってしまうという問題がある。Using the above-mentioned conventional laser diffraction / scattering type particle size distribution measuring device, a large amount of such a sample is stored in a dispersion tank, and this is stored in a concentration range optimum for measurement by a medium liquid, and a flow cell To cycle between
It is necessary to make the dispersion tank very large, and there is a problem that the device becomes extremely large.
【0007】本発明はこのような実情に鑑みてなされた
もので、大量のサンプルを用いて粒度分布の測定を行う
必要があっても、特に大きな分散槽を用いることなく、
正確な粒度分布を測定することのできるレーザ回折/散
乱式の粒度分布測定装置の提供を目的としている。The present invention has been made in view of such circumstances, and even if it is necessary to measure the particle size distribution using a large amount of sample, without using a particularly large dispersion tank,
An object of the present invention is to provide a laser diffraction / scattering type particle size distribution measuring device capable of measuring an accurate particle size distribution.
【0008】[0008]
【課題を解決するための手段】上記の目的を達成するた
めの構成を、実施例図面である図1を参照しつつ説明す
ると、本発明のレーザ回折/散乱式粒度分布測定装置
は、被測定粒子群を媒液中に分散させてなる試料懸濁液
が流されるフローセル1にレーザ光を照射することによ
り得られる回折/散乱光を、複数の光センサ3b,3c
等で受光してその回折/散乱光の空間強度分布を測定
し、その測定結果を演算手段(粒度分布換算部)62に
導いて被測定粒子群の粒度分布に換算する装置におい
て、高濃度の試料懸濁液を収容する第1の分散槽11
と、その第1の分散槽11内の懸濁液が分取バルブ21
を介して供給され、かつ、媒液供給バルブ22を介して
媒液が供給される第2の分散槽12と、その第2の分散
槽12内の液出口に設けられ、第2の分散槽12内の試
料懸濁液を当該第2の分散槽12とフローセル1間で循
環させる状態、および、第2の分散槽12内の懸濁液を
廃棄する状態との、いずれかの状態に設定される切り換
えバルブ23を設ける。また、測定開始当初に、分取バ
ルブ21および媒液供給バルブ22を駆動して、第2の
分散槽12内に高濃度懸濁液と媒液を導入して得た懸濁
液が、あらかじめ設定された最適濃度範囲内に収まるの
に要した高濃度懸濁液量と媒液量に係る情報を記憶する
記憶手段(濃度調整メモリ)64と、測定開始当初に濃
度調整された懸濁液の回折/散乱光強度分布を測定・記
憶した後、切り換えバルブ23を駆動してその懸濁液を
廃棄するとともに、上記各バルブ21,22,23を駆
動することにより、第2の分散槽12内に記憶手段64
の内容に基づく量だけ高濃度懸濁液の分取と媒液の供給
を行って作った懸濁液をフローセル1との間で循環させ
ながら回折/散乱光強度分布を測定・記憶した後、その
懸濁液を廃棄する動作を実行する制御手段(測定動作制
御部)65とを有し、演算手段62は、複数回の回折/
散乱光強度分布測定結果の積算値を粒度分布に換算する
よう構成されていることによって特徴づけられる。A structure for achieving the above object will be described with reference to FIG. 1 which is an embodiment drawing, and a laser diffraction / scattering type particle size distribution measuring apparatus of the present invention will be described. Diffracted / scattered light obtained by irradiating the flow cell 1 in which a sample suspension in which a group of particles is dispersed in a liquid medium is flowed with laser light is used as a plurality of optical sensors 3b and 3c.
And the like to measure the spatial intensity distribution of the diffracted / scattered light, guide the measurement result to the calculation means (particle size distribution conversion unit) 62, and convert it to the particle size distribution of the measured particle group. First dispersion tank 11 for containing sample suspension
And the suspension in the first dispersion tank 11 becomes
And a second dispersion tank provided with a liquid medium via a liquid medium supply valve 22 and a liquid outlet provided in the second dispersion tank 12. It is set to either a state in which the sample suspension in 12 is circulated between the second dispersion tank 12 and the flow cell 1 or a state in which the suspension in the second dispersion tank 12 is discarded. The switching valve 23 is provided. In addition, at the beginning of the measurement, the fractionation valve 21 and the medium liquid supply valve 22 are driven so that the high-concentration suspension liquid and the suspension liquid obtained by introducing the medium liquid into the second dispersion tank 12 are Storage means (concentration adjustment memory) 64 for storing information relating to the amount of high-concentration suspension and the amount of medium liquid required to fall within the set optimum concentration range, and the suspension whose concentration was adjusted at the beginning of measurement. After measuring and storing the diffraction / scattered light intensity distribution of the second dispersion tank 12 by driving the switching valve 23 to discard the suspension and driving the valves 21, 22 and 23 described above. Storage means 64 in
After measuring and storing the diffraction / scattered light intensity distribution while circulating the suspension prepared by fractionating the high-concentration suspension and supplying the medium solution in an amount based on the content of The calculation means 62 has a control means (measurement operation control section) 65 for executing the operation of discarding the suspension,
Characterized by being configured to convert the integrated value of the scattered light intensity distribution measurement result into a particle size distribution.
【0009】ここで、本発明において、第2の分散槽1
2内の懸濁液が、あらかじめ設定された最適濃度範囲内
に収まるのに要した高濃度懸濁液量および媒液量に係る
情報とは、例えば、最適濃度範囲内の懸濁液を作るのに
要した分取バルブ21および媒液供給バルブ22のそれ
ぞれのトータル開放時間、あるいは、これら各バルブ2
1,22を、それぞれ1回の駆動によって定められた時
間だけ開放するように構成するとともに、最適濃度範囲
内の懸濁液を作るのに要したこれら各バルブ21,22
の開放回数等を言う。また、この最適濃度範囲の懸濁液
は、分取バルブ21および媒液供給バルブ22を人為的
に操作して最適濃度範囲内の懸濁液を作ってもよいし、
あるいは、第2の分散槽12内の懸濁液をフローセル1
中に流して光センサ3b等の出力をモニタしつつ、その
出力が一定の範囲に収まるよう、分取バルブ21および
媒液供給バルブ22を自動的に駆動制御する手段を設け
てもよい。Here, in the present invention, the second dispersion tank 1
The information regarding the high-concentration suspension amount and the medium liquid amount required for the suspension in 2 to fall within the preset optimum concentration range is, for example, a suspension within the optimum concentration range. The total opening time of each of the preparative valve 21 and the medium liquid supply valve 22 required for the above, or each of these valves 2
1 and 22 are configured to be opened for a predetermined time each by one drive, and these valves 21 and 22 required to form a suspension in an optimum concentration range are formed.
Say the number of times of opening. Further, the suspension in the optimum concentration range may be prepared by artificially operating the preparative valve 21 and the medium liquid supply valve 22 to form a suspension in the optimum concentration range.
Alternatively, the suspension in the second dispersion tank 12 is added to the flow cell 1
A means for automatically driving and controlling the preparative valve 21 and the medium liquid supply valve 22 may be provided so that the output of the light sensor 3b and the like is monitored while monitoring the output of the optical sensor 3b.
【0010】[0010]
【作用】本発明は、規定量のサンプルの全て最適濃度範
囲に希釈してフローセルに循環供給するのではなく、サ
ンプルの分取〜希釈〜回折/散乱光強度分布測定・記憶
〜廃棄という動作を連続的に繰り返し、全サンプルにつ
いての測定・記憶を完了した後、回折/散乱光強度分布
測定結果を積算して粒度分布に換算することにより、サ
ンプル全体の粒度分布を得ようとするものである。The present invention does not dilute all the specified amount of sample into the optimum concentration range and circulate and supply the sample to the flow cell, but performs the operations of preparative sample-dilution-diffraction / scattered light intensity distribution measurement / storage-discarding. It is intended to obtain the particle size distribution of the entire sample by continuously repeating the measurement and storage of all the samples and then integrating the diffraction / scattered light intensity distribution measurement results and converting the result into a particle size distribution. .
【0011】すなわち、第1の分散槽11内に規定のサ
ンプル量の被測定粒子群と媒液からなる高濃度懸濁液を
収容しておき、測定開始当初において、分取バルブ21
および媒液供給バルブ22を駆動して、第2の分散槽1
2内に高濃度懸濁液と媒液とを適当量供給して測定に最
適な濃度範囲の懸濁液を作る。その濃度調整に際して、
分取ないし供給された高濃度懸濁液および媒液の量に係
る情報は記憶手段64に記憶される。That is, a high-concentration suspension consisting of a prescribed sample amount of particles to be measured and a liquid medium is stored in the first dispersion tank 11, and the preparative valve 21 is set at the beginning of the measurement.
And the liquid medium supply valve 22 is driven to drive the second dispersion tank 1
An appropriate amount of a high-concentration suspension and a liquid medium are supplied to the inside of 2 to prepare a suspension having a concentration range optimum for measurement. When adjusting the concentration,
Information regarding the amounts of the high-concentration suspension and the liquid medium that have been collected or supplied is stored in the storage unit 64.
【0012】以上のようにして最初に調整された第2の
分散槽12内の懸濁液は、回折/散乱光強度分布の測定
・記憶の後に切り換えバルブ23によって廃棄される。
そして、以降、記憶手段64の記憶内容に従った量ず
つ、第1の分散槽11内の高濃度懸濁液と媒液が第2の
分散槽12内に供給されて懸濁液が作られ、フローセル
1に循環供給されて回折/散乱光の測定・記憶に供され
た後に廃棄される、という動作が繰り返される。このよ
うにして得られて記憶している回折/散乱光強度分布測
定結果の積算値が、演算手段62によって粒度分布に換
算される。The suspension in the second dispersion tank 12 which is initially adjusted as described above is discarded by the switching valve 23 after the measurement and storage of the diffraction / scattered light intensity distribution.
Then, thereafter, the high-concentration suspension liquid and the medium liquid in the first dispersion tank 11 are supplied into the second dispersion tank 12 in an amount according to the stored contents of the storage means 64 to form a suspension liquid. The operation of being circulated and supplied to the flow cell 1 and used for measuring / storing the diffracted / scattered light and then discarded is repeated. The integrated value of the diffraction / scattered light intensity distribution measurement results thus obtained and stored is converted into a particle size distribution by the computing means 62.
【0013】[0013]
【実施例】図1は本発明実施例の全体構成を示す模式図
である。粒度分布測定装置本体部分は、試料懸濁液が流
されるフローセル1と、そのフローセル1に平行レーザ
光を照射するレーザ光源2aおよびコリメータレンズ2
bとからなる照射光学系2、フローセル1内の被測定粒
子群による回折/散乱光を測定するための測定光学系
3、および、測定光学系3により測定された回折/散乱
光情報を入力してデータ処理するデータ処理部6等を主
体としている。FIG. 1 is a schematic diagram showing the overall construction of an embodiment of the present invention. The main body of the particle size distribution measuring apparatus comprises a flow cell 1 in which a sample suspension is flown, a laser light source 2a for irradiating the flow cell 1 with parallel laser light, and a collimator lens 2.
b and the irradiation optical system 2, the measurement optical system 3 for measuring the diffracted / scattered light by the particle group to be measured in the flow cell 1, and the diffracted / scattered light information measured by the measuring optical system 3 are input. The data processing unit 6 for performing data processing is mainly used.
【0014】測定光学系3は、被測定粒子群による前方
への回折/散乱光を集光する集光レンズ3aと、その集
光レンズ3aの焦点位置に置かれ、前方回折/散乱光像
が受光面上に結ばれるリングデテクタ3bと、側方散乱
光および後方散乱光をそれぞれ受光する側方散乱光セン
サ3cおよび後方散乱光センサ3dによって構成されて
いる。なお、リングデテタク3bは、互いに半径の異な
る円形ないしは半円形の受光面を持つ複数の光センサが
同心円上に配置された光センサアレイである。The measurement optical system 3 is placed at the focal point of the condenser lens 3a for converging the diffracted / scattered light forward by the particle group to be measured, and the focal point of the condensing lens 3a. The ring detector 3b is connected to the light receiving surface, and the side scattered light sensor 3c and the back scattered light sensor 3d respectively receive the side scattered light and the back scattered light. The ring detector 3b is an optical sensor array in which a plurality of optical sensors having circular or semi-circular light receiving surfaces having different radii are concentrically arranged.
【0015】リングデテクタ3b内の各センサ、および
側方散乱光センサ3c,後方散乱光センサ3dの各出力
は、それぞれアンプ4によって個別に増幅された後にA
−D変換器5によってデジタル化され、データ処理部6
に取り込まれる。The outputs of the sensors in the ring detector 3b, the side scattered light sensor 3c, and the back scattered light sensor 3d are individually amplified by the amplifier 4 and then A
The data processing unit 6 is digitized by the -D converter 5.
It is taken in.
【0016】フローセル1に流される試料懸濁液は、2
つの分散槽11,12と媒液供給器10等からなる、以
下に詳述するサンプラによって作られる。第1の分散槽
11には、測定に先立って規定量の被測定粒子群が投入
されるとともに、バルブ24を介して媒液供給器10か
ら適当量の媒液が供給され、規定量の被測定粒子群は高
濃度の懸濁液の状態でこの第1の分散槽11内に収容さ
れる。この第1の分散槽11の底面に設けられた液出口
には、分取バルブ21が装着されている。The sample suspension flowed in the flow cell 1 is 2
It is made by a sampler, which is composed of two dispersion tanks 11 and 12 and a liquid medium supplier 10 and the like, which will be described in detail below. A specified amount of particles to be measured is put into the first dispersion tank 11 prior to the measurement, and an appropriate amount of the liquid medium is supplied from the liquid medium supply device 10 via the valve 24 so that a predetermined amount of the medium liquid is supplied. The measurement particle group is accommodated in the first dispersion tank 11 in a high-concentration suspension state. A preparative valve 21 is attached to the liquid outlet provided on the bottom surface of the first dispersion tank 11.
【0017】第2の分散槽12には、データ処理部6か
らの後述する動作指令に基づき、分取バルブ21を介し
て第1の分散槽11内の高濃度懸濁液が分取されるとと
もに、媒液供給バルブ22を介して媒液供給器から媒液
が供給され、この第2分散槽12内で測定に最適なあら
かじめ設定された濃度範囲の懸濁液が調整される。この
第2の分散槽12の底面に設けられた液出口には、ポン
プ25が配されているとともに、そのポンプ25の吐出
口には切り換えバルブ23が設けられている。切り換え
バルブ23は、ポンプ25によって吸引された第2の分
散槽12内の懸濁液を、循環路26を介して当該第2の
分散槽12とフローセル1との間で循環させる状態と、
廃棄路27を介して装置外部に廃棄する状態とのいずれ
かの状態に設定される。The high-concentration suspension in the first dispersion tank 11 is collected in the second dispersion tank 12 via the preparative valve 21 based on an operation command from the data processing unit 6 which will be described later. At the same time, the medium liquid is supplied from the medium liquid supply device via the medium liquid supply valve 22, and the suspension having the preset concentration range most suitable for the measurement is adjusted in the second dispersion tank 12. A pump 25 is provided at the liquid outlet provided on the bottom surface of the second dispersion tank 12, and a switching valve 23 is provided at the discharge port of the pump 25. The switching valve 23 circulates the suspension in the second dispersion tank 12 sucked by the pump 25 between the second dispersion tank 12 and the flow cell 1 through the circulation path 26,
It is set to any one of a state in which it is discarded to the outside of the apparatus via the discard path 27.
【0018】第1および第2の分散槽11および12
は、それぞれ、攪拌器11a,12aと超音波振動子1
1b,12bを有しており、内部の懸濁液中の被測定粒
子群を媒液中に常に均一に分散させることができるよう
になっている。また、媒液供給器10については、図1
においてはタンク様の図示をしてしいるが、例えば土木
等の分野における土砂の粒度分布測定にあっては媒液は
水道水でよく、従って媒液供給器10は、例えば一定流
量に保たれた水道栓そのもの、あるいは水道栓からの水
道水が一時的に蓄えられ、かつ、一定の吐出量に設定さ
れたポンプを装着したタンクによって構成することがで
きる。First and second dispersion tanks 11 and 12
Are the agitators 11a and 12a and the ultrasonic transducer 1 respectively.
1b and 12b are provided, and the group of particles to be measured in the suspension inside can always be uniformly dispersed in the medium liquid. Further, regarding the liquid medium supplier 10, FIG.
Although a tank-like structure is shown in Fig. 1, the medium liquid may be tap water when measuring the particle size distribution of earth and sand in the field of civil engineering, and therefore the medium liquid supply device 10 is kept at a constant flow rate, for example. It can be configured by a water tap itself or a tank equipped with a pump in which tap water from the water tap is temporarily stored and set to a constant discharge amount.
【0019】上記した分取バルブ21および媒液供給バ
ルブ22は、実際にはそれぞれ電磁駆動式の開閉弁であ
り、また、切り換えバルブ24は同じく電磁駆動式の方
向制御弁であって、これらはポンプ25と併せて、デー
タ処理部6から供給される指令に基づいて動作するドラ
イバ7からの制御信号によって駆動制御される。The sorting valve 21 and the medium liquid supply valve 22 described above are actually electromagnetically-operated opening / closing valves, and the switching valve 24 is also an electromagnetically-driven directional control valve. Along with the pump 25, drive control is performed by a control signal from a driver 7 that operates based on a command supplied from the data processing unit 6.
【0020】さて、データ処理部6は、A−D変換器5
からの各センサ出力データ、すなわち回折/散乱光強度
分布データを記憶するデータメモリ61と、そのデータ
メモリ61に記憶された回折/散乱光強度分布データ
を、後述する演算によって被測定粒子群の粒度分布に換
算する粒度分布換算部62のほか、測定開始当初に第2
の分散槽12内に最適濃度範囲の懸濁液を作るべく、A
−D変換器5を介してリングデテクタ3b中の特定のセ
ンサ出力を取り込みながら、分取バルブ21および媒液
供給バルブ22に駆動指令を与える最適濃度調整部63
と、その最適濃度調整動作時における高濃度懸濁液と媒
液との供給量に係る情報を記憶する濃度調整メモリ6
4、および装置の測定動作全体を制御する測定動作制御
部65を備えており、この測定動作制御部65および最
適濃度調整部63から、前記したドライバ7に指令が供
給されて各バルブおよびポンプが駆動制御される。な
お、データ処理部6は、この図1において各機能ごとの
ブロック図で示しているが、実際にはコンピュータおよ
びその周辺機器によって構成されている。Now, the data processing unit 6 includes the AD converter 5
The data output from each sensor, that is, the data memory 61 for storing the diffraction / scattered light intensity distribution data, and the diffraction / scattered light intensity distribution data stored in the data memory 61 are calculated by the calculation described later to determine the particle size of the particle group to be measured. In addition to the particle size distribution conversion unit 62 that converts to a distribution, the second
To make a suspension in the optimum concentration range in the dispersion tank 12 of
An optimum concentration adjusting unit 63 that gives a drive command to the preparative valve 21 and the medium liquid supply valve 22 while taking in a specific sensor output in the ring detector 3b via the -D converter 5.
And a concentration adjustment memory 6 for storing information relating to the supply amounts of the high-concentration suspension and the medium liquid during the optimum concentration adjustment operation.
4 and a measurement operation control unit 65 for controlling the entire measurement operation of the apparatus. The measurement operation control unit 65 and the optimum concentration adjustment unit 63 supply a command to the driver 7 to operate each valve and pump. Drive controlled. Although the data processing unit 6 is shown in the block diagram of each function in FIG. 1, it is actually composed of a computer and its peripheral devices.
【0021】図2はデータ処理部6の動作を示すフロー
チャートで、以下、この図を参照しつつ、本発明実施例
の作用を述べる。測定に先立ち、第1の分散槽11内に
規定量の被測定粒子群を投入するとともに、バルブ24
を開いて適当量の媒液を注入することにより、第1の分
散槽11内に高濃度の懸濁液を作る。そして、この実施
例ではこの状態でスタート指令を与える。FIG. 2 is a flow chart showing the operation of the data processing section 6. The operation of the embodiment of the present invention will be described below with reference to this figure. Prior to the measurement, a specified amount of particles to be measured was put into the first dispersion tank 11, and the valve 24 was used.
Is opened and a proper amount of the medium liquid is injected to form a high-concentration suspension in the first dispersion tank 11. In this embodiment, the start command is given in this state.
【0022】スタート指令が与えられると、まず、第1
の分散槽11内の高濃度懸濁液と媒液とを第2の分散槽
12内に適当量注入し、測定に最適な濃度範囲の懸濁液
を作る。この具体的な動作の例について述べると、分取
バルブ21および媒液供給バルブ22をそれぞれ適宜に
開放して第2の分散槽12内で高濃度懸濁液を媒液で希
釈し、ポンプ25および切り換えバルブ23を駆動し
て、その希釈後の懸濁液をフローセル1に循環供給する
とともに、A−D変換器5を介してリングデテクタ3b
の各センサ出力をモニタし、その各出力の大きさが、あ
らかじめ設定された大きさの範囲に収まるように、分取
バルブ21および媒液供給バルブ22を間欠的に開放す
る。なお、この濃度調整動作において、第2の分散槽1
2内の懸濁液量が規定量に達しているにも係わらずその
濃度が高すぎる状態となった場合には、切り換えバルブ
23を駆動して第2の分散槽12内の懸濁液の一部を廃
棄し、媒液を注入する必要があり、この場合、規定量の
被測定粒子群の一部を失うことになって好ましくない。
従って、この濃度調整動作においては、例えば第2の分
散槽12内に適当量の媒液を供給した後、高濃度懸濁液
の少量ずつの分取を繰り返すことによって、最適濃度範
囲の懸濁液を作るような手順を採ることが好ましい。な
お、懸濁液が最適濃度範囲にあるか否かの判定は、リン
グデテクタ3bの各センサ出力が、懸濁液濃度が薄すぎ
る場合には全体的に小さく、逆に濃すぎる場合には全体
的に高くなって飽和状態になることを利用して、上記の
ようにその各センサの出力の大きさでによって判定する
ほか、リングテテクタ3bの中心のセンサの出力が懸濁
液を透過した光強度、換言すれば懸濁液濃度に相関する
ことから、その透過光強度をもとに濃度判定を行っても
よい。When a start command is given, first, the first
An appropriate amount of the high-concentration suspension and the medium solution in the dispersion tank 11 is injected into the second dispersion tank 12 to prepare a suspension having an optimum concentration range for measurement. An example of this specific operation will be described. The preparative valve 21 and the medium liquid supply valve 22 are appropriately opened to dilute the high-concentration suspension with the medium liquid in the second dispersion tank 12, and the pump 25 is used. Also, the switching valve 23 is driven to circulate and supply the diluted suspension to the flow cell 1, and the ring detector 3b is also supplied via the AD converter 5.
Each sensor output is monitored, and the preparative valve 21 and the medium liquid supply valve 22 are intermittently opened so that the magnitude of each output falls within a preset size range. In this concentration adjustment operation, the second dispersion tank 1
If the concentration in the second dispersion tank 12 is too high even though the amount in the second suspension reaches the specified amount, the switching valve 23 is driven to change the concentration of the suspension in the second dispersion tank 12. It is necessary to discard a part and inject the liquid medium. In this case, a part of the specified amount of particles to be measured is lost, which is not preferable.
Therefore, in this concentration adjustment operation, for example, after supplying an appropriate amount of the medium liquid into the second dispersion tank 12, the high concentration suspension is repeatedly dispensed in small portions to obtain a suspension in the optimum concentration range. It is preferable to take a procedure for making a liquid. It should be noted that whether or not the suspension is within the optimum concentration range is determined as a whole when the output of each sensor of the ring detector 3b is too small when the suspension concentration is too thin, and conversely when it is too thick. The output of the sensor at the center of the ring detector 3b is used to determine the intensity of the light transmitted through the suspension, as described above, by utilizing the fact that the output of each sensor becomes saturated. In other words, since it correlates with the suspension concentration, the concentration may be determined based on the transmitted light intensity.
【0023】さて、以上のようにして第2の分散槽12
内に最適濃度範囲の懸濁液が作られたと判定した時点
で、その濃度調整に要した高濃度懸濁液量と媒液量に係
る情報、例えばその濃度調整動作時において分取バルブ
21および媒液供給バルブ22それぞれのトータル開放
時間または回数等、が濃度調整メモリ64内に記憶され
る。また、最適濃度範囲に収まった後の第2の分散槽1
2内の懸濁液は、続いてフローセル1に循環供給され、
その状態でリングデテクタ3b、側方散乱光センサ3c
および後方散乱光センサ3dの各出力データが、1回目
の回折/散乱光強度分布データとしてデータメモリ61
に格納される。Now, as described above, the second dispersion tank 12
At the time when it is determined that a suspension having an optimum concentration range has been prepared in the inside, information relating to the amount of high-concentration suspension and the amount of medium liquid required for the concentration adjustment, for example, the preparative valve 21 and The total opening time, the number of times, etc. of each of the liquid medium supply valves 22 are stored in the concentration adjustment memory 64. In addition, the second dispersion tank 1 after the concentration is within the optimum concentration range
The suspension in 2 is subsequently circulated to the flow cell 1,
In that state, the ring detector 3b and the side scattered light sensor 3c
The respective output data of the backscattered light sensor 3d and the output data of the backscattered light sensor 3d are used as the first diffraction / scattered light intensity distribution data in the data memory 61.
Is stored in
【0024】次に、切り換えバルブ23が切り換えら
れ、第2の分散槽12内の懸濁液が廃棄されるととも
に、媒液供給バルブ22が開放されて第2の分散槽12
内に媒液が注入され、この第2の分散槽12内が洗浄さ
れる。Next, the switching valve 23 is switched, the suspension liquid in the second dispersion tank 12 is discarded, and the medium liquid supply valve 22 is opened to open the second dispersion tank 12.
A liquid medium is injected into the inside of the second dispersion tank 12 to clean it.
【0025】その後、切り換えバルブ23が循環状態に
戻され、濃度調整メモリ64の内容に応じた量だけ、分
取バルブ21および媒液供給バルブ22が開放されて第
2の分散槽12内に高濃度懸濁液と媒液が供給され、最
適濃度の懸濁液が作られる。そして、その懸濁液につい
ての回折/散乱光強度分布データが採取されてデータメ
モリ61に2回目の回折/散乱光強度分布データとして
格納された後、切り換えバルブ23が切り換えられて第
2の分散槽12内の懸濁液が廃棄される。After that, the switching valve 23 is returned to the circulating state, and the preparative valve 21 and the medium liquid supply valve 22 are opened by an amount corresponding to the content of the concentration adjusting memory 64 to raise the pressure in the second dispersion tank 12. The concentrated suspension and the liquid medium are supplied to make a suspension having an optimum concentration. Then, after the diffracted / scattered light intensity distribution data of the suspension is collected and stored in the data memory 61 as the second diffracted / scattered light intensity distribution data, the switching valve 23 is switched to the second dispersion. The suspension in the tank 12 is discarded.
【0026】次に、上記と同様に第2の分散槽12内の
洗浄〜濃度調整メモリ64の記憶内容に基づく第2の分
散槽12内への高濃度懸濁液の分取および媒液の供給に
よる最適濃度懸濁液の作成〜回折/散乱光強度分布デー
タの採取の動作が、第1の分散槽11内の高濃度懸濁液
がなくなるまで繰り返し実行される。Next, in the same manner as above, based on the contents stored in the cleaning-concentration adjusting memory 64 in the second dispersion tank 12, the high-concentration suspension is dispensed into the second dispersion tank 12 and the medium liquid is collected. The operations from the preparation of the optimum concentration suspension by the supply to the collection of the diffraction / scattered light intensity distribution data are repeated until the high concentration suspension in the first dispersion tank 11 is exhausted.
【0027】以上の動作において、回折/散乱光強度分
布の測定を、例えば合計L回にわたって行ったとする
と、データメモリ61にはL個の回折/散乱光強度分布
データが揃うことになる。粒度分布換算部62は、この
L個の回折/散乱光強度分布データを用いて、各回の測
定においてリングデテクタ3bの各センサ、側方散乱光
センサ3cおよび各後方散乱光センサ3dそれぞれによ
って検出された光強度を、各センサごとに積算し、全て
の被測定粒子群に関する回折/散乱光強度分布データ
(ベクトル)sを求め、そのデータ(ベクトル)sを用
いて被測定粒度分布群の粒度分布に換算する。In the above operation, assuming that the diffraction / scattered light intensity distribution is measured, for example, L times in total, the data memory 61 has L diffraction / scattered light intensity distribution data. The particle size distribution conversion unit 62 uses the L pieces of diffracted / scattered light intensity distribution data to be detected by each sensor of the ring detector 3b, the side scattered light sensor 3c, and each back scattered light sensor 3d in each measurement. The measured light intensity is integrated for each sensor to obtain the diffraction / scattered light intensity distribution data (vector) s for all the measured particle groups, and the data (vector) s is used to measure the particle size distribution of the measured particle size distribution group. Convert to.
【0028】積算後の回折/散乱光強度分布データs
(ベクトル)は、Diffraction / scattered light intensity distribution data s after integration
(Vector) is
【0029】[0029]
【数1】 (Equation 1)
【0030】で表され、その各要素si は、And each element s i is
【0031】[0031]
【数2】 (Equation 2)
【0032】である。すなわち、リングデテクタ3bの
各センサ、および側方散乱光センサ3cおよび各後方散
乱光センサ3dについて、回折/散乱角度の小さいもの
から順に番号を付し、これをi(i=1,2,・・・・m)
とし、そのi番目のセンサによりk回目のデータ採取時
に検出された光強度をsi,k(k=1,2,・・・・L)と
する。そして、i番目のセンサのL回にわたる光強度検
出値の積算値をsi としている。Is as follows. That is, the sensors of the ring detector 3b, the side scattered light sensor 3c, and the back scattered light sensor 3d are numbered in order from the one having the smallest diffraction / scattering angle, and i (i = 1, 2, ... ... m)
, And the light intensity detected by the i-th sensor at the time of the kth data collection is s i, k (k = 1, 2, ... L). Then, the integrated value of the light intensity detection values of the i-th sensor over L times is set as s i .
【0033】このような積算後の回折/散乱光強度分布
データ(ベクトル)s、換言すれば規定量の全被測定粒
子群に関する回折/散乱光強度分布データ(ベクトル)
sを用いて、次の(3)式によって粒度分布を計算す
る。The diffracted / scattered light intensity distribution data (vector) s after such integration, in other words, the diffracted / scattered light intensity distribution data (vector) regarding all the measured particle groups of a specified amount.
Using s, the particle size distribution is calculated by the following equation (3).
【0034】[0034]
【数3】 (Equation 3)
【0035】ここで、qは粒度分布(頻度分布%)ベク
トルである。粒度分布範囲を有限とし、この範囲内をn
分割して、最大値をd1 、最小値をdn+1 とする。それ
ぞれの分割区間〔dj ,dj+1 〕を一つの粒子径xj で
代表させる。ベクトルqのの要素qj (j=1,2,・・
・・n)は、粒子径xj に対応する粒子量である。通常
は、Here, q is a particle size distribution (frequency distribution%) vector. The particle size distribution range is finite, and within this range n
It is divided into the maximum value d 1 and the minimum value d n + 1 . Each of the divided sections [d j , d j + 1 ] is represented by one particle diameter x j . Elements q j of the vector q (j = 1, 2, ...
··· N) is the amount of particles corresponding to the particle diameter x j . Normally,
【0036】[0036]
【数4】 (Equation 4)
【0037】によって正規化(ノルマライズ)を行って
いる。Aは粒度分布(ベクトル)qを光強度分布(ベク
トル)sに変換する係数行列である。Aの要素a
i,j (i=1,2,・・・・m,j=1,2,・・・・n)の物
理的意味は、粒子径xj の単位粒子量の粒子群によって
回折/散乱された光のi番目のセンサに対する入射光量
である。Normalization is performed by A is a coefficient matrix for converting the particle size distribution (vector) q into the light intensity distribution (vector) s. Element a of A
The physical meaning of i, j (i = 1,2, ... m, j = 1,2, ... n) is that the particles are diffracted / scattered by a group of particles with a unit particle amount of particle diameter x j. It is the amount of incident light on the i-th sensor.
【0038】ai,j の数値は、理論的に計算することが
できる。これには、粒子径が光源からのレーザ光の波長
に比べて充分に大きい場合にはフラウンホーファ回折理
論を用いる。しかし、粒子系がレーザ光の波長と同程度
か、あるいはそれより小さいサブミクロンの領域では、
ミー散乱理論を用いる必要がある。フラウンホーファ回
折理論は、前方微小角散乱において、粒子系がレーザ波
長に比べて充分大きな場合に有効なミー散乱理論の優れ
た近似であると考えることができる。なお、ミー散乱理
論を用いて係数行列(ベクトル)Aの要素を計算するた
めには、被測定粒子およびそれを分散させる媒液の屈折
率を設定する必要がある。The numerical value of a i, j can be theoretically calculated. For this, the Fraunhofer diffraction theory is used when the particle diameter is sufficiently larger than the wavelength of the laser light from the light source. However, in the submicron region where the particle system is at the same level as or smaller than the wavelength of laser light,
It is necessary to use Mie scattering theory. The Fraunhofer diffraction theory can be considered to be an excellent approximation of the Mie scattering theory, which is effective in the case of forward small angle scattering when the particle system is sufficiently larger than the laser wavelength. In order to calculate the elements of the coefficient matrix (vector) A using the Mie scattering theory, it is necessary to set the refractive index of the particles to be measured and the medium liquid in which the particles are dispersed.
【0039】以上の計算によって求められた粒度分布
(ベクトル)qは、第1の分散槽11内に投入した規定
量の被測定粒子群の全てを、逐次分取しつつ測定した複
数回の回折/散乱光強度分布測定結果を積算したデータ
に基づいているため、JIS等の規定に沿った粒度分布
となり得る。また、第1の分散槽11内において当初に
作られる規定量の被測定粒子群を用いた高濃度の懸濁液
は、その濃度が高ければ粒子がある程度偏析することは
避けられないが、本発明においては、各回の測定に際し
て分取される高濃度懸濁液にその偏析の影響があって
も、第1の分散槽11内の全ての高濃度懸濁液を測定に
供して、その回折/散乱光強度分布データの積算値を用
いて粒度分布を算出するため、得られた粒度分布測定結
果には偏析の影響は生じない。The particle size distribution (vector) q obtained by the above calculation is obtained by diffracting a plurality of times by sequentially collecting all of the specified amount of particles to be measured put in the first dispersion tank 11. / Because it is based on the data obtained by integrating the scattered light intensity distribution measurement results, the particle size distribution can be in accordance with JIS and other regulations. Further, in the case of a high-concentration suspension initially prepared in the first dispersion tank 11 using a specified amount of particles to be measured, if the concentration is high, segregation of particles is unavoidable to some extent. In the present invention, even if the high-concentration suspension sampled in each measurement is affected by the segregation, all the high-concentration suspensions in the first dispersion tank 11 are subjected to the measurement and their diffraction / Since the particle size distribution is calculated using the integrated value of the scattered light intensity distribution data, the effect of segregation does not occur on the obtained particle size distribution measurement result.
【0040】なお、以上の実施例では、測定開始当初に
第1の分散槽11内の高濃度懸濁液と媒液とによって、
自動的に最適濃度範囲の懸濁液を作るための最適濃度調
整機能を持つ装置について述べたが、本発明はこれに限
定されることなく、測定開始当初の最適濃度範囲の懸濁
液の調整は、人手によって行ってもよい。この場合、最
適濃度であるか否かの判定は例えばリングデテクタ3b
の各センサ出力をCRT等によってモニタすることによ
って行うとともに、例えば分取バルブ21および媒液供
給バルブ22をそれぞれ一定時間だけ開放させるための
スイッチを設けておき、最適濃度範囲内の懸濁液が作ら
れるまでに操作された各スイッチの操作回数を濃度調整
メモリ64に記憶するようにしておけばよい。In the above embodiment, at the beginning of the measurement, the high-concentration suspension and the medium liquid in the first dispersion tank 11
Although the apparatus having the optimum concentration adjusting function for automatically producing the suspension in the optimum concentration range has been described, the present invention is not limited to this, and the suspension in the optimum concentration range at the beginning of the measurement is adjusted. May be performed manually. In this case, for example, the ring detector 3b is used to determine whether the concentration is optimum.
Each sensor output is monitored by a CRT or the like, and a switch for opening the preparative valve 21 and the liquid medium supply valve 22 respectively for a predetermined time is provided so that the suspension within the optimum concentration range is It is only necessary to store the number of times of operation of each switch operated until it is made in the density adjustment memory 64.
【0041】[0041]
【発明の効果】以上説明したように、本発明によれば、
規定量の被測定粒子群を含む高濃度懸濁液を第1の分散
槽内に収容するとともに、その高濃度懸濁液を第2の分
散槽内に分取して媒液によって希釈することで最適濃度
範囲の懸濁液を作り、その懸濁液を、回折/散乱光強度
分布を測定した後に廃棄する、という動作を繰り返し、
その各回の回折/散乱光強度分布測定結果の積算値を用
いて被測定粒子群の粒度分布を求めるから、粒度分布に
供すべき被測定粒子群の規定量が極めて大量であって
も、特に大型の分散槽を用いることなく、従ってコンパ
クトな装置構成のもとに、全粒子群を用いた正確な粒度
分布を得ることが可能となった。As described above, according to the present invention,
A high concentration suspension containing a specified amount of particles to be measured is stored in the first dispersion tank, and the high concentration suspension is fractionated in the second dispersion tank and diluted with a medium liquid. Repeat the operation of making a suspension in the optimum concentration range with and discarding the suspension after measuring the diffraction / scattered light intensity distribution.
Since the particle size distribution of the measured particle group is obtained using the integrated value of the diffraction / scattered light intensity distribution measurement results of each time, even if the specified amount of the measured particle group to be used for the particle size distribution is extremely large, it is particularly large. Therefore, it became possible to obtain an accurate particle size distribution using all particle groups without using the dispersion tank of 1.
【図1】本発明実施例の全体構成を示す模式図FIG. 1 is a schematic diagram showing the overall configuration of an embodiment of the present invention.
【図2】そのデータ処理部6の動作を示すフローチャー
トFIG. 2 is a flowchart showing the operation of the data processing unit 6.
1 フローセル 2 照射光学系 3 測定光学系 3b リングデテクタ 3c 側方散乱光センサ 3d 後方散乱光センサ 6 データ処理部 61 データメモリ 62 粒度分布換算部 63 最適濃度調整部 64 濃度調整メモリ 65 測定動作制御部 21 分取バルブ 22 媒液供給バルブ 23 切り換えバルブ 25 ポンプ 1 Flow Cell 2 Irradiation Optical System 3 Measurement Optical System 3b Ring Detector 3c Side Scattered Light Sensor 3d Backscattered Light Sensor 6 Data Processing Unit 61 Data Memory 62 Particle Size Distribution Conversion Unit 63 Optimal Concentration Adjustment Unit 64 Concentration Adjustment Memory 65 Measurement Operation Control Unit 21 preparative valve 22 medium liquid supply valve 23 switching valve 25 pump
Claims (1)
試料懸濁液が流されるフローセルにレーザ光を照射する
ことにより得られる回折/散乱光を、複数の光センサで
受光してその回折/散乱光の空間強度分布を測定し、そ
の測定結果を演算手段に導いて被測定粒子群の粒度分布
に換算する装置において、 高濃度の試料懸濁液を収容する第1の分散槽と、 その第1の分散槽内の懸濁液が分取バルブを介して供給
され、かつ、媒液供給バルブを介して媒液が供給される
第2の分散槽と、 その第2の分散槽内の液出口に設けられ、第2の分散槽
内の試料懸濁液を当該第2の分散槽と上記フローセル間
で循環させる状態、および、第2の分散槽内の懸濁液を
廃棄する状態との、いずれかに設定される切り換えバル
ブと、 測定開始当初に、分取バルブおよび媒液供給バルブを駆
動して、第2の分散槽内に高濃度懸濁液と媒液を導入し
て得た懸濁液が、あらかじめ設定された最適濃度範囲内
に収まるのに要した高濃度懸濁液量と媒液量に係る情報
を記憶する記憶手段と、 測定開始当初に濃度調整された懸濁液の回折/散乱光強
度分布を測定・記憶した後、切り換えバルブを駆動して
その懸濁液を廃棄するとともに、上記各バルブを駆動す
ることにより、第2の分散槽内に上記記憶手段の内容に
基づく量だけ高濃度懸濁液の分取と媒液の供給を行って
作った懸濁液をフローセルとの間で循環させながら回折
/散乱光強度分布を測定・記憶した後、その懸濁液を廃
棄する動作を実行する制御手段と、 を有し、上記演算手段は、複数回の回折/散乱光強度分
布測定結果の積算値を粒度分布に換算するよう構成され
ていることを特徴とするレーザ回折/散乱式粒度分布測
定装置。1. A plurality of photosensors receive diffracted / scattered light obtained by irradiating a flow cell in which a sample suspension in which a group of particles to be measured is dispersed in a liquid medium is irradiated with laser light. An apparatus for measuring a spatial intensity distribution of the diffracted / scattered light and guiding the measurement result to a calculation means to be converted into a particle size distribution of a particle group to be measured, which is a first dispersion tank containing a high-concentration sample suspension. And a second dispersion tank in which the suspension liquid in the first dispersion tank is supplied through a preparative valve and a liquid medium is supplied through a liquid medium supply valve, and the second dispersion tank A state where the sample suspension in the second dispersion tank is circulated between the second dispersion tank and the flow cell provided at the liquid outlet in the tank, and the suspension in the second dispersion tank is discarded. The switching valve that is set to either the Also, it was necessary to drive the medium liquid supply valve and introduce the high-concentration suspension liquid and the medium liquid into the second dispersion tank so that the suspension liquid obtained fell within the preset optimum concentration range. A storage means for storing information on the amount of high-concentration suspension and the amount of medium, and after measuring and storing the diffraction / scattered light intensity distribution of the suspension whose concentration was adjusted at the beginning of measurement, drive the switching valve. The suspension is discarded, and the valves are driven to dispense a high-concentration suspension and supply the medium liquid in the second dispersion tank in an amount based on the contents of the storage means. And a control means for performing an operation of discarding the suspension after measuring and storing the diffraction / scattered light intensity distribution while circulating the suspension thus prepared with the flow cell. Converts the integrated value of multiple diffraction / scattered light intensity distribution measurement results into a particle size distribution. A laser diffraction / scattering particle size distribution measuring apparatus characterized by being configured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16363895A JP3409510B2 (en) | 1995-06-29 | 1995-06-29 | Laser diffraction / scattering particle size distribution analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16363895A JP3409510B2 (en) | 1995-06-29 | 1995-06-29 | Laser diffraction / scattering particle size distribution analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0915136A true JPH0915136A (en) | 1997-01-17 |
JP3409510B2 JP3409510B2 (en) | 2003-05-26 |
Family
ID=15777750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16363895A Expired - Fee Related JP3409510B2 (en) | 1995-06-29 | 1995-06-29 | Laser diffraction / scattering particle size distribution analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3409510B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001519528A (en) * | 1997-10-06 | 2001-10-23 | パシフィック サイエンティフィック インストゥールメンツ カンパニー | Multilobe pump for particle counter |
JP2002116134A (en) * | 2000-10-10 | 2002-04-19 | Shimadzu Corp | Measuring apparatus for suspended particulate matter |
JP2002527740A (en) * | 1998-10-15 | 2002-08-27 | パーティクル サイジング システムズ インコーポレイテッド | Automatic dilution system for high resolution particle size analysis |
JP2008536136A (en) * | 2005-04-12 | 2008-09-04 | マルバーン インストゥルメンツ リミテッド | Dilution apparatus and method |
CN106643935A (en) * | 2016-12-05 | 2017-05-10 | 盐城工学院 | Laser scattering multi-elevation sediment transport strength synchronization measurement device |
US10962756B2 (en) | 2017-02-10 | 2021-03-30 | Amgen Inc. | Imaging system for counting and sizing particles in fluid-filled vessels |
WO2021235169A1 (en) * | 2020-05-20 | 2021-11-25 | 国立研究開発法人産業技術総合研究所 | Number based particle diameter distribution measurement method and measurement system |
-
1995
- 1995-06-29 JP JP16363895A patent/JP3409510B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001519528A (en) * | 1997-10-06 | 2001-10-23 | パシフィック サイエンティフィック インストゥールメンツ カンパニー | Multilobe pump for particle counter |
JP2002527740A (en) * | 1998-10-15 | 2002-08-27 | パーティクル サイジング システムズ インコーポレイテッド | Automatic dilution system for high resolution particle size analysis |
JP2010243503A (en) * | 1998-10-15 | 2010-10-28 | Particle Sizing Systems Inc | Automatic dilution system for high-resolution particle size analysis |
JP2016065874A (en) * | 1998-10-15 | 2016-04-28 | パーティクル サイジング システムズ インコーポレイテッド | Automatic dilution system for high-resolution particle size analysis |
JP2002116134A (en) * | 2000-10-10 | 2002-04-19 | Shimadzu Corp | Measuring apparatus for suspended particulate matter |
JP2008536136A (en) * | 2005-04-12 | 2008-09-04 | マルバーン インストゥルメンツ リミテッド | Dilution apparatus and method |
CN106643935A (en) * | 2016-12-05 | 2017-05-10 | 盐城工学院 | Laser scattering multi-elevation sediment transport strength synchronization measurement device |
CN106643935B (en) * | 2016-12-05 | 2023-10-17 | 盐城工学院 | Laser scattering multi-elevation sand transmission intensity synchronous measurement device |
US10962756B2 (en) | 2017-02-10 | 2021-03-30 | Amgen Inc. | Imaging system for counting and sizing particles in fluid-filled vessels |
WO2021235169A1 (en) * | 2020-05-20 | 2021-11-25 | 国立研究開発法人産業技術総合研究所 | Number based particle diameter distribution measurement method and measurement system |
Also Published As
Publication number | Publication date |
---|---|
JP3409510B2 (en) | 2003-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pel et al. | Determination of moisture diffusivity in porous media using scanning neutron radiography | |
EP1947443B1 (en) | A method for determination of particles in a liquid sample | |
Koch et al. | Deduction of the cell volume and mass from forward scatter intensity of bacteria analyzed by flow cytometry | |
Dubelaar et al. | CytoBuoy: a step forward towards using flow cytometry in operational oceanography | |
US4178796A (en) | Method and apparatus for particle size analysis | |
US3680962A (en) | Contaminant detector comprising means for selectively applying pressure to liquify bubbles | |
JPH0915136A (en) | Laser diffraction/scattering type particle size distribution measuring apparatus | |
EP2843409B1 (en) | Urine sample analyzing method and sample analyzer | |
EP0180140B1 (en) | Method for analyzing impurities in liquid and apparatus therefor | |
JPH09145591A (en) | Measuring apparatus for particle-size-distribution | |
JP2002315598A (en) | Method for instrument processing of particle using filter, and apparatus for the same | |
US20100322505A1 (en) | Real-time s-parameter imager | |
JPH06194299A (en) | Flow cell apparatus | |
JP2006523826A (en) | Method and apparatus for testing fibers | |
JPH06109615A (en) | Grain size distribution measuring device | |
JP3235554B2 (en) | Laser diffraction / scattering particle size distribution analyzer | |
JP2669290B2 (en) | Particle size distribution analyzer | |
US5126581A (en) | Particle measurement method and apparatus for determining corrected particle diameter | |
JP3962306B2 (en) | Particle size distribution measuring method and apparatus | |
JPH08136434A (en) | Analyzing method for particle size distribution | |
JPH01118747A (en) | Particle analyzer | |
JPH0915133A (en) | Apparatus for measuring particle size distribution and density distribution simultaneously | |
CN209342564U (en) | A kind of nano material Density Distribution detecting instrument | |
JPH11230889A (en) | Fine particle counter type turbidimeter | |
JP6900789B2 (en) | Data processing method, data processing device and data processing program for measuring bubble diameter distribution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080320 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120320 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120320 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130320 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140320 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |