JPH0914262A - Dynamic pressure gas journal bearing - Google Patents
Dynamic pressure gas journal bearingInfo
- Publication number
- JPH0914262A JPH0914262A JP7181094A JP18109495A JPH0914262A JP H0914262 A JPH0914262 A JP H0914262A JP 7181094 A JP7181094 A JP 7181094A JP 18109495 A JP18109495 A JP 18109495A JP H0914262 A JPH0914262 A JP H0914262A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- housing
- peripheral surface
- cylinder
- dynamic pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C27/00—Elastic or yielding bearings or bearing supports, for exclusively rotary movement
- F16C27/02—Sliding-contact bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C27/00—Elastic or yielding bearings or bearing supports, for exclusively rotary movement
- F16C27/06—Elastic or yielding bearings or bearing supports, for exclusively rotary movement by means of parts of rubber or like materials
- F16C27/063—Sliding contact bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
- F16C17/024—Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sliding-Contact Bearings (AREA)
- Support Of The Bearing (AREA)
- Mounting Of Bearings Or Others (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、膨張タービン,圧縮機
などの高速ターボ機械に用いられる動圧気体ジャーナル
軸受に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure gas journal bearing used in high speed turbomachines such as expansion turbines and compressors.
【0002】[0002]
【従来の技術】従来、高速回転が必要とされる機器の軸
受装置として、特開平3−24319号公報に記載され
ているような動圧気体ジャーナル軸受が知られている。
これを図9により説明すると、図9において符号101は
ハウジング,102は回転軸,103は回転軸102を囲むよう
にハウジング101と回転軸102の間に介在されている円筒
状のスリーブをそれぞれ示しており、図示のごとく、ハ
ウジング101内に設けられている。2. Description of the Related Art Conventionally, a dynamic pressure gas journal bearing as disclosed in Japanese Patent Laid-Open No. 3-24319 is known as a bearing device for equipment that requires high speed rotation.
This will be described with reference to FIG. 9. In FIG. 9, reference numeral 101 is a housing, 102 is a rotating shaft, and 103 is a cylindrical sleeve interposed between the housing 101 and the rotating shaft 102 so as to surround the rotating shaft 102. It is provided inside the housing 101 as shown in the drawing.
【0003】符号104はそれぞれ多孔質材で形成されて
いる軸受パッドを示しており、ハウジング101の両端部
に設けられている。ハウジング101には各軸受パッド104
に対応して給気通路108が形成され、軸受パッド104には
給気通路108を介して気体供給源120から気体、例えば空
気が供給される。軸受パッド104に供給される気体は、
軸受パッド104からスリーブ103に向けて噴出され、この
後、排気通路109を介してハウジング101の外部に排出さ
れる。Reference numeral 104 denotes a bearing pad made of a porous material, which is provided at both ends of the housing 101. Each bearing pad 104 on the housing 101
An air supply passage 108 is formed corresponding to the above, and gas, for example, air is supplied to the bearing pad 104 from the gas supply source 120 via the air supply passage 108. The gas supplied to the bearing pad 104 is
It is jetted from the bearing pad 104 toward the sleeve 103, and then discharged to the outside of the housing 101 through the exhaust passage 109.
【0004】符号105は回転軸102の表面にその回転方向
に沿って形成されている動圧発生用のヘリングボーン溝
を示しており、図示のごとく、ハウジング101の両端部
近傍にそれぞれ位置するように、回転軸102上で2箇所
に形成されている。ハウジング101とスリーブ103との間
には空気層(間隔)106が形成され、スリーブ103と回転
軸102の間には空気層(間隔)107が形成されている。空
気層106と空気層107とはスリーブ103によって完全に遮
断されている。Reference numeral 105 denotes a herringbone groove for generating a dynamic pressure formed on the surface of the rotary shaft 102 along the rotational direction thereof, and as shown in the drawing, they are located near both ends of the housing 101. In addition, it is formed at two locations on the rotary shaft 102. An air layer (space) 106 is formed between the housing 101 and the sleeve 103, and an air layer (space) 107 is formed between the sleeve 103 and the rotating shaft 102. The air layer 106 and the air layer 107 are completely blocked by the sleeve 103.
【0005】この構成において、回転軸102が停止もし
くは低速で回転している際には、回転軸102はスリーブ1
03に接触した状態でスリーブ103に支持されている。一
方、スリーブ103は、軸受パッド104から空気層106に噴
出されている気体により構成される静圧軸受により、ハ
ウジング101(軸受パッド104)に体して非接触に、且つ
回転可能に支持されている。したがってこの際には、回
転軸102はスリーブ103と一体的に静圧軸受で支持された
状態で回転する。In this structure, when the rotary shaft 102 is stopped or is rotating at a low speed, the rotary shaft 102 is rotated by the sleeve 1.
It is supported by the sleeve 103 while being in contact with 03. On the other hand, the sleeve 103 is rotatably supported in a non-contact manner as a body on the housing 101 (bearing pad 104) by a hydrostatic bearing composed of gas ejected from the bearing pad 104 to the air layer 106. There is. Therefore, at this time, the rotating shaft 102 rotates integrally with the sleeve 103 while being supported by the hydrostatic bearing.
【0006】この後、次第に回転軸102の回転速度が増
加していくと、ハウジング101とスリーブ103との間の空
気層106の粘性抵抗が増加し、この粘性抵抗が回転軸102
とスリーブ103の間の最大静止摩擦力よりも大きくなっ
たとき、回転軸102とスリーブ103の間に相対的な回転差
が生じ、この相対的な回転差の発生に応じて、回転軸10
2とスリーブ103との間にはヘリングボーン溝105により
動圧が生じる。After that, when the rotational speed of the rotary shaft 102 gradually increases, the viscous resistance of the air layer 106 between the housing 101 and the sleeve 103 increases, and this viscous resistance increases.
When the maximum static friction force between the rotary shaft 102 and the sleeve 103 becomes larger, a relative rotational difference occurs between the rotary shaft 102 and the sleeve 103, and in response to the relative rotational difference, the rotary shaft 10
Dynamic pressure is generated between the sleeve 2 and the sleeve 103 by the herringbone groove 105.
【0007】さらに、回転軸102の回転速度が増加し
て、回転軸102の回転速度が定常回転数となったときに
は、ヘリングボーン溝105により生じている動圧(動圧
軸受)によって、回転軸102はスリーブ103に対して非接
触状態で支持される。すなわち、この際には、ハウジン
グ101とスリーブ103の間の静圧軸受により、スリーブ10
3はハウジング101に対して非接触に支持され、回転軸10
2とスリーブ103の間の動圧軸受により、回転軸102はス
リーブ103に対して非接触に支持されている。Further, when the rotational speed of the rotary shaft 102 increases and the rotational speed of the rotary shaft 102 reaches a steady rotational speed, the dynamic pressure (dynamic pressure bearing) generated by the herringbone groove 105 causes the rotary shaft to rotate. The sleeve 102 is supported in a non-contact state with the sleeve 103. That is, at this time, the sleeve 10 is provided by the hydrostatic bearing between the housing 101 and the sleeve 103.
3 is supported in a non-contact manner with the housing 101, and the rotating shaft 10
The rotary shaft 102 is supported by the dynamic pressure bearing between the sleeve 2 and the sleeve 103 in a non-contact manner with respect to the sleeve 103.
【0008】この時のスリーブ103の角速度ωは、空気
層106の半径方向の厚さをh1(5〜10μm程度)、空気
層107の半径方向の厚さをh2(5〜10μm程度)、回転
軸102角速度をω0とすると、[数1]式で表される。The angular velocity ω of the sleeve 103 at this time is such that the radial thickness of the air layer 106 is h 1 (about 5 to 10 μm) and the radial thickness of the air layer 107 is h 2 (about 5 to 10 μm). , Where the angular velocity of the rotating shaft 102 is ω 0 , it is expressed by the formula [1].
【数1】 ただし、スリーブ103の半径方向の厚さtが、回転軸102
の軸径dに比べて十分に小さいものとする。(Equation 1) However, the radial thickness t of the sleeve 103 is determined by
It should be sufficiently smaller than the shaft diameter d.
【0009】したがって、回転軸102の回転速度が定常
速度となったときには、スリーブ103も回転軸102の回転
速度より遅い所望の速度で回転することになる。このた
め、高速回転時、遠心力により回転軸102が半径方向に
膨らんでも、スリーブ103の内、外径も同様に膨らんで
いるので、両者が接触することがない。また、スリーブ
103の角速度ωは回転軸102の角速度ω0よりも小さいの
で、遠心力による膨らみも小さく、空気層106の半径方
向の厚さh1をそれほど大きくしなくても、スリーブ103
が軸受パッド104に接触しないようにできる。すなわ
ち、静圧軸受の剛性を低下させることなく、高速回転時
の接触を防止できる。Therefore, when the rotation speed of the rotary shaft 102 reaches a steady speed, the sleeve 103 also rotates at a desired speed lower than the rotation speed of the rotary shaft 102. Therefore, even when the rotating shaft 102 swells in the radial direction due to centrifugal force during high-speed rotation, the inner and outer diameters of the sleeve 103 also swell, so that they do not come into contact with each other. Also the sleeve
Since the angular velocity ω of 103 is smaller than the angular velocity ω 0 of the rotating shaft 102, the bulge due to the centrifugal force is small, and the sleeve 103 can be formed without increasing the radial thickness h 1 of the air layer 106.
Can be prevented from contacting the bearing pad 104. That is, contact at high speed rotation can be prevented without reducing the rigidity of the hydrostatic bearing.
【0010】上述の(図9に示した)動圧気体ジャーナ
ル軸受では、スリーブ103を気体供給源120から供給され
る気体でケーシング101に浮遊状態に支持しているが、
これに代えて、図7,8に示すようなスリーブ支持構造
のものが従来提案されている。図7はバンプフォイル型
ジャーナル軸受を示しており、回転軸1のまわりに軸受
すき間6(この軸受すき間6が図9のものの空気層107
の間隙に相当する)を隔てて配置した軸受円筒2(トッ
プフォイル、図9のもののスリーブに相当する)が、ハ
ウジング4に対してバンプフォイル17を介して弾性的に
支持されるようになっている。In the above-mentioned dynamic pressure gas journal bearing (shown in FIG. 9), the sleeve 103 is supported by the gas supplied from the gas supply source 120 in the floating state in the casing 101.
Instead of this, a sleeve support structure as shown in FIGS. 7 and 8 has been conventionally proposed. FIG. 7 shows a bump foil type journal bearing, which has a bearing gap 6 around the rotary shaft 1 (the bearing gap 6 is the air layer 107 of FIG. 9).
The bearing cylinders 2 (top foil, corresponding to the sleeve in FIG. 9), which are arranged with a space (corresponding to the gap of 1), are elastically supported to the housing 4 via bump foils 17. There is.
【0011】回転軸1に荷重が作用した場合、軸受円筒
2が回転軸1にフィットするように変形し、これがバン
プフォイル17にひずみを与えるとともにバンブフォイル
17とハウジング4との接触面にすべりを生じ軸受減衰を
与えるようになっている。図8はリーフフォイル型ジャ
ーナル軸受を示しており、回転軸1まわりに軸受すき間
6を隔てて複数のリーフフォイル18を互いに一部重ね合
わせるように配したものである。軸荷重の作用に伴って
リーフフォイル18は回転軸1にフィットするように変形
するが、その際にフォイル接触部19においてリーフフォ
イル18どうしの摩擦が発生し軸受に減衰を補助するよう
になっている。When a load is applied to the rotary shaft 1, the bearing cylinder 2 is deformed so as to fit the rotary shaft 1, which gives strain to the bump foil 17 and also to the bump foil.
A contact surface between 17 and the housing 4 is slipped to provide bearing damping. FIG. 8 shows a leaf foil type journal bearing in which a plurality of leaf foils 18 are arranged around the rotary shaft 1 with a bearing gap 6 therebetween so as to partially overlap each other. The leaf foil 18 is deformed so as to fit the rotating shaft 1 due to the action of the axial load, but at that time, the friction between the leaf foils 18 is generated in the foil contact portion 19 to assist the damping in the bearing. There is.
【0012】[0012]
【発明が解決しようとする課題】ところで、図7,8に
示したような従来の軸受面を弾性体で構成した動圧気体
ジャーナル軸受では、運転中に負荷が変化する場合、 (1) 無負荷あるいは極めて軽荷重の状況下で、バンブフ
ォイル型の場合、軸受円筒の変形量が小さく剛体の真円
軸受と同様の作動状態となるため、安定性に欠ける。こ
の点、リーフフォイル軸受は、軸受面が多面軸受構成と
なり潤滑膜圧力が軸受内部全体に生じるために無負荷に
おいても制振効果が高い。 (2) 一方重荷重となった場合、バンプフォイル型では軸
受円筒の剛性およびバンプフォイルの剛性を調整するこ
とによって重荷重に耐えることができるが、リーフフォ
イル型の場合フォイルの剛性をあげてもフォイルは単純
支持構造になっており構造剛性を上げるこが難しく、耐
荷重限度が低くなる。 これらの理由から、軸受面を弾性体で構成した軸受は、
適用範囲が運転中の負荷変化がない自重支承型の回転機
械や、縦型回転機械に限られているという問題点があ
る。本発明は、このような問題点の解決をはかった動圧
気体ジャーナル軸受を提供することを目的とする。By the way, in the conventional dynamic pressure gas journal bearing having a bearing surface made of an elastic body as shown in FIGS. 7 and 8, when the load changes during operation, (1) Under load or extremely light load, in the case of the bump foil type, the amount of deformation of the bearing cylinder is small and the operating state is similar to that of a rigid true circular bearing, so that stability is lacking. In this respect, the leaf foil bearing has a multi-faceted bearing surface, and a lubricating film pressure is generated in the entire interior of the bearing, so that the vibration damping effect is high even under no load. (2) On the other hand, when a heavy load is applied, the bump foil type can withstand the heavy load by adjusting the rigidity of the bearing cylinder and the bump foil, but the leaf foil type can increase the rigidity of the foil. Since the foil has a simple support structure, it is difficult to increase the structural rigidity, and the load bearing limit becomes low. For these reasons, a bearing whose bearing surface is made of an elastic material is
There is a problem that the applicable range is limited to a self-supporting rotary machine or a vertical rotary machine in which the load does not change during operation. An object of the present invention is to provide a dynamic pressure gas journal bearing which solves the above problems.
【0013】[0013]
【課題を解決するための手段】上述の目的を達成するた
め、本発明の動圧気体ジャーナル軸受は、動圧気体ジャ
ーナル軸受において、回転軸の外側に同回転軸と軸受す
き間を隔てて配設された金属またはその他の弾性体の薄
板製の軸受円筒と、同軸受円筒の外側にすき間を隔てて
配設されて同軸受円筒よりも剛な円筒体からなるハウジ
ングとをそなえ、上記軸受円筒の外周面に軸方向に延び
るとともに外端面が上記ハウジングの内周面に内接可能
な複数本のリブが設けられ、同複数本のリブの自由状態
における仮想外接円の直径が、上記ハウジングの内周面
の直径と同じかもしくは同ハウジングの内周面の直径よ
りも若干大きく設定されていることを特徴としている。
また、本発明の動圧気体ジャーナル軸受は、上記軸受円
筒の外周面と上記リブおよび上記ハウジングの内周面と
で構成される第1空間に、防振ゴム,高分子ゲルあるい
は粉体などの振動減衰材が封入されていることを特徴と
している。In order to achieve the above-mentioned object, the dynamic pressure gas journal bearing of the present invention is disposed in the dynamic pressure gas journal bearing outside the rotary shaft with a gap between the rotary shaft and the bearing gap. A bearing cylinder made of a thin plate of metal or other elastic body, and a housing made of a cylindrical body that is arranged outside the bearing cylinder with a gap and is stiffer than the bearing cylinder. A plurality of ribs that extend in the axial direction on the outer peripheral surface and whose outer end surface is inscribed in the inner peripheral surface of the housing are provided, and the diameter of the virtual circumscribed circle of the plurality of ribs in the free state is It is characterized in that it is set to be the same as the diameter of the peripheral surface or slightly larger than the diameter of the inner peripheral surface of the housing.
Further, in the dynamic pressure gas journal bearing of the present invention, the first space formed by the outer peripheral surface of the bearing cylinder, the rib and the inner peripheral surface of the housing is made of a vibration-proof rubber, a polymer gel or powder. It is characterized by enclosing a vibration damping material.
【0014】さらに、本発明の動圧気体ジャーナル軸受
は、上記の軸受円筒とハウジングとの間に、中間円筒
が、同中間円筒の内周面に上記複数本のリブの各外端面
が当接するように介装され、上記中間円筒の外周面に軸
方向に延びるとともに上記ハウジングの内周面に内接可
能な複数本の第2リブが設けられ、同複数本の第2リブ
の自由状態における仮想外接円の直径が、上記ハウジン
グの内周面の直径と同じかもしくは同ハウジングの内周
面の直径よりも若干大きく設定されていることを特徴と
している。Further, in the dynamic pressure gas journal bearing of the present invention, the intermediate cylinder is provided between the bearing cylinder and the housing, and the outer peripheral surfaces of the plurality of ribs are in contact with the inner peripheral surface of the intermediate cylinder. And a plurality of second ribs that extend in the axial direction on the outer peripheral surface of the intermediate cylinder and can be inscribed on the inner peripheral surface of the housing. The diameter of the virtual circumscribed circle is set to be the same as the diameter of the inner peripheral surface of the housing or slightly larger than the diameter of the inner peripheral surface of the housing.
【0015】さらにまた、本発明の動圧気体ジャーナル
軸受は、上記の軸受円筒の外周面,リブおよび中間円筒
の内周面で構成される第2空間に、上記ハウジングに形
成された冷却用流体の供給孔を通じて冷却用流体の供給
が行なえるように構成されていることを特徴としてい
る。Furthermore, in the dynamic pressure gas journal bearing of the present invention, the cooling fluid formed in the housing in the second space formed by the outer peripheral surface of the bearing cylinder, the rib and the inner peripheral surface of the intermediate cylinder. It is characterized in that the cooling fluid can be supplied through the supply hole.
【0016】また、本発明の動圧気体ジャーナル軸受
は、上記の中間円筒の外周面,第2リブおよびハウジン
グの内周面で構成される第3空間に、防振ゴム,高分子
ゲルあるいは粉体などの振動減衰材が封入されているこ
とを特徴としている。Further, in the dynamic pressure gas journal bearing of the present invention, the vibration damping rubber, polymer gel or powder is provided in the third space formed by the outer peripheral surface of the intermediate cylinder, the second rib and the inner peripheral surface of the housing. It is characterized by containing a vibration damping material such as the body.
【0017】[0017]
【作用】上述の本発明の動圧気体ジャーナル軸受では、
軸受円筒は弾性体で構成されているので、支持する最大
荷重に対して適当な剛性をもたせるように厚みを調整す
ることができ、構造的な負荷能力に問題が生じない。ま
た、軸受円筒の外周に設けられた支持部材としてのリブ
を介して軸受円筒の内径側に圧縮をかけることによっ
て、軸受円筒の内面は初期状態においてある程度の変形
を有することになり、多面軸受と同様に潤滑膜の有効な
形成が行なわれ、無負荷時においても有効な軸受特性を
発揮できる。また、第1空間または第3空間に封入され
た振動減衰材により、回転軸の振動を減衰させる作用が
行なわれる。さらに冷却用流体による軸受部の冷却作用
も行なわれる。In the above dynamic pressure gas journal bearing of the present invention,
Since the bearing cylinder is made of an elastic body, the thickness can be adjusted so as to have appropriate rigidity with respect to the maximum load to be supported, and there is no problem in structural load capacity. Further, by applying compression to the inner diameter side of the bearing cylinder through the rib as a supporting member provided on the outer periphery of the bearing cylinder, the inner surface of the bearing cylinder will have some deformation in the initial state, and thus the multifaceted bearing Similarly, the lubricating film is effectively formed, and effective bearing characteristics can be exhibited even under no load. Further, the vibration damping material enclosed in the first space or the third space acts to damp the vibration of the rotating shaft. Further, the cooling fluid also serves to cool the bearing portion.
【0018】[0018]
【実施例】以下、図面により本発明の実施例としての動
圧気体ジャーナル軸受について説明すると、図1はその
第1実施例の軸受面の断面図、図2はその第2実施例の
軸受面の断面図、図3(a)〜(c)はそのリブの変形例の断
面図で図1のIII部の拡大図、図4はその第3実施例の
軸受面の断面図、図5(a)はその第4実施例の軸受面の
断面図、図5(b)は図5(a)のA−A矢視断面図、図6
(a)はその第5実施例の軸受面の断面図、図6(b)は図6
(a)のB−B矢視断面図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS A dynamic gas journal bearing as an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a bearing surface of the first embodiment, and FIG. 2 is a bearing surface of the second embodiment. 3 (a) to 3 (c) are sectional views of a modified example of the rib and are enlarged views of a portion III in FIG. 1, FIG. 4 is a sectional view of a bearing surface of the third embodiment, and FIG. 6A is a sectional view of the bearing surface of the fourth embodiment, FIG. 5B is a sectional view taken along the line AA of FIG. 5A, and FIG.
6A is a sectional view of the bearing surface of the fifth embodiment, and FIG.
It is a BB arrow sectional drawing of (a).
【0019】まず図1により第1実施例について説明す
る。この第1実施例でも、回転軸1のまわりには適当な
軸受すき間(動圧気体用間隔)6を隔てて、金属または
その他の弾性体の薄板製の軸受円筒2が配置されてい
る。この軸受円筒2はその厚みとその外周に設けた複数
個のリブ3の配置間隔とによって、軸受性能に適当な構
造剛性を有する。この実施例では、リブ3は90°間隔に
4個設けられている。符号4はハウジングを、また符号
5は軸受円筒2とハウジング4およびリブ3とで構成さ
れる軸受背面空間を示している。また自由状態のリブの
仮想外接円に対してハウジング4の内径を小さく設定さ
れていて、軸受円筒2とリブ3とをハウジング4に挿入
する際に、軸受円筒2をあらかじめ非円状態に歪ませる
ことができるようになっている。First, the first embodiment will be described with reference to FIG. Also in this first embodiment, a bearing cylinder 2 made of a thin plate of metal or other elastic body is arranged around the rotary shaft 1 with a proper bearing gap (space for dynamic pressure gas) 6 therebetween. The bearing cylinder 2 has a structural rigidity suitable for bearing performance due to its thickness and the arrangement interval of the plurality of ribs 3 provided on the outer periphery thereof. In this embodiment, four ribs 3 are provided at 90 ° intervals. Reference numeral 4 indicates a housing, and reference numeral 5 indicates a bearing back space formed by the bearing cylinder 2, the housing 4 and the rib 3. Further, the inner diameter of the housing 4 is set to be smaller than the virtual circumscribing circle of the rib in the free state, and when the bearing cylinder 2 and the rib 3 are inserted into the housing 4, the bearing cylinder 2 is distorted into a non-circular state in advance. Is able to.
【0020】この構成によって、非常に軽荷重で回転軸
1の中心がハウジング4の中心近傍で作動するような場
合に対しても、回転軸1と軸受円筒2とで形成される軸
受すき間6の形状がくさび形を保つことができ、潤滑膜
の圧力発生が容易になって軸系の安定性を増す効果を奏
することができる。またリブ3の剛性を大きくすること
により、負荷能力を増大させ、高負荷にも安定した軸受
性能を発揮させることができる。With this configuration, even when the center of the rotary shaft 1 operates near the center of the housing 4 under a very light load, the bearing clearance 6 formed by the rotary shaft 1 and the bearing cylinder 2 is formed. The shape can be maintained in a wedge shape, the pressure of the lubricating film can be easily generated, and the stability of the shaft system can be increased. Further, by increasing the rigidity of the ribs 3, the load capacity can be increased and stable bearing performance can be exhibited even under high load.
【0021】次に、図2により第2実施例を説明する。
上述の第1実施例は、従来例における潤滑膜そのものの
性能を改善しているものの、フォイルの摩擦効果による
軸受減速の補助がない。この第2実施例では、第1実施
例における軸受円筒2とハウジング4およびリブ3とで
構成される軸受背面空間(第1空間)5に、防振ゴムや
高分子ゲルまたは粉体などの軸受減衰材(振動減衰材)
7aが封入されている。そして第2実施例ではこの構成
により、回転軸1の振動に対し軸受円筒2の変形に時間
遅れを生じさせることができ、これによって第1実施例
の上記効果のほか振動減衰効果を向上させることができ
るという効果が得られる。Next, a second embodiment will be described with reference to FIG.
Although the first embodiment described above improves the performance of the lubricating film itself in the conventional example, it does not support the deceleration of the bearing due to the friction effect of the foil. In the second embodiment, in the bearing back space (first space) 5 formed by the bearing cylinder 2, the housing 4 and the ribs 3 in the first embodiment, a bearing made of vibration-proof rubber, polymer gel or powder is used. Damping material (vibration damping material)
7a is enclosed. In the second embodiment, with this configuration, it is possible to delay the deformation of the bearing cylinder 2 with respect to the vibration of the rotary shaft 1, thereby improving the vibration damping effect in addition to the above effects of the first embodiment. The effect of being able to do is obtained.
【0022】図3は上記第1および第2実施例における
リブ3の変形例を示すもので、図3(a)に符号3aで示
すリブは、可撓性の円管で構成されていて、リブ3aの
変形を許容する構成となっている。これによって軸受荷
重の負荷方向が変化するような場合にも安定した作動が
保証できるようになる。また、図3(b)に符号3bで示
すリブは山形のばねで構成されていて、ハウジング4と
リブ3bの両山裾31b,31bにすべりを許容させれば、
従来例のバンプフォイル軸受同様の摩擦減衰効果を軸受
特性に付与できる。さらに図3(c)に符号3cで示すよ
うにリブを断面三角形の弾性体で構成し、リブ3cとハ
ウジング4表面との間を回動可能に支持する構成とする
とともに、リブ3cの弾性を比較的剛に設定するとき、
リブの傾斜によって自律的に最適なすき間形状を形成す
ることがてき、負荷能力を向上させることができる。FIG. 3 shows a modification of the rib 3 in the first and second embodiments. The rib indicated by reference numeral 3a in FIG. 3 (a) is composed of a flexible circular pipe, It is configured to allow the deformation of the rib 3a. As a result, stable operation can be guaranteed even when the load direction of the bearing load changes. Further, the rib indicated by reference numeral 3b in FIG. 3 (b) is composed of a mountain-shaped spring, and if both ridges 31b and 31b of the housing 4 and the rib 3b are allowed to slip,
A friction damping effect similar to that of the conventional bump foil bearing can be added to the bearing characteristics. Further, as shown by reference numeral 3c in FIG. 3 (c), the rib is composed of an elastic body having a triangular cross section, and the rib 3c and the surface of the housing 4 are rotatably supported. When set to be relatively rigid,
An optimal gap shape can be autonomously formed by the inclination of the ribs, and the load capacity can be improved.
【0023】次に、図4により第3実施例を説明する。
この第3実施例は、上述の第1実施例における軸受円筒
2とケーシング4との間に中間円筒8を介させて、いわ
ば軸受円筒を2重構造にしたものである。そして中間円
筒8にも4個の第2リブ8が90°間隔で設けられてお
り、軸受円筒2および中間円筒8をケーシング4に組付
けたとき、第2リブ8とリブ3(以下「第1リブ3」と
呼ぶ)とが45°間隔で配設されている。第1実施例では
第1リブ3の存在位置によって軸受特性が周方向に非均
一になり、負荷方向の変化する場合に設計が複雑になる
が、第3実施例ではこれを回避することができる。Next, a third embodiment will be described with reference to FIG.
In the third embodiment, the intermediate cylinder 8 is interposed between the bearing cylinder 2 and the casing 4 in the above-described first embodiment, so to speak, the bearing cylinder has a double structure. The four second ribs 8 are also provided in the intermediate cylinder 8 at 90 ° intervals, and when the bearing cylinder 2 and the intermediate cylinder 8 are assembled to the casing 4, the second rib 8 and the rib 3 (hereinafter referred to as “the first 1 rib 3 ") are arranged at 45 ° intervals. In the first embodiment, the bearing characteristics become non-uniform in the circumferential direction depending on the position where the first rib 3 exists, and the design becomes complicated when the load direction changes, but this can be avoided in the third embodiment. .
【0024】すなわち図4に示すように、第1リブ3が
垂直方向および水平方向に配設され、かつ中間円筒8が
ない場合には、回転軸1に加わる荷重が鉛直下向きであ
ったとき、軸受円筒2と第1リブ3とが直接にハウジン
グ4に接触して、第1リブ3の剛性によって軸受円筒2
は変形しにくくなる。これに対して、中間円筒8を設け
たことによって、回転軸1が鉛直下向きに荷重を受ける
とその方向に存在する第1リブ3と軸受円筒2とが下向
きに変位する。これが中間円筒8に伝わって中間円筒8
が縦長に歪み、このことによって、横方向に存在する2
つの第1リブ3が軸受円筒2を縦長に歪ませ、変形の効
果としては荷重方向に第1リブ3の存在しない場合の第
1実施例と同様の変形効果を生むことができる。That is, as shown in FIG. 4, when the first ribs 3 are arranged vertically and horizontally and there is no intermediate cylinder 8, when the load applied to the rotary shaft 1 is vertically downward, The bearing cylinder 2 and the first rib 3 directly contact the housing 4, and the rigidity of the first rib 3 causes the bearing cylinder 2 to move.
Is less likely to deform. On the other hand, by providing the intermediate cylinder 8, when the rotating shaft 1 receives a vertically downward load, the first rib 3 and the bearing cylinder 2 existing in that direction are displaced downward. This is transmitted to the intermediate cylinder 8
Is vertically distorted, so that
The first ribs 3 distort the bearing cylinder 2 vertically, and as a deformation effect, the same deformation effect as that of the first embodiment when the first rib 3 does not exist in the load direction can be produced.
【0025】また、第2実施例で示した防振ゴム・高分
子ゲル・粉体などの振動減衰材7aを軸受背面空間へ封
入して減衰の付与を行なう場合は、2つある空間のうち
中間円筒8と第2リブ9および軸受ハウジング4で構成
される外側の空間(第3空間)7に封入することが適当
である。これは、軸受円筒2と中間円筒8および第2リ
ブ9で構成される空間7が変形によって運動するために
慣性力が生じ、予期した軸受性能が発現できない恐れが
あるからである。Further, when the vibration damping material 7a such as the vibration-proof rubber, polymer gel, powder, etc. shown in the second embodiment is enclosed in the space on the back side of the bearing to provide damping, of the two spaces It is suitable to fill the outer space (third space) 7 formed by the intermediate cylinder 8, the second rib 9 and the bearing housing 4. This is because the space 7 formed by the bearing cylinder 2, the intermediate cylinder 8 and the second rib 9 moves due to the deformation, so that an inertial force is generated and the expected bearing performance may not be exhibited.
【0026】さらに、図5(a),(b)により第4実施例を
説明する。この第4実施例は、第3実施例において軸受
外部からハウジング4および防振ゴムなどを封入された
空間7を貫通して、軸受背面空間(第2空間)5Aに達
する冷却用流体12の供給孔10を設けたものである。符号
11はハウジング4の外周面に形成された冷却用流体12の
供給溝を示しており、この供給溝11は供給孔12に連通し
ている。これは、軸の回転速度が著しく高い場合に発生
する摩擦発熱の除去を目的として外部より冷却用の流体
12を軸受背面空間5Aに供給し軸受サイドから放出させ
ることで冷却効果を測るものである。Further, a fourth embodiment will be described with reference to FIGS. 5 (a) and 5 (b). In the fourth embodiment, the cooling fluid 12 is supplied from the outside of the bearing to the bearing back space (second space) 5A from the outside of the bearing through the space 7 in which the housing 4 and the anti-vibration rubber are sealed. The hole 10 is provided. Sign
Reference numeral 11 denotes a supply groove for the cooling fluid 12 formed on the outer peripheral surface of the housing 4, and the supply groove 11 communicates with the supply hole 12. This is a cooling fluid from the outside for the purpose of removing frictional heat generated when the shaft rotation speed is extremely high.
The cooling effect is measured by supplying 12 to the bearing back space 5A and discharging it from the bearing side.
【0027】従来のものでは、一般にフォイルの構造弾
性が小さいために軸の熱伸びの影響は重要ではないが、
本発明の動圧気体ジャーナル軸受では重荷重用軸受のた
め軸受の構造剛性を高くとり、かつ高速で使用する場
合、すき間が詰まりやすい構造になるので冷却が重要で
あり、この第4実施例はこれに対処するものである。図
6(a),(b)の第5実施例は、図5(a),(b)に示した第4
実施例の改良で、供給孔10を回転軸1と平行に形成し、
供給孔10から供給した流体12がケーシング4の側端部か
らリークするのを防止するために、ケーシング4の一側
端部に外周壁13および内周壁15を突設するとともに外周
壁13と内周壁15との間にベローズ14を張設したものであ
る。In the conventional type, since the structural elasticity of the foil is generally small, the influence of thermal elongation of the shaft is not important,
Since the dynamic pressure gas journal bearing of the present invention is a bearing for heavy loads, the structure rigidity of the bearing is high, and when used at high speed, cooling is important because the structure tends to clog gaps. To deal with. The fifth embodiment shown in FIGS. 6 (a) and 6 (b) corresponds to the fourth embodiment shown in FIGS. 5 (a) and 5 (b).
According to the improvement of the embodiment, the supply hole 10 is formed parallel to the rotary shaft 1,
In order to prevent the fluid 12 supplied from the supply hole 10 from leaking from the side end of the casing 4, an outer peripheral wall 13 and an inner peripheral wall 15 are provided at one end of the casing 4 so as to project from the outer peripheral wall 13 and the inner peripheral wall 13. A bellows 14 is stretched between the peripheral wall 15 and the peripheral wall 15.
【0028】この構成により冷却用流体12をケーシング
4の一側端のベローズ14で囲まれた半径通路16に導き、
ここから流体を軸受背面空間5を通して軸受の冷却を行
なうことができる。この実施例は、図6(b)において、
半径通路16の右側に冷却用の流体12をリークさせたくな
いような用途に最適な構造である。なお流体12は図6
(b)における左側から供給される。図6(b)においては半
径通路16をケーシング4の一方の側端部に設けた例を示
したが、これを第4実施例と併用しケーシング4の両側
端部に半径通路を設けることで、軸受すき間6を流れる
気体と冷却用流体12とを別系統にすることができる。With this configuration, the cooling fluid 12 is guided to the radial passage 16 surrounded by the bellows 14 at one end of the casing 4,
From here, the fluid can be cooled through the bearing back space 5 to cool the bearing. This embodiment is shown in FIG.
This structure is most suitable for applications where it is desired not to leak the cooling fluid 12 to the right side of the radial passage 16. The fluid 12 is shown in FIG.
Supplied from the left side in (b). Although FIG. 6 (b) shows an example in which the radial passage 16 is provided at one side end portion of the casing 4, this is used in combination with the fourth embodiment to provide the radial passages at both side end portions of the casing 4. The gas flowing through the bearing gap 6 and the cooling fluid 12 can be separated from each other.
【0029】[0029]
【発明の効果】以上詳述したように、本発明の動圧気体
ジャーナル軸受によれば、次のような効果ないし利点が
得られる。 (1) 無負荷から高負荷まで安定した軸受性能が発揮でき
る。これによって、従来用いられてきた自重支承型の回
転機械や縦型機械のみならず、増速機内蔵型の圧縮機な
ど無負荷時の軸受安定性と定格負荷時の耐荷重能力の双
方の性能を要求される回転機械に適用することができる
とともに、これらの機械に本発明を適用することによっ
て、シールシステムの簡素化が図れ構造をコンパクト化
できる。 (2) 軸受構造が簡素化できるので従来の剛体で構成した
気体軸受に比べ製造コストが低く、また、軸受すき間の
設定が容易にできるため、組立のコストも低減できる。 (3) 有効な冷却を行なうことができるため、軸受の構造
剛性の高い重荷重用軸受にも適用可能である。As described in detail above, according to the dynamic pressure gas journal bearing of the present invention, the following effects and advantages can be obtained. (1) Stable bearing performance can be exhibited from no load to high load. As a result, not only conventional self-weight bearing type rotary machines and vertical machines, but also both bearing stability under no load and load bearing capacity under rated load such as compressors with built-in gearbox The present invention can be applied to rotary machines that require the above-mentioned requirements, and by applying the present invention to these machines, the seal system can be simplified and the structure can be made compact. (2) Since the bearing structure can be simplified, the manufacturing cost is lower than that of the conventional gas bearing configured with a rigid body, and the bearing clearance can be easily set, so that the assembly cost can be reduced. (3) Since it can perform effective cooling, it can be applied to heavy-duty bearings with high structural rigidity.
【図1】本発明の第1実施例としての動圧気体ジャーナ
ル軸受の軸受面の断面図。FIG. 1 is a sectional view of a bearing surface of a dynamic pressure gas journal bearing according to a first embodiment of the present invention.
【図2】同第2実施例としての動圧気体ジャーナル軸受
の軸受面の断面図。FIG. 2 is a sectional view of a bearing surface of a dynamic pressure gas journal bearing according to the second embodiment.
【図3】(a) 同リブの変形例の断面図。 (b) 同リブの変形例の断面図。 (c) 同リブの変形例の断面図。FIG. 3A is a cross-sectional view of a modified example of the rib. (b) A sectional view of a modified example of the rib. (c) A sectional view of a modified example of the rib.
【図4】同第3実施例としての動圧気体ジャーナル軸受
の軸受面の断面図。FIG. 4 is a sectional view of a bearing surface of a dynamic pressure gas journal bearing as the third embodiment.
【図5】(a) 同第4実施例としての動圧気体ジャーナル
軸受の軸受面の断面図。 (b) 図5(a)のA−A矢視断面図。FIG. 5 (a) is a sectional view of a bearing surface of a dynamic pressure gas journal bearing as the fourth embodiment. (b) A sectional view taken along the line AA of FIG.
【図6】(a) 同第5実施例としての動圧気体ジャーナル
軸受の軸受面の断面図。 (b) 図6(a)のB−B矢視断面図。FIG. 6 (a) is a sectional view of a bearing surface of a dynamic pressure gas journal bearing as the fifth embodiment. (b) BB arrow sectional drawing of FIG. 6 (a).
【図7】従来の動圧気体ジャーナル軸受でバンプフォイ
ル型軸受の軸受面の断面図。FIG. 7 is a sectional view of a bearing surface of a bump foil type bearing in a conventional dynamic pressure gas journal bearing.
【図8】従来の動圧気体ジャーナル軸受でリーフフォイ
ル型軸受の軸受面の断面図。FIG. 8 is a sectional view of a bearing surface of a leaf foil type bearing in a conventional dynamic pressure gas journal bearing.
【図9】従来の動圧気体ジャーナル軸受の軸受面の断面
図。FIG. 9 is a sectional view of a bearing surface of a conventional dynamic pressure gas journal bearing.
1 回転軸 2 軸受円筒 3 (第1)リブ 4 ハウジング 5 軸受背面空間(第1空間) 5A 第2空間 6 軸受すき間 7 第3空間 7a 防振ゴム・高分子ゲルまたは粉体などの振動減衰
材 8 中間円筒 9 第2リブ 10 冷却用流体の供給孔 11 供給溝 12 冷却用流体 13 外周壁 14 ベローズ 15 内周壁 16 半径通路 17 バンプフォイル 18 リーフフォイル 19 フォイル接触部DESCRIPTION OF SYMBOLS 1 rotating shaft 2 bearing cylinder 3 (first) rib 4 housing 5 bearing back space (first space) 5A second space 6 bearing clearance 7 third space 7a vibration damping rubber / vibration damping material such as polymer gel or powder 8 Intermediate Cylinder 9 Second Rib 10 Cooling Fluid Supply Hole 11 Supply Groove 12 Cooling Fluid 13 Outer Wall 14 Bellows 15 Inner Wall 16 Radial Passage 17 Bump Foil 18 Leaf Foil 19 Foil Contact Area
Claims (5)
た金属またはその他の弾性体の薄板製の軸受円筒と、 同軸受円筒の外側にすき間を隔てて配設されて同軸受円
筒よりも剛な円筒体からなるハウジングとをそなえ、 上記軸受円筒の外周面に軸方向に延びるとともに外端面
が上記ハウジングの内周面に内接可能な複数本のリブが
設けられ、 同複数本のリブの自由状態における仮想外接円の直径
が、上記ハウジングの内周面の直径と同じかもしくは同
ハウジングの内周面の直径よりも若干大きく設定されて
いることを特徴とする、動圧気体ジャーナル軸受。1. A dynamic pressure gas journal bearing, wherein a bearing cylinder made of a thin plate of metal or other elastic body is disposed outside the rotary shaft with a gap between the rotary shaft and the bearing, and outside the rotary cylinder. The housing is provided with a gap and is made of a cylindrical body that is stiffer than the bearing cylinder, and extends axially to the outer peripheral surface of the bearing cylinder, and the outer end surface can be inscribed in the inner peripheral surface of the housing. A plurality of ribs are provided, and the diameter of the virtual circumscribing circle in the free state of the plurality of ribs is set to be the same as the diameter of the inner peripheral surface of the housing or slightly larger than the diameter of the inner peripheral surface of the housing. A dynamic pressure gas journal bearing, which is characterized in that
上記ハウジングの内周面とで構成される第1空間に、防
振ゴム,高分子ゲルあるいは粉体などの振動減衰材が封
入されていることを特徴とする、請求項1に記載の動圧
気体ジャーナル軸受。2. A vibration damping material such as a vibration-proof rubber, a polymer gel or a powder is enclosed in a first space defined by the outer peripheral surface of the bearing cylinder, the rib and the inner peripheral surface of the housing. The dynamic pressure gas journal bearing according to claim 1, wherein
中間円筒が、同中間円筒の内周面に上記複数本のリブの
各外端面が当接するように介装され、 上記中間円筒の外周面に軸方向に延びるとともに上記ハ
ウジングの内周面に内接可能な複数本の第2リブが設け
られ、 同複数本の第2リブの自由状態における仮想外接円の直
径が、上記ハウジングの内周面の直径と同じかもしくは
同ハウジングの内周面の直径よりも若干大きく設定され
ていることを特徴とする、請求項1に記載の動圧気体ジ
ャーナル軸受。3. Between the bearing cylinder and the housing,
The intermediate cylinder is interposed so that the outer end surfaces of the plurality of ribs come into contact with the inner peripheral surface of the intermediate cylinder, and the intermediate cylinder extends axially to the outer peripheral surface of the intermediate cylinder and the inner peripheral surface of the housing. A plurality of second ribs that can contact each other are provided, and the diameter of the virtual circumscribing circle in the free state of the plurality of second ribs is the same as the diameter of the inner peripheral surface of the housing or the inner peripheral surface of the housing. The dynamic pressure gas journal bearing according to claim 1, wherein the diameter is set to be slightly larger than the diameter.
間円筒の内周面で構成される第2空間に、上記ハウジン
グに形成された冷却用流体の供給孔を通じて冷却用流体
の供給が行なえるように構成されていることを特徴とす
る、請求項3に記載の動圧気体ジャーナル軸受。4. The cooling fluid can be supplied to a second space formed by the outer peripheral surface of the bearing cylinder, the rib and the inner peripheral surface of the intermediate cylinder through a cooling fluid supply hole formed in the housing. The dynamic pressure gas journal bearing according to claim 3, wherein the dynamic pressure gas journal bearing is configured as follows.
びハウジングの内周面で構成される第3空間に、防振ゴ
ム,高分子ゲルあるいは粉体などの振動減衰材が封入さ
れていることを特徴とする、請求項3または4に記載の
動圧気体ジャーナル軸受。5. A vibration damping material such as a vibration-proof rubber, polymer gel or powder is enclosed in a third space formed by the outer peripheral surface of the intermediate cylinder, the second rib and the inner peripheral surface of the housing. The dynamic pressure gas journal bearing according to claim 3 or 4, characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18109495A JP3310826B2 (en) | 1995-06-23 | 1995-06-23 | Dynamic pressure gas journal bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18109495A JP3310826B2 (en) | 1995-06-23 | 1995-06-23 | Dynamic pressure gas journal bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0914262A true JPH0914262A (en) | 1997-01-14 |
JP3310826B2 JP3310826B2 (en) | 2002-08-05 |
Family
ID=16094732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18109495A Expired - Fee Related JP3310826B2 (en) | 1995-06-23 | 1995-06-23 | Dynamic pressure gas journal bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3310826B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100514650B1 (en) * | 2002-12-11 | 2005-09-14 | 엘에스전선 주식회사 | journal bearing for shaft's uneccentric rotation |
KR100554001B1 (en) * | 2002-04-15 | 2006-02-22 | 한국델파이주식회사 | Ball bearing assembly for absorbing impact energy and vibration |
US7186026B2 (en) | 2004-03-15 | 2007-03-06 | Daido Metal Company, Ltd. | Foil hydrodynamic journal bearing and method of manufacturing the same |
JP2008542628A (en) * | 2005-06-10 | 2008-11-27 | エドワーズ リミテッド | Vacuum pump |
JP2009270594A (en) * | 2008-04-30 | 2009-11-19 | Canon Inc | Bearing device and image forming device equipped therewith |
KR101638413B1 (en) * | 2015-03-30 | 2016-07-20 | 한국과학기술연구원 | Gas foil journal bearing using textile |
JP2016205167A (en) * | 2015-04-17 | 2016-12-08 | トヨタ自動車株式会社 | Air bearing for revolving shaft having heat drop in axial direction |
JP2021025531A (en) * | 2019-07-31 | 2021-02-22 | トヨタ紡織株式会社 | Bearing device |
GB2615567A (en) * | 2022-02-11 | 2023-08-16 | Dyson Technology Ltd | An aerodynamic bearing |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITFI20130092A1 (en) * | 2013-04-24 | 2014-10-25 | Nuovo Pignone Srl | "ROTATING MACHINERY WITH ADAPTIVE BEARING JOURNALS AND METHODS OF OPERATING" |
-
1995
- 1995-06-23 JP JP18109495A patent/JP3310826B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100554001B1 (en) * | 2002-04-15 | 2006-02-22 | 한국델파이주식회사 | Ball bearing assembly for absorbing impact energy and vibration |
KR100514650B1 (en) * | 2002-12-11 | 2005-09-14 | 엘에스전선 주식회사 | journal bearing for shaft's uneccentric rotation |
US7186026B2 (en) | 2004-03-15 | 2007-03-06 | Daido Metal Company, Ltd. | Foil hydrodynamic journal bearing and method of manufacturing the same |
JP2008542628A (en) * | 2005-06-10 | 2008-11-27 | エドワーズ リミテッド | Vacuum pump |
JP2009270594A (en) * | 2008-04-30 | 2009-11-19 | Canon Inc | Bearing device and image forming device equipped therewith |
KR101638413B1 (en) * | 2015-03-30 | 2016-07-20 | 한국과학기술연구원 | Gas foil journal bearing using textile |
WO2016159562A1 (en) * | 2015-03-30 | 2016-10-06 | Korea Institiute Of Science And Technologhy | Gas foil journal bearing |
JP2016205167A (en) * | 2015-04-17 | 2016-12-08 | トヨタ自動車株式会社 | Air bearing for revolving shaft having heat drop in axial direction |
JP2021025531A (en) * | 2019-07-31 | 2021-02-22 | トヨタ紡織株式会社 | Bearing device |
GB2615567A (en) * | 2022-02-11 | 2023-08-16 | Dyson Technology Ltd | An aerodynamic bearing |
Also Published As
Publication number | Publication date |
---|---|
JP3310826B2 (en) | 2002-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4287021B2 (en) | Foil type hydrodynamic bearing | |
US7553086B2 (en) | Hydrodynamic journal bearing | |
US6250808B1 (en) | Motor having a plurality of dynamic pressure bearings | |
US5738445A (en) | Journal bearing having vibration damping elements | |
JP2005536697A (en) | Foil-elastic support for fluid bearings | |
US7186026B2 (en) | Foil hydrodynamic journal bearing and method of manufacturing the same | |
JP2008517238A (en) | Airfoil bearing with porous foil | |
JPH0676806B2 (en) | Support assembly for rotating shaft | |
JP3310826B2 (en) | Dynamic pressure gas journal bearing | |
JP2002364643A (en) | Hydrodynamic foil bearing | |
JP2000205251A (en) | Bearing mechanism | |
JPH0342255Y2 (en) | ||
JP3116594B2 (en) | Bearing device | |
JPH0147649B2 (en) | ||
JPH08312641A (en) | Dynamic pressure gas bearing | |
JPS624565B2 (en) | ||
CN215171567U (en) | Gas bearing and compressor | |
JP4759859B2 (en) | Hard disk drive motor | |
JPH03163212A (en) | Dynamic pressure type fluid bearing device | |
JPS6165908A (en) | Dynamic pressure type thrust bearing | |
JPH10299765A (en) | Thrust bearing | |
RU29352U1 (en) | Sliding support | |
JPH024249Y2 (en) | ||
JPS585134Y2 (en) | fluid sliding bearing | |
JP2012052632A (en) | Flexible pad bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020424 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090524 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |