Nothing Special   »   [go: up one dir, main page]

JPH0914911A - Interferometer - Google Patents

Interferometer

Info

Publication number
JPH0914911A
JPH0914911A JP7182064A JP18206495A JPH0914911A JP H0914911 A JPH0914911 A JP H0914911A JP 7182064 A JP7182064 A JP 7182064A JP 18206495 A JP18206495 A JP 18206495A JP H0914911 A JPH0914911 A JP H0914911A
Authority
JP
Japan
Prior art keywords
light beam
optical path
path length
optical
adjusting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7182064A
Other languages
Japanese (ja)
Inventor
Fumio Kobayashi
富美男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP7182064A priority Critical patent/JPH0914911A/en
Publication of JPH0914911A publication Critical patent/JPH0914911A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE: To enable proper adjustment of the length of an optical path without deviation of the optical path by providing an optical path length adjusting means which has a fluid inflow part to let a light beam pass and a fluid medium fillable a fluid injection part with a refractive index different from a medium on other optical paths. CONSTITUTION: An interfering light beam is separated into two light beams by a beam splitter, an optical path length adjusting means 50 is provided on an optical path of one light beam 16 and a fluid medium is arranged in a fluid injecting part 52 thereof with a refractive index different from a medium on other optical paths. A square holding body 54 is so arranged as not to be slidable and a square holding body 56 is so arranged to the slidable horizontally in an angular casing 68 of the adjusting means 50. The holding body 56 is energized by a pressing spring 70 to the left and the holding body 56 is formed so that size thereof is almost the same as the inner diameter of the casing 68 and thicker in the sliding direction. Thus, the holding body 56 moves within the casing 68 in proportion to the amount of the fluid medium injected into the fluid injection part 52.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は干渉計、特に二分割され
た光を再合成して干渉光を生成させる干渉計の光路長調
整手段の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer, and more particularly to an improvement in the optical path length adjusting means of an interferometer for recombining two split lights to generate an interference light.

【0002】[0002]

【従来の技術】例えば被検体表面の凹凸などを非接触で
調べるために干渉計が広く用いられている。これらの検
体表面観察用干渉計の基本的な態様の一つとしてマイケ
ルソン型干渉計あるいはこの改良型干渉計が挙げられ、
これらは可干渉光をビームスプリッタなどの光ビーム分
離手段により第1光ビームおよび第2光ビームに分離す
る。そして、例えば第1光ビームを基準平面で反射さ
せ、さらに第2光ビームを被検面で反射させ、両反射ビ
ームを再度ビームスプリッタに入射させて、その合成を
行う。この場合に、光ビーム分離手段から上記基準平面
までの距離と、上記被検面までの距離を略同一にしてお
けば、被検面の凹凸が基準平面との光路長の差として把
握され、この結果第1光ビームと第2光ビームの光路長
差に基づき発生する干渉縞により被検面の凹凸を観察す
ることができるのである。
2. Description of the Related Art For example, interferometers are widely used for non-contact inspection of unevenness on the surface of a subject. As one of the basic aspects of these sample surface observing interferometers, there is a Michelson type interferometer or an improved interferometer thereof,
These separate the coherent light into a first light beam and a second light beam by a light beam separating means such as a beam splitter. Then, for example, the first light beam is reflected by the reference plane, the second light beam is reflected by the surface to be inspected, and both reflected beams are made incident on the beam splitter again, and their combination is performed. In this case, if the distance from the light beam separating means to the reference plane and the distance to the surface to be inspected are substantially the same, the unevenness of the surface to be inspected is grasped as a difference in optical path length from the reference plane, As a result, it is possible to observe the unevenness of the surface to be inspected by the interference fringes generated based on the optical path length difference between the first light beam and the second light beam.

【0003】[0003]

【発明が解決しようとする課題】上述したように、干渉
計で被検体表面の凹凸を干渉縞により表現するために
は、第1光ビームと第2光ビームの干渉を適正に生じさ
せなければならず、第1光ビームと第2光ビームの光路
長をそろえる必要がある。しかしながら、第1光ビーム
の経由する光学系と、第2光ビームが経由する光学系と
を厳密に一致させることはきわめて困難であり、このた
め第1光ビームあるいは第2光ビームのいずれかの光路
上に2個のくさび形ガラス体を重ね合わせたウェッジ板
を配置し、両者の重ね合わせ度により実質的な光路長の
調整を行っていた。
As described above, in order to express the unevenness of the surface of the object by the interferometer by the interference fringes, the interference between the first light beam and the second light beam must be properly generated. Of course, the optical path lengths of the first light beam and the second light beam need to be aligned. However, it is extremely difficult to exactly match the optical system through which the first light beam passes and the optical system through which the second light beam passes, and therefore either the first light beam or the second light beam is A wedge plate in which two wedge-shaped glass bodies are superposed is arranged on the optical path, and the optical path length is substantially adjusted by the degree of superposition of the two.

【0004】すなわち、ガラス体は空気よりも屈折率が
高いため、空気中を進行する光路上にガラス体を配置す
れば光学的光路長がその屈折率に応じて変化し、ウェッ
ジ板の重ね合わせ度の調整によりガラス体を通過する間
の幾何学的光路長を変化させることで、光学素子の配置
自体を変えることなく光学的光路長を調整することが可
能となるのである。
That is, since the glass body has a higher refractive index than air, if the glass body is arranged on the optical path traveling in the air, the optical optical path length changes according to the refractive index, and the wedge plates are superposed. By changing the geometrical optical path length while passing through the glass body by adjusting the degree, it becomes possible to adjust the optical optical path length without changing the arrangement itself of the optical element.

【0005】ところが、このようなウェッジ板を用いた
光路長補正機構にあっては、2つのガラス体が微かな隙
間を介して対向するように配されるため、くさび形ガラ
ス体の重ね合わせ面で光ビームの屈折が生じ、光路に微
妙なずれが生じてしまうという課題があった。本発明は
上記従来技術の課題に鑑みなされたものであり、その目
的は光路のずれを生じることなく適正な光路長調整を行
うことのできる干渉計を提供することにある。
However, in the optical path length correcting mechanism using such a wedge plate, since the two glass bodies are arranged so as to face each other with a slight gap therebetween, the overlapping surfaces of the wedge-shaped glass bodies are arranged. However, there is a problem that the refraction of the light beam occurs and a slight deviation occurs in the optical path. The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide an interferometer capable of performing an appropriate optical path length adjustment without causing deviation of the optical path.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に本発明にかかる干渉計は、可干渉光ビームを出射する
光ビーム出射手段と、該可干渉光ビームを第1光ビーム
および第2光ビームに分離する光ビーム分離手段とを有
し、該第1光ビームおよび第2光ビームを再合成して干
渉光を生成する干渉計において、第1光ビームおよび第
2光ビームの少なくともいずれか一方の光路上に光学的
光路長調整手段を配置し、該光学的光路長調整手段が、
光ビームを通過させる流体注入部と、他の光路上の媒質
とは異なる屈折率を有する該流体注入部内に充填可能な
流体状媒質とを備えたことを特徴とする。
In order to achieve the above object, an interferometer according to the present invention comprises a light beam emitting means for emitting a coherent light beam, the coherent light beam as a first light beam and a second light beam. An optical interferometer having a light beam separating means for separating the light beam, and recombining the first light beam and the second light beam to generate interference light, at least one of the first light beam and the second light beam. An optical optical path length adjusting means is arranged on one of the optical paths, and the optical optical path length adjusting means,
It is characterized in that it is provided with a fluid injecting section that allows the light beam to pass therethrough, and a fluid medium that can be filled in the fluid injecting section having a refractive index different from that of the medium on other optical paths.

【0007】なお、上記干渉計において、前記第1光ビ
ームおよび第2光ビームを、それぞれの入射ビームと略
同一光路上に帰還させる第1および第2反射手段と、前
記光ビーム分離手段と該各反射手段の間の光路上に設け
られ、前記第1および第2光ビームを前記第1および第
2反射手段に集光する第1および第2集光手段とを備
え、該光ビーム分離手段により前記第1および第2光ビ
ームが再合成されて干渉光を生成し、前記光路長調整手
段が、前記光ビーム分離手段と反射手段の間の光路上に
設けられることが好適である。また、上記干渉計におい
て、光路長調整手段は集光手段とその光ビーム分離手段
側焦点との間の光路上に配置されることが好適である。
In the interferometer, first and second reflecting means for returning the first light beam and the second light beam to substantially the same optical path as the respective incident beams, the light beam separating means, and First and second condensing means provided on the optical path between the reflecting means for condensing the first and second light beams on the first and second reflecting means, and the light beam separating means. Preferably, the first and second light beams are recombined to generate interference light, and the optical path length adjusting means is provided on the optical path between the light beam separating means and the reflecting means. Further, in the interferometer, it is preferable that the optical path length adjusting means is arranged on the optical path between the condensing means and the focus on the side of the light beam separating means.

【0008】[0008]

【作用および発明の効果】本発明にかかる干渉計は、前
述したように第1光ビームおよび第2光ビームの少なく
ともいずれか一方の光路上に光学的光路長調整手段を配
置する。そして、上記光学的光路長調整手段は、光ビー
ムを通過させる流体注入部と、他の光路上の媒質とは異
なる屈折率を有し該流体注入部内に充填可能な流体状媒
質とを備えている。
As described above, the interferometer according to the present invention has the optical optical path length adjusting means arranged on the optical path of at least one of the first light beam and the second light beam. Further, the optical optical path length adjusting means includes a fluid injecting portion that allows a light beam to pass therethrough, and a fluid medium that has a refractive index different from that of a medium on another optical path and that can be filled in the fluid injecting portion. There is.

【0009】ここで、例えば第1光ビームの光路長が短
い場合、前記流体注入部に高屈折率の流体を注入する。
このように光路上に配置された流体注入部内の媒質の量
すなわち高屈折率媒質通過距離ないしその屈折率を変更
することにより、光路のずれを生じることなく光学的光
路長の調整を行うことが可能となる。なお、第1ビー
ム、第2ビームが干渉計内で拡散、集光されるリニーク
干渉計の場合、前記ウェッジ板の使用により特に光路に
ずれを生じやすく、一方本発明によればこのようなリニ
ーク干渉計にあっても光路のずれを生じないため、特に
好適である。
Here, for example, when the optical path length of the first light beam is short, a fluid having a high refractive index is injected into the fluid injection portion.
In this way, by changing the amount of the medium in the fluid injection part arranged on the optical path, that is, the high refractive index medium passage distance or its refractive index, the optical optical path length can be adjusted without causing the optical path shift. It will be possible. In the case of a linique interferometer in which the first beam and the second beam are diffused and focused in the interferometer, the use of the wedge plate makes it easy to cause deviation in the optical path. Even in the interferometer, the deviation of the optical path does not occur, which is particularly preferable.

【0010】また、リニーク干渉計の場合、異なる光学
系を構成せざるを得ない第1および第2集光手段におい
てレンズ特性の相違、例えば焦点距離の相違などが問題
となるが、本発明の干渉計においては、光路長調整手段
をいずれかの集光手段と、その光ビーム分離手段側の焦
点の間に挿入することにより、各集光手段のレンズ特性
を補償することも可能となり、拡大観察像のコントラス
トを良好なものとすることができる。
Further, in the case of a linique interferometer, a difference in lens characteristics, such as a difference in focal length, is a problem in the first and second condensing means that must compose different optical systems. In the interferometer, by inserting the optical path length adjusting means between any of the light collecting means and the focal point on the side of the light beam separating means, it becomes possible to compensate for the lens characteristic of each light collecting means, and enlarge The contrast of the observed image can be improved.

【0011】[0011]

【実施例】以下、図面に基づき本発明の好適な実施例を
説明する。図1には本発明の一実施例にかかる干渉計の
概略構成が示されている。同図に例示する干渉計は、被
検面の微細部位の表面形状の観察が可能なリニーク型干
渉計である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of an interferometer according to an embodiment of the present invention. The interferometer illustrated in the figure is a linique type interferometer capable of observing the surface shape of a microscopic portion of the surface to be inspected.

【0012】本実施例において、干渉計10は、可干渉
光ビーム12を出射する光源(光ビーム出射手段)14
と、該可干渉光ビーム12を第1光ビーム16および第
2光ビーム18に分離するビームスプリッタ(光ビーム
分離手段)20と、該第1光ビーム16を基準平面22
に集光する第1対物レンズ(第1集光手段)24および
第2光ビーム18を被検面26に集光する第2対物レン
ズ(第2集光手段)28と、基準平面22に反射された
第1反射光と被検面26に反射された第2反射光とを上
記ビームスプリッタ20に帰還させ、その合成ビーム3
0をモニタカメラ32上に結像させる結像レンズ34と
を備えている。上記光源14から出射した可干渉光ビー
ム12はコンデンサーレンズ36によりビームスプリッ
タ20方向に集光され、該ビームスプリッタ20を透過
した第1光ビーム16はビームスプリッタ20より距離
aだけ離れた位置に光源14の像を結ぶ。また、ビーム
スプリッタ20に反射された第2光ビーム18は同じく
ビームスプリッタ20より距離aだけ離れた位置に光源
14の像を結ぶ。
In this embodiment, the interferometer 10 includes a light source (light beam emitting means) 14 for emitting a coherent light beam 12.
A beam splitter (light beam splitting means) 20 for splitting the coherent light beam 12 into a first light beam 16 and a second light beam 18, and a reference plane 22 for the first light beam 16.
And a second objective lens (second condensing means) 28 for condensing the second light beam 18 on the surface 26 to be inspected and a reference plane 22. The first reflected light thus reflected and the second reflected light reflected by the surface 26 to be inspected are returned to the beam splitter 20, and a combined beam 3 thereof is obtained.
The image forming lens 34 forms an image of 0 on the monitor camera 32. The coherent light beam 12 emitted from the light source 14 is condensed in the direction of the beam splitter 20 by the condenser lens 36, and the first light beam 16 transmitted through the beam splitter 20 is located at a position a distance a away from the beam splitter 20. Connect 14 statues. The second light beam 18 reflected by the beam splitter 20 also forms an image of the light source 14 at a position a distance a from the beam splitter 20.

【0013】そして、各第1および第2光ビーム16,
18は結像点を通過すると拡散状態となるが、それぞれ
対応する第1対物レンズ24および第2対物レンズ28
により略平行光束に調整されて基準平面22および被検
面26に照射される。
Each of the first and second light beams 16,
Although 18 is in a diffused state when passing through the image forming point, the corresponding first objective lens 24 and second objective lens 28
Is adjusted to a substantially parallel light flux, and the reference plane 22 and the test surface 26 are irradiated with the light.

【0014】ところで、ビームスプリッタ20より各結
像点までの距離aは第1光ビーム16側および第2光ビ
ーム18側とも同一のコンデンサーレンズ36の集光作
用に起因するものであるから同一であるが、対物レンズ
24,28は異なるレンズ系であるため、同一の光学的
特性を有するように調製されたとしても微妙に異なる特
性を有することは避け得ない。そして、この対物レンズ
24,28のレンズ特性の相違は第1光ビーム16およ
び第2光ビーム18のビームスプリッタ20出射から帰
還までの光路差、すなわちこの間の波数に影響を与え、
合成ビーム30の干渉状態に影響を与えてしまう。
By the way, the distance a from the beam splitter 20 to each image forming point is the same because both the first light beam 16 side and the second light beam 18 side are caused by the condensing action of the same condenser lens 36. However, since the objective lenses 24 and 28 are different lens systems, it is inevitable that they have slightly different characteristics even if they are prepared to have the same optical characteristics. The difference in the lens characteristics of the objective lenses 24 and 28 affects the optical path difference between the emission of the first light beam 16 and the second light beam 18 from the beam splitter 20 to the return, that is, the wave number during this period.
This will affect the interference state of the synthetic beam 30.

【0015】この状態が図2にさらに詳細に示されてい
る。同図において、第1対物レンズ24および第2対物
レンズ28はそれぞれ略同一規格に調製され、かつレン
ズホルダ40,42に保持されている。そして、該レン
ズホルダ40,42内の対物レンズ24,28は、それ
ぞれのレンズから基準平面22、被検面26までの距離
2,l2'は個体差がないように調製されているが、ネ
ジ突き当て面44a,44bから像側焦点までの距離l
1,l1'に関してはネジの加工などの等の誤差から厳密
に同一に調製することは極めて困難である。この結果、
像側焦点から基準平面22ないし被検面26までの距離
が異なることとなり、白色光のような可干渉距離の短い
光では干渉を生じなくなってしまうおそれがある。
This situation is shown in more detail in FIG. In the figure, the first objective lens 24 and the second objective lens 28 are prepared to have substantially the same standard, and are held by the lens holders 40 and 42. The objective lenses 24 and 28 in the lens holders 40 and 42 are prepared so that the distances l 2 and l 2 ′ from the respective lenses to the reference plane 22 and the test surface 26 have no individual difference. , The distance l from the screw abutting surfaces 44a, 44b to the image side focal point
It is extremely difficult to make 1 and l 1 'exactly the same because of errors such as screw processing. As a result,
Since the distance from the image-side focus to the reference plane 22 or the surface to be inspected 26 is different, there is a possibility that interference will not occur with light having a short coherence length such as white light.

【0016】そこで、本実施例においては図3に示すよ
うに第1対物レンズ24とその像側焦点の間に光路長調
整手段50を挿入しているのである。すなわち、光路長
調整手段50は他の光路上とは屈折率の異なる媒質(屈
折率n)を有し、第1光ビーム16と第2光ビーム18
の光路差Δの調整を行っている。この結果、前述したよ
うにリニーク干渉計で、第1光ビームと第2光ビームの
間で異なる光学系とならざるを得ない集光レンズ24,
28の焦点距離なども調整可能となり、より的確な拡大
像を観察することができる。
Therefore, in this embodiment, as shown in FIG. 3, the optical path length adjusting means 50 is inserted between the first objective lens 24 and its image side focal point. That is, the optical path length adjusting means 50 has a medium (refractive index n) having a refractive index different from that of other optical paths, and the first light beam 16 and the second light beam 18 are provided.
The optical path difference Δ is adjusted. As a result, as described above, in the linique interferometer, the condensing lens 24, which is inevitably a different optical system between the first light beam and the second light beam,
The focal length of 28 can also be adjusted, and a more accurate magnified image can be observed.

【0017】図4には本実施例にかかる光路長調整手段
50の構造が示されている。同図(A)に示す側断面図
および同図(C)に示す正面図において、光路長調整手
段50は図中左右方向に伸縮可能な蛇腹状の流体注入部
52と、該流体注入部52の伸縮両端に配置されたロ字
状保持体54,56と、該保持体54,56の下端に設
けられた支持穴58a,58bと、保持体54,56の
上端に形成された長穴60a,60bと、該穴58a,
58b,60a,60bに対角線状に差し渡された保形
軸62,64と、該保形軸62,64の交点に各軸を回
動自在かつ図中上下方向に移動可能に支持する支持軸6
6とを備えている。
FIG. 4 shows the structure of the optical path length adjusting means 50 according to this embodiment. In the side sectional view shown in FIG. 9A and the front view shown in FIG. 7C, the optical path length adjusting means 50 is a bellows-shaped fluid injection section 52 that is expandable and contractible in the left-right direction in the figure, and the fluid injection section 52. Square shaped holding bodies 54 and 56 arranged at both ends of expansion and contraction, supporting holes 58a and 58b provided at lower ends of the holding bodies 54 and 56, and an elongated hole 60a formed at upper ends of the holding bodies 54 and 56. , 60b and the holes 58a,
Shape-retaining shafts 62 and 64 that are diagonally extended to 58b, 60a, and 60b, and support shafts that support the shafts at the intersections of the shape-retaining shafts 62 and 64 so as to be rotatable and movable in the vertical direction in the figure. 6
6 is provided.

【0018】そして、角状ケーシング68内に、保持体
54は摺動移動不可に、また保持体56は図中左右方向
に摺動移動可能に配置されている。上記ロ字状保持体5
6は、押圧バネ70により図中左方向に付勢されてお
り、またロ字状保持体56はケーシング68の内形とほ
ぼ同一にかつその摺動方向に厚型に形成されているた
め、流体注入部52内に注入された流体状媒質の量に比
例して保持体56はケーシング68内を平行移動する
(図4(B))。なお、流体注入部52の少なくとも入
光面72および出光面はガラスなどの透光材からなる。
In the rectangular casing 68, the holder 54 is arranged so that it cannot slide, and the holder 56 can slide in the left-right direction in the drawing. The square-shaped holder 5
6 is urged to the left in the figure by the pressing spring 70, and the square-shaped holder 56 is formed to be substantially the same as the inner shape of the casing 68 and thick in the sliding direction. The holder 56 moves in parallel in the casing 68 in proportion to the amount of the fluid medium injected into the fluid injection part 52 (FIG. 4 (B)). At least the light-entering surface 72 and the light-exiting surface of the fluid injection unit 52 are made of a light-transmitting material such as glass.

【0019】本実施例にかかる光学的光路長調整手段5
0は概略以上のように構成され、以下その作用について
説明する。まず、図3に示したように光ビーム16,1
8間に光路差Δが生じた場合、光学的光路長調整手段5
0の中空枠52内に外部とは異なる屈折率を有する光路
長調整媒質を注入する。そして、図4(A)に示す状態
から、バルブ72を介して流体状媒質を順次注入するこ
とにより、保持体56は押圧バネ70の押圧力に抗して
図4(B)に示すように左側に移動し、保持体54,5
6間の離隔距離すなわち光ビーム16が通過する媒質の
距離が延長される。光ビーム16の光路の他の部分が空
気中を進行する場合、例えば流体状媒質が水であっても
屈折率は空気よりも大きいため、光ビーム18の光学的
光路長は増加し、上記光路差Δを補償することが可能と
なる。
Optical optical path length adjusting means 5 according to the present embodiment.
0 is configured as described above, and its operation will be described below. First, as shown in FIG.
When an optical path difference Δ occurs between the optical path lengths 8, optical optical path length adjusting means 5
An optical path length adjusting medium having a refractive index different from the outside is injected into the hollow frame 52 of 0. Then, from the state shown in FIG. 4A, by sequentially injecting the fluid medium through the valve 72, the holding body 56 resists the pressing force of the pressing spring 70, and as shown in FIG. Move to the left and hold the holder 54,5
The separation distance between the six, that is, the distance of the medium through which the light beam 16 passes is extended. When the other part of the optical path of the light beam 16 travels in the air, for example, even if the fluid medium is water, since the refractive index is larger than that of the air, the optical path length of the light beam 18 increases, and It is possible to compensate for the difference Δ.

【0020】図5には本発明の他の実施例にかかる光学
的光路長調整手段150が示されており、上記第4図と
対応する部分には符号100を加えて示し説明を省略す
る。図5に示す光学的光路長調整手段150は、低屈折
率媒質を貯留した貯留槽174と、高屈折率媒質を貯留
した貯留槽176を備えており、両貯留槽174,17
6からの両媒質の混合量をバルブ172により調整する
構成となっている。そして、上記高屈折率媒質および低
屈折率媒質に相溶性の高い組み合わせを用いれば、バル
ブ172の調整により流体状媒質の任意の屈折率を得る
ことができ、前述したように媒質の量を変化させること
なく光学的光路長を調整することができる。
FIG. 5 shows an optical optical path length adjusting means 150 according to another embodiment of the present invention. The parts corresponding to those in FIG. The optical optical path length adjusting means 150 shown in FIG. 5 includes a storage tank 174 storing a low refractive index medium and a storage tank 176 storing a high refractive index medium, and both storage tanks 174, 17 are provided.
The valve 172 is used to adjust the mixing amount of both media from No. 6. Then, by using a combination having high compatibility with the high refractive index medium and the low refractive index medium, it is possible to obtain an arbitrary refractive index of the fluid medium by adjusting the valve 172, and change the amount of the medium as described above. It is possible to adjust the optical optical path length without doing so.

【0021】なお、上記各実施例において用いた流体状
媒質は、通常水溶液、オイルなどを用いることが好適で
あるが、例えば注入部に注入後、硬化する透明樹脂など
を用いてもよい。また、上記各実施例においては干渉計
としてリニーク干渉計を用いた例について説明したが、
これに限られるものではなくトワイマン・グリーン干渉
計、マイケルソン干渉計等、光学的光路長調整の要求さ
れる各種干渉計に適用することができる。
As the fluid medium used in each of the above-mentioned embodiments, it is usually preferable to use an aqueous solution, oil or the like. However, for example, a transparent resin which is cured after being injected into the injection part may be used. Further, in each of the above-mentioned embodiments, an example using a linique interferometer as the interferometer has been described.
The present invention is not limited to this, and can be applied to various interferometers such as the Twyman-Green interferometer and Michelson interferometer that require optical optical path length adjustment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例にかかる干渉計の全体構成の
説明図
FIG. 1 is an explanatory diagram of the overall configuration of an interferometer according to an embodiment of the present invention.

【図2】本発明が解決しようとする課題の説明図FIG. 2 is an explanatory diagram of a problem to be solved by the present invention.

【図3】本発明の作用の説明図FIG. 3 is an explanatory view of the operation of the present invention.

【図4】本発明の一実施例にかかる光学的光路長調整手
段の説明図
FIG. 4 is an explanatory view of an optical optical path length adjusting means according to an embodiment of the present invention.

【図5】本発明の他の実施例にかかる光学的光路長調整
手段の説明図
FIG. 5 is an explanatory view of an optical optical path length adjusting means according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 干渉計 12 可干渉光ビーム 16 第1光ビーム 18 第2光ビーム 20 ビームスプリッタ(光ビーム分離手段) 50,150 光学的光路長調整手段 52,152 流体注入部 10 Interferometer 12 Coherent light beam 16 First light beam 18 Second light beam 20 Beam splitter (light beam separating means) 50,150 Optical optical path length adjusting means 52,152 Fluid injection part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 可干渉光ビームを出射する光ビーム出射
手段と、該可干渉光ビームを第1光ビームおよび第2光
ビームに分離する光ビーム分離手段とを有し、該第1光
ビームおよび第2光ビームを再合成して干渉光を生成す
る干渉計において、 第1光ビームおよび第2光ビームの少なくともいずれか
一方の光路上に光学的光路長調整手段を配置し、 該光学的光路長調整手段が、光ビームを通過させる流体
注入部と、他の光路上の媒質とは異なる屈折率を有する
該流体注入部内に充填可能な流体状媒質とを備えたこと
を特徴とする干渉計。
1. A first light beam comprising: a light beam emitting means for emitting a coherent light beam; and a light beam separating means for separating the coherent light beam into a first light beam and a second light beam. And an interferometer for recombining the second light beam to generate interference light, wherein an optical optical path length adjusting means is disposed on the optical path of at least one of the first light beam and the second light beam, The optical path length adjusting means includes a fluid injection part that allows a light beam to pass therethrough, and a fluid medium that can be filled in the fluid injection part having a refractive index different from that of a medium on another optical path. Total.
【請求項2】 前記第1光ビームおよび第2光ビーム
を、それぞれの入射ビームと略同一光路上に帰還させる
第1および第2反射手段と、 前記光ビーム分離手段と該各反射手段の間の光路上に設
けられ、前記第1および第2光ビームを前記第1および
第2反射手段に集光する第1および第2集光手段とを備
え、 該光ビーム分離手段により前記第1および第2光ビーム
が再合成されて干渉光を生成し、 前記光路長調整手段が、前記光ビーム分離手段と反射手
段の間の光路上に設けられたことを特徴とする請求項1
記載の干渉計。
2. The first and second reflecting means for returning the first light beam and the second light beam on substantially the same optical path as the respective incident beams, and between the light beam separating means and the respective reflecting means. And first and second condensing means for condensing the first and second light beams on the first and second reflecting means, the first and second converging means being provided by the light beam separating means. The second light beam is recombined to generate interference light, and the optical path length adjusting means is provided on an optical path between the light beam separating means and the reflecting means.
The described interferometer.
【請求項3】 前記光路長調整手段が、前記集光手段と
その光ビーム分離手段側の焦点位置との間の光路上に配
置されたことを特徴とする請求項2記載の干渉計。
3. The interferometer according to claim 2, wherein the optical path length adjusting means is arranged on the optical path between the condensing means and the focal position on the side of the light beam separating means.
JP7182064A 1995-06-26 1995-06-26 Interferometer Withdrawn JPH0914911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7182064A JPH0914911A (en) 1995-06-26 1995-06-26 Interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7182064A JPH0914911A (en) 1995-06-26 1995-06-26 Interferometer

Publications (1)

Publication Number Publication Date
JPH0914911A true JPH0914911A (en) 1997-01-17

Family

ID=16111721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7182064A Withdrawn JPH0914911A (en) 1995-06-26 1995-06-26 Interferometer

Country Status (1)

Country Link
JP (1) JPH0914911A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505418A1 (en) * 2003-08-07 2005-02-09 Northrop Grumman Corporation System with and method for an optical delay line with a continuously variable length
JP2006189575A (en) * 2005-01-05 2006-07-20 Ricoh Co Ltd Optical element, laser machining apparatus, and laser manipulation apparatus
JP2006243667A (en) * 2005-03-07 2006-09-14 Ricoh Co Ltd Optical element and apparatus using the same
US7242842B2 (en) 2003-11-27 2007-07-10 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing multi-channel optical attenuator
JP2007206049A (en) * 2006-03-13 2007-08-16 Olympus Corp Optical imaging device
JP2010025864A (en) * 2008-07-23 2010-02-04 Hamamatsu Photonics Kk Interference measuring apparatus
JP2010071989A (en) * 2008-09-16 2010-04-02 Mitsutoyo Corp Method and instrument for detecting movement of measuring probe
JP2011022204A (en) * 2009-07-13 2011-02-03 Nikon Corp Off-axis holographic microscope
JP2018205708A (en) * 2017-06-05 2018-12-27 アキュ ソリューションズ インクAcu Solutions Inc. Optical lamination apparatus using advanced optical interference microscope method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7003204B2 (en) 2003-08-07 2006-02-21 Northrop Grumman Corporation Systems and methods for a continuously variable optical delay line
EP1505418A1 (en) * 2003-08-07 2005-02-09 Northrop Grumman Corporation System with and method for an optical delay line with a continuously variable length
US7162106B2 (en) 2003-08-07 2007-01-09 Northrop Grumman Corporation Systems and methods for a continuously variable optical delay line
US7251395B2 (en) 2003-08-07 2007-07-31 Northrop Grumman Corporation Systems and methods for a continuously variable optical delay line
US7242842B2 (en) 2003-11-27 2007-07-10 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing multi-channel optical attenuator
JP4523420B2 (en) * 2005-01-05 2010-08-11 株式会社リコー Optical element, laser processing apparatus and laser manipulation apparatus
JP2006189575A (en) * 2005-01-05 2006-07-20 Ricoh Co Ltd Optical element, laser machining apparatus, and laser manipulation apparatus
JP2006243667A (en) * 2005-03-07 2006-09-14 Ricoh Co Ltd Optical element and apparatus using the same
JP2007206049A (en) * 2006-03-13 2007-08-16 Olympus Corp Optical imaging device
JP2010025864A (en) * 2008-07-23 2010-02-04 Hamamatsu Photonics Kk Interference measuring apparatus
JP2010071989A (en) * 2008-09-16 2010-04-02 Mitsutoyo Corp Method and instrument for detecting movement of measuring probe
JP2011022204A (en) * 2009-07-13 2011-02-03 Nikon Corp Off-axis holographic microscope
JP2018205708A (en) * 2017-06-05 2018-12-27 アキュ ソリューションズ インクAcu Solutions Inc. Optical lamination apparatus using advanced optical interference microscope method

Similar Documents

Publication Publication Date Title
CN109804294B (en) Fiber optic splitter device for digital holographic imaging and interferometry and optical system comprising said fiber optic splitter device
US5548403A (en) Phase shifting diffraction interferometer
US20080024767A1 (en) Imaging optical coherence tomography with dynamic coherent focus
KR20100134609A (en) Apparatus and method for measuring surface topography of an object
US5493398A (en) Device for observing test-piece surfaces by the speckle-shearing-method for the measurement of deformations
US12000752B2 (en) Deflectometry measurement system
US4009940A (en) Apparatus for producing optical interference pattern with continuously variable fringe spacing
US20170205610A1 (en) Image-forming optical system, illuminating device, and observation apparatus
JPH0914911A (en) Interferometer
JPH0224504A (en) Interferometer for measuring shape of aspheric surface utilizing computer hologram
JPH01284704A (en) Method and device for measuring microstructure of surface
JP5107547B2 (en) Interferometric surface shape measuring device
US4120590A (en) Method for measuring the thickness of transparent articles
RU2527316C1 (en) Interference microscope
US3825349A (en) Point reference interferometry
JP2011220903A (en) Refractive-index measurement method and device
RU2615717C1 (en) Interferometer for multiple optical measurements
US3454340A (en) Interferometry
JP3072925B2 (en) Interferometer for transmitted wavefront measurement
TW201930955A (en) Illumination apparatus and system for multiplexed multi-depth confocal microscopy
JPH07198316A (en) Interferometer
SU1661567A1 (en) Method of testing surfaces of optical parts
Józwik et al. Topography measurements of high NA aspherical microlenses by digital holographic microscopy with spherical illumination
Zhang Optical profilometry and its applications
SU848996A1 (en) Interferometer for surface quality control, large optical element aberration determination and transparent non-uniformity investigation

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903