JPH09123330A - Shape-recovery device - Google Patents
Shape-recovery deviceInfo
- Publication number
- JPH09123330A JPH09123330A JP7303677A JP30367795A JPH09123330A JP H09123330 A JPH09123330 A JP H09123330A JP 7303677 A JP7303677 A JP 7303677A JP 30367795 A JP30367795 A JP 30367795A JP H09123330 A JPH09123330 A JP H09123330A
- Authority
- JP
- Japan
- Prior art keywords
- shape memory
- shape
- recovery
- composite
- memory alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011084 recovery Methods 0.000 title claims abstract description 109
- 239000002131 composite material Substances 0.000 claims abstract description 86
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims abstract description 43
- 229920000431 shape-memory polymer Polymers 0.000 claims abstract description 30
- 230000009466 transformation Effects 0.000 claims description 16
- 229910000734 martensite Inorganic materials 0.000 claims description 13
- 229910004337 Ti-Ni Inorganic materials 0.000 claims description 10
- 229910011209 Ti—Ni Inorganic materials 0.000 claims description 10
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 claims description 10
- 229920002635 polyurethane Polymers 0.000 claims description 9
- 239000004814 polyurethane Substances 0.000 claims description 9
- 230000009471 action Effects 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 230000009477 glass transition Effects 0.000 claims description 5
- 229920000636 poly(norbornene) polymer Polymers 0.000 claims description 4
- 229920001195 polyisoprene Polymers 0.000 claims description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 62
- 238000000034 method Methods 0.000 description 12
- 238000001816 cooling Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000002457 bidirectional effect Effects 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 238000000576 coating method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000027311 M phase Effects 0.000 description 3
- 229910018054 Ni-Cu Inorganic materials 0.000 description 3
- 229910018481 Ni—Cu Inorganic materials 0.000 description 3
- 229910002056 binary alloy Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012781 shape memory material Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- 229910017535 Cu-Al-Ni Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910018559 Ni—Nb Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、形状回復力に優れ
た形状回復装置に関するものであり、また、形状回復力
に優れたマイクロアクチュエータに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape recovery device excellent in shape recovery force, and a microactuator excellent in shape recovery force.
【0002】[0002]
【従来技術および発明が解決しようとする課題】近年、
形状記憶合金(以下SMAという)や形状記憶ポリマー
(以下SMPという)の形状記憶材料を用いた駆動装置
が、各種の機械および装置のアクチュエータ等として利
用されている。これらの形状記憶材料は、加熱により所
望の一定形状となり、また、冷却により元の形状に戻
る。この場合、加熱の方法についてはヒータ、光からの
熱変換等の方法があるが、冷却法については装置の小型
化の点から自然放冷にて冷却される場合が多い。しか
し、その場合、冷却速度が遅いために、回復動作を短時
間に繰り返す装置では応答性の点で問題があり、また、
温度コントロールが正確ではないので、形状回復動作の
スピードの制御が困難となり、アクチュエータとしての
機能は非常に制限されたものになるという問題があっ
た。BACKGROUND OF THE INVENTION In recent years,
Drive devices using shape memory materials such as shape memory alloys (hereinafter referred to as SMA) and shape memory polymers (hereinafter referred to as SMP) are used as actuators of various machines and devices. These shape memory materials are heated to have a desired constant shape, and are cooled to return to their original shapes. In this case, as a heating method, there are methods such as a heater and heat conversion from light, but a cooling method is often cooled by natural cooling from the viewpoint of downsizing of the apparatus. However, in that case, since the cooling rate is slow, there is a problem in responsiveness in the device that repeats the recovery operation in a short time.
Since the temperature control is not accurate, it is difficult to control the speed of the shape recovery operation, and the function as an actuator is very limited.
【0003】また、SMAおよびSMP単独では形状回
復動作は一方向にのみ起こる一方向性(不可逆性)であ
る。SMAについては熱処理あるいは加工条件を施すこ
とにより、二方向性(可逆性)を付与することも可能で
あるが、加熱時と冷却時とでは形状回復力が大きく異な
り、一度変形を起こしたものを元通りの形状に戻すこと
は困難であった。つまり、それ自身で回復前の形状に戻
すことができないので、駆動装置として繰り返し操作さ
せるためには回復前の形状に戻す作用をする部品を必要
とし、装置の小型化及び軽量化の点で問題があった。Further, with SMA and SMP alone, the shape recovery operation is unidirectional (irreversible) which occurs in only one direction. It is possible to impart bidirectionality (reversibility) to SMA by subjecting it to heat treatment or processing conditions. It was difficult to restore the original shape. In other words, since it cannot return to the shape before recovery by itself, in order to repeatedly operate it as a drive device, a component that acts to return to the shape before recovery is required, which is a problem in terms of downsizing and weight saving of the device. was there.
【0004】上記問題を解決するため、SMA、ペルチ
ェ素子、SMAの順に積層させた駆動装置、すなわち、
ペルチェ素子の両面にSMAを設置し、該ペルチェ素子
の加熱面及び冷却面を利用し、かつ、回復前の形状に戻
す作用をする部品としてSMAを用いた駆動装置が提案
されている(特開昭61−14770号)。しかし、上
記ペルチェ素子を利用した駆動装置のSMAの回復動作
は一方向にのみ起こる一方向性(不可逆性)である。ま
た、駆動装置としてSMAを用いた場合、SMAの形状
回復力が小さいため、さらなる駆動力を必要とする装置
においては使用できないという問題があった。In order to solve the above problem, a driving device in which an SMA, a Peltier element and an SMA are laminated in this order, that is,
A drive device has been proposed in which SMAs are installed on both sides of a Peltier element, the heating surface and the cooling surface of the Peltier element are used, and the SMA is used as a component that acts to restore the shape before recovery. (Sho 61-14770). However, the SMA recovery operation of the drive device using the Peltier device is unidirectional (irreversible) that occurs in only one direction. Further, when SMA is used as the driving device, there is a problem that it cannot be used in a device that requires a further driving force because the shape recovery force of SMA is small.
【0005】本発明は、形状回復力に優れた形状回復装
置を提供することを目的としたものである。An object of the present invention is to provide a shape recovery device excellent in shape recovery force.
【0006】[0006]
【課題を解決するための手段】本発明は、形状記憶複合
体、ペルチェ素子、形状記憶複合体の順に積層させたこ
とによって、形状回復力に優れる形状回復装置を提供す
るものである。さらに、上記の形状記憶複合体を、ある
形状回復動作を記憶した形状記憶合金と、形状記憶合金
の回復動作と異なる方向の形状回復動作を記憶した形状
記憶ポリマーとからなり、形状記憶合金の形状回復温
度(マルテンサイト逆変態温度、Af)が形状記憶ポリ
マーの形状回復温度(ガラス転移温度、Tg)より高
く、形状記憶合金の(回復応力×断面積)または発生
力が形状記憶ポリマーの(回復応力×断面積)と同じに
なる温度を、Afと形状記憶合金のマルテンサイト変態
温度(Mf)の間にくるように設定することによって、
二方向性の形状回復動作をなす形状回復装置を提供する
ものである。また、本発明は、形状記憶合金と形状記憶
ポリマーとからなる形状記憶複合体を、形状記憶複合
体、ペルチェ素子、形状記憶複合体の順に積層させてな
り、上記二つの形状記憶複合体は加熱時に同方向の形状
回復動作をなし、かつ、上記二つの形状記憶複合体の一
端にはそれぞれ連結棒(1)が接続され、該連結棒
(1)はピン(2)を介して回転可能に取り付けられた
回転棒(3)に接続させることによって、形状回復力に
優れるマイクロアクチュエータを提供するものである。
また、本発明は、形状記憶合金と形状記憶ポリマーとか
らなる形状記憶複合体を、形状記憶複合体、ペルチェ素
子、形状記憶複合体の順に積層させてなり、上記二つの
形状記憶複合体は加熱時に異なる方向の形状回復動作を
なし、かつ、上記二つの形状記憶複合体の一端にはそれ
ぞれ連結棒(1)が接続され、該連結棒(1)は作動体
(4)に接続させることによって、形状回復力に優れる
マイクロアクチュエータを提供するものである。DISCLOSURE OF THE INVENTION The present invention provides a shape recovery device having an excellent shape recovery force by stacking a shape memory composite, a Peltier element and a shape memory composite in this order. Furthermore, the shape memory composite is composed of a shape memory alloy that remembers a certain shape recovery action and a shape memory polymer that stores a shape recovery action in a direction different from the recovery action of the shape memory alloy. The recovery temperature (martensite reverse transformation temperature, Af) is higher than the shape recovery temperature (glass transition temperature, Tg) of the shape memory polymer, and the (recovery stress x cross-sectional area) or the generating force of the shape memory alloy is (recovery of the shape memory polymer By setting the temperature at which (Stress x cross-sectional area) becomes the same between Af and the martensitic transformation temperature (Mf) of the shape memory alloy,
Provided is a shape recovery device that performs a bidirectional shape recovery operation. Further, the present invention comprises a shape memory composite comprising a shape memory alloy and a shape memory polymer, which are laminated in the order of a shape memory composite, a Peltier element and a shape memory composite, wherein the two shape memory composites are heated. Sometimes a shape recovery operation is performed in the same direction, and a connecting rod (1) is connected to one end of each of the two shape memory composites, and the connecting rod (1) is rotatable via a pin (2). By connecting to the attached rotary rod (3), a microactuator having an excellent shape recovery force is provided.
Further, the present invention comprises a shape memory composite comprising a shape memory alloy and a shape memory polymer, which are laminated in the order of a shape memory composite, a Peltier element and a shape memory composite, wherein the two shape memory composites are heated. By sometimes performing shape recovery operations in different directions, and connecting rods (1) are respectively connected to one ends of the two shape memory composites, and the connecting rods (1) are connected to the actuating body (4). The present invention provides a microactuator having an excellent shape recovery force.
【0007】以下に本発明に用いられる材料について詳
細に説明する。本発明で用いるSMPとしては、SMP
として通常使用されるものであれば特に制限はなく、ポ
リウレタン、ポリノルボルネン、ポリイソプレン、スチ
レン−ブタジエン共重合体などが挙げられるが、形状回
復温度であるガラス転移温度(以下Tgという。)を任
意に設定できるという点から特にポリウレタンが好適で
ある。SMPとして通常使用されるポリウレタンは、ポ
リオール、ジイソシアネート、及び、短鎖グリコールや
アミン類などの鎖延長剤からなるブロック共重合体であ
って、これら構成成分のモル比を変えることによって、
形状回復温度であるTgを−30℃から60℃まで自由
に設定できる。なお、本発明において、TgはJIS
K7121に準拠して測定した値である。The materials used in the present invention will be described in detail below. As the SMP used in the present invention, SMP
There is no particular limitation as long as it is a commonly used material, and examples thereof include polyurethane, polynorbornene, polyisoprene, and styrene-butadiene copolymer, but the glass transition temperature (hereinafter referred to as Tg) which is the shape recovery temperature is arbitrary. Polyurethane is particularly preferable because it can be set to Polyurethane usually used as SMP is a block copolymer composed of a polyol, a diisocyanate, and a chain extender such as a short-chain glycol or amine, and by changing the molar ratio of these components,
The shape recovery temperature Tg can be freely set from -30 ° C to 60 ° C. In the present invention, Tg is JIS
It is a value measured according to K7121.
【0008】本発明で用いるSMAとしては、SMAと
して通常使用されるものであれば特に制限はないが、S
MAの形状回復温度であるマルテンサイト逆変態温度
(以下Afという。)がSMPの成形温度(120〜2
00℃)以下のものが好ましく、中でも特に、AfがS
MPの成形温度よりかなり低いTi−Ni系SMAおよ
び銅系SMAが好適に使用される。Ti−Ni系SMA
としては、Ti−Ni二元合金、Ti−Ni−Cu合
金、Ti−Ni−Nb合金、Ti−Ni−Fe合金等が
挙げられ、これらTi−Ni系SMAのAfは−10℃
〜100℃である。また、銅系SMAとしてはCu−Z
n−Al合金、Cu−Al−Ni合金等が挙げられ、こ
れら銅系SMAのAfは−100℃〜100℃である。The SMA used in the present invention is not particularly limited as long as it is usually used as the SMA.
The martensite reverse transformation temperature (hereinafter referred to as Af), which is the shape recovery temperature of MA, is the molding temperature of SMP (120 to 2).
00 ° C) or less is preferable, and in particular, Af is S
Ti-Ni-based SMA and copper-based SMA which are considerably lower than the molding temperature of MP are preferably used. Ti-Ni type SMA
Examples thereof include a Ti-Ni binary alloy, a Ti-Ni-Cu alloy, a Ti-Ni-Nb alloy, and a Ti-Ni-Fe alloy. These Ti-Ni-based SMAs have an Af of -10 ° C.
100100 ° C. Also, as a copper-based SMA, Cu-Z
Examples include n-Al alloys and Cu-Al-Ni alloys, and the Af of these copper-based SMAs is -100 ° C to 100 ° C.
【0009】SMAは、低温ではマルテンサイト相(以
下、M相という)の構造であり、ある温度以上で母相の
構造に相変態する材料である。形状回復効果はこの相変
態を利用している。M相のSMAを加熱していくと、徐
々に母相への変態(マルテンサイト逆変態)が発生し、
やがて完全な母相になる。一般に、この母相変態の終了
する温度をAf点と呼び、このAf点がSMAの形状回
復温度とされる。また、逆に、母相となっている温度域
から冷却していくと、徐々にマルテンサイト変態が発生
し、やがて完全なM相になる。マルテンサイト変態の終
了温度をMf点と呼ぶ。SMA has a martensite phase (hereinafter referred to as M phase) structure at a low temperature, and is a material that undergoes phase transformation into a matrix structure at a certain temperature or higher. The shape recovery effect utilizes this phase transformation. When the M-phase SMA is heated, transformation to the parent phase (martensite reverse transformation) gradually occurs,
Eventually, he becomes a perfect mother. Generally, the temperature at which this parent phase transformation ends is called the Af point, and this Af point is the shape recovery temperature of the SMA. On the contrary, when cooling from the temperature range of the matrix phase, the martensitic transformation gradually occurs and eventually becomes a complete M phase. The end temperature of the martensitic transformation is called the Mf point.
【0010】本発明においては、上記のSMA、SMP
から任意に選んで組み合わせることができる。ただし、
二方向性の点から、SMAの形状回復時にはすでにSM
Pが軟化している必要があることから、SMAのAf点
がSMPのTgより上であることが好ましい。さらに、
二方向性の点から、Af点より温度を低下させたとき
に、SMPが硬化するまでの間にSMAの形状回復力よ
りSMPの形状回復力が大きくなることが必要であるこ
とから、SMPのTgはSMAのMf点より下であるこ
とが好ましい。SMAとSMPの形状回復温度の差は特
に制限はないが、実用性を考慮すると、好ましくはTg
がMf点より10℃以上低い、より好ましくはTgがM
f点より20〜40℃以上低いものが好適である。好ま
しいSMAとSMPの組み合わせは、例えば、Tgが2
0〜40℃の形状記憶ポリウレタンと、Af点が50〜
80℃、Mf点が30〜60℃のTi−Ni系SMA、
特にTi−Ni二元合金、Ti−Ni−Cu系SMAと
の組み合わせが挙げられる。In the present invention, the above-mentioned SMA and SMP
It can be arbitrarily selected from and combined. However,
Due to the two-way nature, SM is already used when the shape of SMA is recovered.
Since P needs to be softened, the Af point of SMA is preferably higher than the Tg of SMP. further,
From the point of bidirectionality, when the temperature is lowered from the Af point, it is necessary that the shape recovery force of the SMP be larger than the shape recovery force of the SMA before the SMP is cured. Tg is preferably below the SMA Mf point. The difference between the shape recovery temperatures of SMA and SMP is not particularly limited, but in view of practicality, Tg is preferably Tg.
Is 10 ° C. or more lower than the Mf point, more preferably Tg is M
It is preferably 20 to 40 ° C. lower than the point f. A preferred combination of SMA and SMP has, for example, a Tg of 2
Shape memory polyurethane of 0 ~ 40 ℃ and Af point of 50 ~
Ti-Ni SMA at 80 ° C and Mf point of 30 to 60 ° C,
In particular, a combination with a Ti-Ni binary alloy and a Ti-Ni-Cu-based SMA can be mentioned.
【0011】本発明に用いられるSMAとSMPとから
なる形状記憶複合体は、SMAにある形状回復動作を記
憶させ、SMPにSMAの形状回復動作と同方向の形状
回復動作を記憶させた場合、SMA単独の場合よりも形
状回復力に優れる。また、本発明に用いられるSMAと
SMPとからなる形状記憶複合体において、SMAにあ
る形状回復動作を記憶させ、SMPにSMAの形状回復
動作と異なる方向の形状回復動作を記憶させた場合、す
なわち、二方向性の形状回復動作をさせる場合には、高
温(SMAのAf点以上)ではSMAが記憶した形状を
保っているが、低温(SMAのMf点以下であってSM
PのTg以上)では、SMPが、柔らかくなったSMA
の形状保持力に打ち勝って自身の形状にSMAを従わせ
るのが好ましい。この場合、SMAとSMPの形状回復
力のバランスは、SMAの形状回復力、すなわち(回復
応力×断面積)あるいは発生力とSMPの(回復応力×
断面積)が等しくなる温度をSMAのAf点とMf点の
間に設定することによってとることができる。上記温度
がAf点より高いと、加熱時にSMAが十分に形状回復
した状態にならない場合があり、また上記温度がMf点
より低いと、冷却時にSMPが十分に形状回復した状態
にならない場合があり、形状記憶複合体の変位量が低
減、あるいは二方向性が失われる傾向にある。The shape memory composite comprising SMA and SMP used in the present invention stores a shape recovery motion in the SMA and a shape recovery motion in the same direction as the shape recovery motion of the SMA. It has a better shape recovery than SMA alone. Further, in the shape memory composite of SMA and SMP used in the present invention, when a shape recovery operation in the SMA is stored and a shape recovery operation in a direction different from the shape recovery operation of the SMA is stored, that is, When performing a bidirectional shape recovery operation, the shape retained by the SMA is maintained at high temperature (above Af point of SMA), but at low temperature (below the Mf point of SMA, SM
Above Tg of P), SMP becomes softer SMA
It is preferable to overcome the shape retention force of (1) and make the SMA conform to its own shape. In this case, the balance between the shape recovery forces of SMA and SMP is the shape recovery force of SMA, that is, (recovery stress x cross-sectional area) or generated force and (recovery stress x of SMP).
The temperature at which the cross-sectional areas are equal can be set by setting the temperature between the Af point and the Mf point of the SMA. If the temperature is higher than the Af point, the SMA may not be in a state where the shape is sufficiently recovered during heating, and if the temperature is lower than the Mf point, the SMP may not be in a state where the shape is sufficiently recovered during cooling. , The amount of displacement of the shape memory complex tends to decrease, or the bidirectionality tends to be lost.
【0012】なお、本発明において、SMAをコイル状
に加工した場合、その形状回復力は(回復応力×断面
積)ではなくなるので、その場合には形状回復力を発生
力ということにする。本発明に用いられる形状記憶複合
体において、コイル状に加工したSMAにSMPを被覆
して二方向性の形状回復動作をさせる場合には、SMA
の発生力を計算や測定により求めておき、SMPの(回
復応力×断面積)がその発生力と同等になる温度がSM
AのAf点とMs点の間になるように、SMPの種類、
シートの厚さを決定するのが好ましい。In the present invention, when the SMA is processed into a coil shape, its shape-recovering force is not (recovery stress × cross-sectional area). In that case, therefore, the shape-recovering force is referred to as a generating force. In the shape memory composite used in the present invention, when the SMA processed into a coil shape is coated with SMP to perform a bidirectional shape recovery operation, SMA is used.
The generated force of SMP is calculated and measured, and the temperature at which (recovery stress x cross-sectional area) of SMP is equal to the generated force is SM.
Type of SMP so that it is between Af point and Ms point of A,
It is preferable to determine the thickness of the sheet.
【0013】本発明に用いられる形状記憶複合体は種々
の方法で製造される。まず、SMAを板状、線材、コイ
ル状等に加工し、その後、SMPを被覆するのが好まし
い。SMAの形状に特に制限はないが、形状回復の変位
量を大きくとれる点から特に、コイル状に加工すること
が好ましい。また、SMPの被覆方法としては、SMA
の表面に加熱溶融したSMPを被覆する方法あるいは溶
剤に溶解したSMPを塗布して乾燥する方法、SMAの
上にSMPを押出しコートする方法あるいはホットプレ
スする方法等が挙げられ、さらに、SMA全体をSMP
のシートで覆い、ホットプレスする方法もある。なお、
本発明に用いられる形状記憶複合体において二方向性の
形状回復動作をさせる場合には、SMPはSMAと異な
った形状を記憶させるのが好ましく、その場合には、S
MPの被覆前にSMAは自身が記憶している形状とは異
なる、即ち、SMPに記憶させるべき形状に変形させて
おくことが好ましい。また、SMPを所望の形状に成型
するために熱をかける場合、400℃以上の熱をかける
とSMAの再記憶が起こる恐れがあるので、好ましくは
300℃以下、さらに好ましくは200℃以下の熱をか
ける。The shape memory composite used in the present invention can be manufactured by various methods. First, it is preferable to process the SMA into a plate shape, a wire material, a coil shape, etc., and then coat the SMP. The shape of the SMA is not particularly limited, but it is particularly preferably processed into a coil shape because a large amount of displacement for shape recovery can be obtained. Further, as a coating method of SMP, SMA is used.
Examples of the method include a method of coating the surface of the SMP with heat-melted SMP, a method of applying SMP dissolved in a solvent and drying, a method of extruding and coating SMP on SMA, a method of hot pressing, and the like. SMP
There is also a method of covering with a sheet and hot pressing. In addition,
When the shape memory composite used in the present invention is subjected to a bidirectional shape recovery operation, the SMP preferably stores a shape different from that of SMA.
Before the MP is coated, it is preferable that the SMA be deformed into a shape different from the shape memorized by itself, that is, the shape to be stored in the SMP. Further, when heat is applied to mold the SMP into a desired shape, heat of 400 ° C. or higher may cause SMA re-memory, so heat of preferably 300 ° C. or lower, more preferably 200 ° C. or lower. multiply.
【0014】本発明においては、ペルチェ素子の両面に
形状記憶複合体を配し、ペルチェ素子の吸熱面に配され
た形状記憶複合体を冷却すると同時に、ペルチェ素子の
発熱面に配された形状記憶複合体を加熱する。ペルチェ
素子は、2種類の金属または半導体の接合面を通じて電
流を流すとき、その接合部には発熱または吸熱が生ずる
現象を利用したものであり、電流を流す方向によって吸
熱面と発熱面が逆転するものである。本発明で用いるペ
ルチェ素子としては、通常使用されるものであれば特に
制限はない。In the present invention, the shape memory composites are arranged on both sides of the Peltier element, and the shape memory composite arranged on the heat absorbing surface of the Peltier element is cooled, and at the same time, the shape memory composite is arranged on the heat generating surface of the Peltier element. Heat the complex. The Peltier element utilizes a phenomenon in which heat is generated or absorbed at the junction when a current is passed through the junction between two kinds of metals or semiconductors, and the heat absorption surface and the heat generation surface are reversed depending on the direction of the current flow. It is a thing. The Peltier device used in the present invention is not particularly limited as long as it is a commonly used Peltier device.
【0015】本発明においては、形状記憶複合体の変位
量を有効に生かすため、形状記憶複合体の一端をペルチ
ェ素子に対して固定させることが好ましい。固定方法は
特に制限はなく、接着剤、針金等の治具で固定する方法
などが挙げられる。In the present invention, it is preferable to fix one end of the shape memory composite to the Peltier device in order to effectively utilize the displacement amount of the shape memory composite. The fixing method is not particularly limited, and examples thereof include a method of fixing with a jig such as an adhesive or wire.
【0016】図1に本発明のマイクロアクチュエータの
一実施態様を示す。本発明のマイクロアクチュエータ
は、形状記憶合金と形状記憶ポリマーとからなる形状記
憶複合体(5)を、形状記憶複合体、ペルチェ素子
(6)、形状記憶複合体の順に積層させてなり、上記二
つの形状記憶複合体は加熱時に同方向の形状回復動作を
なし、かつ、上記二つの形状記憶複合体の一端にはそれ
ぞれ連結棒(1)が接続され、該連結棒(1)はピン
(2)を介して回転可能に取り付けられた回転棒(3)
に接続されているものである。つまり、上記のマイクロ
アクチュエータは、上記二つの形状記憶複合体に同時に
異なる方向の形状回復動作をさせることによって、回転
棒に回転動作を行わせるものである。この回転動作は、
一つの形状記憶複合体の形状回復動作による場合より、
2倍の形状回復力にて動作させることができる。また、
一つの形状記憶複合体の形状回復動作による場合より、
大きな対象物を回転させることもできる。FIG. 1 shows one embodiment of the microactuator of the present invention. The microactuator of the present invention comprises a shape memory composite (5) composed of a shape memory alloy and a shape memory polymer, which are laminated in the order of the shape memory composite, the Peltier element (6) and the shape memory composite. The two shape memory composites perform a shape recovery operation in the same direction when heated, and a connecting rod (1) is connected to one end of each of the two shape memory composites, and the connecting rod (1) is connected to the pin (2). ) Rotating rod (3) rotatably mounted via
Is connected to That is, the microactuator causes the rotary rod to rotate by causing the two shape memory composites to simultaneously perform shape recovery operations in different directions. This rotating motion is
From the case of the shape recovery operation of one shape memory complex,
It can be operated with twice the shape recovery force. Also,
From the case of the shape recovery operation of one shape memory complex,
Large objects can also be rotated.
【0017】図2に本発明の別のマイクロアクチュエー
タの一実施態様を示す。本発明の別のマイクロアクチュ
エータは、形状記憶合金と形状記憶ポリマーとからなる
形状記憶複合体(5)を、形状記憶複合体、ペルチェ素
子(6)、形状記憶複合体の順に積層させてなり、上記
二つの形状記憶複合体は加熱時に異なる方向の形状回復
動作をなし、かつ、上記二つの形状記憶複合体の一端に
はそれぞれ連結棒(1)が接続され、該連結棒(1)は
作動体(4)に接続されているものである。つまり、上
記のマイクロアクチュエータは、上記二つの形状記憶複
合体に同時に同方向の形状回復動作をさせることによっ
て、作動体に前後方向の往復動作を行わせるものであ
る。この往復動作は、一つの形状記憶複合体の形状回復
動作による場合より、2倍の形状回復力にて動作させる
ことができる。FIG. 2 shows one embodiment of another microactuator of the present invention. Another microactuator of the present invention is formed by laminating a shape memory composite (5) composed of a shape memory alloy and a shape memory polymer in the order of a shape memory composite, a Peltier element (6) and a shape memory composite. The two shape memory composites perform shape recovery operations in different directions when heated, and a connecting rod (1) is connected to one end of each of the two shape memory composites, and the connecting rod (1) operates. It is connected to the body (4). That is, the microactuator causes the actuating body to reciprocate in the front-rear direction by causing the two shape memory composites to simultaneously perform the shape recovery operation in the same direction. This reciprocating operation can be performed with twice the shape recovery force as compared with the case of the shape recovery operation of one shape memory composite.
【0018】[0018]
【発明の実施の形態】本発明の形状回復装置およびマイ
クロアクチュエータは、エアコンの吹き出し口風向偏向
フラップ駆動機構、胃カメラや工業用エンドスコープ等
の内視鏡の屈曲機構の駆動用アクチュエータ、電磁調理
器の温度表示用アクチュエータ、自動車燃料蒸発ガス排
出防止装置のバルブ切換用アクチュエータ、サイフォン
式コーヒーメーカの調圧アクチュエータ、オートデシケ
ータのドライユニットのシャッター開閉用アクチュエー
タ、防火ダンパーのダンパー切換用アクチュエータ等に
適用される。BEST MODE FOR CARRYING OUT THE INVENTION The shape recovery device and the microactuator of the present invention are used for an air conditioner outlet wind direction deflection flap drive mechanism, an actuator for a bending mechanism of an endoscope such as a gastric camera or an industrial end scope, and electromagnetic cooking. Applicable to actuator temperature display actuators, valve switching actuators for automobile fuel evaporative emission prevention devices, pressure regulator actuators for siphon coffee makers, shutter opening / closing actuators for dry units in autodesicators, damper switching actuators for fire dampers, etc. To be done.
【0019】(実施例1)図3に本発明の形状回復装置
の一実施態様を示す。断面積1.0mm2 のTi−Ni
二元合金のSMA線材(Af点:80℃、Mf点:50
℃)を熱処理して図1のような折り曲げた形状を記憶さ
せた。このSMA線材を伸長して直線状態にし、その上
にポリウレタン系SMP(Tg:30℃)を厚さ4.5
mmになるように被覆した。成型温度は200℃であ
る。この形状記憶複合体(5)をペルチェ素子(6)の
両面にそれぞれ配置し、一端を固定した。ペルチェ素子
にある方向に電流を流すと、発熱面側の形状記憶複合体
は折れ曲がり、吸熱面側の形状記憶複合体は伸長したま
まであった。次に、電流を逆方向に流すと、発熱面と吸
熱面とが逆転するので、折れ曲がっていた形状記憶複合
体は伸長し始め、伸長したままであった形状記憶複合体
は折れ曲がってきた。(Embodiment 1) FIG. 3 shows an embodiment of the shape recovery apparatus of the present invention. Ti-Ni with a cross-sectional area of 1.0 mm 2
Binary alloy SMA wire (Af point: 80 ° C, Mf point: 50
C.) was heat-treated to memorize the bent shape as shown in FIG. This SMA wire rod is stretched into a straight line, and polyurethane SMP (Tg: 30 ° C) with a thickness of 4.5
It was coated to have a thickness of mm. The molding temperature is 200 ° C. The shape memory composites (5) were placed on both sides of the Peltier device (6), and one end was fixed. When a current was applied to the Peltier element in a certain direction, the shape memory composite on the heat generating surface side was bent, and the shape memory composite on the heat absorbing surface side was still expanded. Next, when an electric current is applied in the opposite direction, the heat-generating surface and the heat-absorbing surface are reversed, so that the bent shape memory complex begins to expand, and the shape memory complex that has been kept bent begins to bend.
【0020】(実施例2)図1に本発明のマイクロアク
チュエータの一実施態様を示す。断面積0.3mm2 の
Ti−Ni−Cu合金のSMA線材(Af点:70℃、
Mf点:58℃)を、外径1.2mmの粗巻き状コイル
にした状態で、形状記憶熱処理を行った。このコイルを
圧縮(密巻き)し、その状態で周りにポリウレタン系S
MP(Tg:40℃)のシート(厚さ0.2mm)を図
2のように円筒状になるように巻き付け、加熱してこの
形状で固着させた(成型温度は200℃)。この形状記
憶複合体(5)二つをペルチェ素子(6)の両面にそれ
ぞれ配置し、形状記憶複合体の一端に連結棒(1)を接
続し、該連結棒(1)をピン(2)を介して回転可能に
取り付けられた回転棒(3)に接続させる。まず、ペル
チェ素子にある方向に電流を流すと、発熱面側の形状記
憶複合体は伸長し、吸熱面側の形状記憶複合体は収縮し
たままであった。次に、電流を逆方向に流すと、発熱面
と吸熱面とが逆転するので、伸長していた形状記憶複合
体は収縮し始め、収縮したままであった形状記憶複合体
は伸長してきた。つまり、このマイクロアクチュエータ
は、上記二つの形状記憶複合体が同時に異なる方向の形
状回復動作を行わせることによって、回転棒に回転動作
を行わせるものである。(Embodiment 2) FIG. 1 shows one embodiment of the microactuator of the present invention. SMA wire rod of Ti-Ni-Cu alloy (Af point: 70 ° C, with a cross-sectional area of 0.3 mm 2
Shape memory heat treatment was performed in a state where the Mf point: 58 ° C.) was a roughly wound coil having an outer diameter of 1.2 mm. This coil is compressed (closely wound), and in that state, polyurethane-based S
A sheet of MP (Tg: 40 ° C.) (thickness: 0.2 mm) was wound into a cylindrical shape as shown in FIG. 2, heated and fixed in this shape (molding temperature is 200 ° C.). The two shape memory composites (5) are arranged on both sides of the Peltier element (6), and the connecting rod (1) is connected to one end of the shape memory composite, and the connecting rod (1) is connected to the pin (2). Via a rotary rod (3) mounted rotatably. First, when an electric current was applied to the Peltier device in a certain direction, the shape memory composite on the heat generating surface side expanded and the shape memory composite on the heat absorbing surface side remained contracted. Next, when an electric current is applied in the opposite direction, the heat-generating surface and the heat-absorbing surface are reversed, so that the shape memory complex that has been expanded begins to contract, and the shape memory complex that has been contracted has expanded. In other words, this microactuator causes the rotary rod to rotate by causing the two shape memory composites to simultaneously perform shape recovery operations in different directions.
【0021】[0021]
【発明の効果】本発明の形状回復装置は、形状記憶合金
と形状記憶ポリマーとからなる形状記憶複合体を、形状
記憶複合体、ペルチェ素子、形状記憶複合体の順に積層
させたことによって、形状回復力に優れるため、従来よ
り大きな駆動力を必要とする装置にも使用することがで
きる。さらに、形状記憶複合体が、ある形状回復動作を
記憶した形状記憶合金と、形状記憶合金の回復動作と異
なる方向の形状回復動作を記憶した形状記憶ポリマーと
からなり、形状記憶合金の形状回復温度(マルテンサ
イト逆変態温度、Af)が形状記憶ポリマーの形状回復
温度(ガラス転移温度、Tg)より高く、形状記憶合
金の(回復応力×断面積)または発生力が形状記憶ポリ
マーの(回復応力×断面積)と同じになる温度を、Af
と形状記憶合金のマルテンサイト変態温度(Mf)の間
にくるように設定してなることによって、形状記憶複合
体が二方向性の形状回復動作を行うため、元の形状に戻
すための部材を必要とせず、素子の小型化、軽量化を図
ることができる。また、SMAをSMPで被覆すること
によって、耐食性および絶縁性にも優れるため、医療用
など用途の幅が広がる。また、SMAのコイルの外周を
SMPで被覆することによって、より形状回復力に優れ
た形状回復装置を得ることができる。また、SMPを、
ポリウレタン、ポリノルボルネン、ポリイソプレンおよ
びスチレン−ブタジエン共重合体から選ばれるポリマー
の1種または2種以上とすることによって、形状回復温
度の設定が容易になる。また、SMAを、Ti−Ni系
形状記憶合金または銅系形状記憶合金とすることによっ
て、Af点がSMPの成形温度よりかなり低いため、形
状記憶複合体の製造が容易になる。また、本発明のマイ
クロアクチュエータは、形状記憶合金と形状記憶ポリマ
ーとからなる形状記憶複合体を、形状記憶複合体、ペル
チェ素子、形状記憶複合体の順に積層させてなり、上記
二つの形状記憶複合体は加熱時に同方向の形状回復動作
をなし、かつ、上記二つの形状記憶複合体の一端にはそ
れぞれ連結棒(1)が接続され、該連結棒(1)はピン
(2)を介して回転可能に取り付けられた回転棒(3)
に接続されていることによって、形状回復力に優れるた
め、従来より大きな駆動力を必要とする装置にも使用す
ることができる。また、本発明の別のマイクロアクチュ
エータは、形状記憶合金と形状記憶ポリマーとからなる
形状記憶複合体を、形状記憶複合体、ペルチェ素子、形
状記憶複合体の順に積層させてなり、上記二つの形状記
憶複合体は加熱時に異なる方向の形状回復動作をなし、
かつ、上記二つの形状記憶複合体の一端にはそれぞれ連
結棒(1)が接続され、該連結棒(1)は作動体(4)
に接続されていることによって、形状回復力に優れるた
め、従来より大きな駆動力を必要とする装置にも使用す
ることができる。The shape recovery device of the present invention has a shape memory composite comprising a shape memory alloy and a shape memory polymer, and the shape memory composite, the Peltier element and the shape memory composite are laminated in this order to obtain a shape. Since it has excellent recovery power, it can be used for an apparatus that requires a larger driving force than before. Further, the shape memory composite is composed of a shape memory alloy that memorizes a shape recovery operation and a shape memory polymer that stores a shape recovery operation in a direction different from the recovery operation of the shape memory alloy. (Martensite reverse transformation temperature, Af) is higher than the shape recovery temperature (glass transition temperature, Tg) of the shape memory polymer, and the (recovery stress x cross-sectional area) or generating force of the shape memory alloy is (recovery stress x of the shape memory polymer). The temperature that becomes the same as
And the shape memory alloy's martensitic transformation temperature (Mf) are set so that the shape memory composite performs a bidirectional shape recovery operation, and therefore a member for returning to the original shape is used. It is possible to reduce the size and weight of the element without the need. Further, by coating the SMA with SMP, the corrosion resistance and the insulating property are excellent, so that the range of applications such as medical applications is expanded. Further, by covering the outer circumference of the SMA coil with SMP, it is possible to obtain a shape recovery device having a better shape recovery force. In addition, SMP
By using one or more polymers selected from polyurethane, polynorbornene, polyisoprene and styrene-butadiene copolymer, the shape recovery temperature can be easily set. In addition, when the SMA is a Ti-Ni-based shape memory alloy or a copper-based shape memory alloy, the Af point is considerably lower than the SMP molding temperature, so that the shape memory composite can be easily manufactured. Further, the microactuator of the present invention is formed by laminating a shape memory composite comprising a shape memory alloy and a shape memory polymer in the order of a shape memory composite, a Peltier element and a shape memory composite. The body performs a shape recovery operation in the same direction when heated, and a connecting rod (1) is connected to one end of each of the two shape memory composites, and the connecting rod (1) is connected via a pin (2). Rotatably mounted rotating rod (3)
Since it is excellent in shape recovery by being connected to, it can be used in a device that requires a larger driving force than in the past. Another microactuator of the present invention is formed by laminating a shape memory composite composed of a shape memory alloy and a shape memory polymer in the order of a shape memory composite, a Peltier element, and a shape memory composite. The memory complex makes a different shape recovery action when heated,
A connecting rod (1) is connected to one end of each of the two shape memory composites, and the connecting rod (1) is an actuator (4).
Since it is excellent in shape recovery by being connected to, it can be used in a device that requires a larger driving force than in the past.
【図1】本発明のマイクロアクチュエータの一実施態様
を示したものである。FIG. 1 shows an embodiment of a microactuator of the present invention.
【図2】本発明の別のマイクロアクチュエータの一実施
態様を示したものである。FIG. 2 shows an embodiment of another microactuator of the present invention.
【図3】本発明の形状回復装置の一実施態様を示したも
のである。FIG. 3 shows an embodiment of the shape recovery device of the present invention.
(1)連結棒 (2)ピン (3)回転棒 (4)作動体 (5)形状記憶複合体 (6)ペルチェ素子 (1) Connecting rod (2) Pin (3) Rotating rod (4) Actuator (5) Shape memory composite (6) Peltier element
Claims (13)
なる形状記憶複合体を、形状記憶複合体、ペルチェ素
子、形状記憶複合体の順に積層させてなることを特徴と
する形状回復装置。1. A shape recovery device comprising a shape memory composite comprising a shape memory alloy and a shape memory polymer, which are laminated in the order of a shape memory composite, a Peltier element and a shape memory composite.
記憶した形状記憶合金と、形状記憶合金の回復動作と異
なる方向の形状回復動作を記憶した形状記憶ポリマーと
からなり、形状記憶合金の形状回復温度(マルテンサ
イト逆変態温度、Af)が形状記憶ポリマーの形状回復
温度(ガラス転移温度、Tg)より高く、形状記憶合
金の(回復応力×断面積)または発生力が形状記憶ポリ
マーの(回復応力×断面積)と同じになる温度を、Af
と形状記憶合金のマルテンサイト変態温度(Mf)の間
にくるように設定してなる請求項1記載の形状回復装
置。2. A shape memory composite comprising a shape memory alloy that remembers a shape recovery action and a shape memory polymer that remembers a shape recovery action in a direction different from that of the shape memory alloy. The shape recovery temperature (martensite reverse transformation temperature, Af) is higher than the shape recovery temperature (glass transition temperature, Tg) of the shape memory polymer, and the (recovery stress x cross-sectional area) or the generating force of the shape memory alloy is ( The temperature at which recovery stress x cross-sectional area) becomes the same as Af
The shape recovery device according to claim 1, wherein the shape recovery device is set so as to be between the martensitic transformation temperature (Mf) of the shape memory alloy.
記憶ポリマーを被覆してなる請求項1または請求項2に
記載の形状回復装置。3. The shape recovery device according to claim 1, wherein the shape memory composite comprises a shape memory alloy coated with a shape memory polymer.
ルの外周を形状記憶ポリマーで被覆してなる請求項1〜
3いずれかに記載の形状回復装置。4. The shape memory composite, wherein the outer circumference of a coil of shape memory alloy is coated with a shape memory polymer.
3. The shape recovery device according to any one of 3 above.
リノルボルネン、ポリイソプレンおよびスチレン−ブタ
ジエン共重合体から選ばれるポリマーの1種または2種
以上である請求項1〜4いずれかに記載の形状回復装
置。5. The shape recovery device according to claim 1, wherein the shape memory polymer is one or more polymers selected from polyurethane, polynorbornene, polyisoprene and styrene-butadiene copolymer. .
合金または銅系形状記憶合金である請求項1〜5いずれ
かに記載の形状回復装置。6. The shape recovery device according to claim 1, wherein the shape memory alloy is a Ti—Ni-based shape memory alloy or a copper-based shape memory alloy.
なる形状記憶複合体を、形状記憶複合体、ペルチェ素
子、形状記憶複合体の順に積層させてなり、上記二つの
形状記憶複合体は加熱時に同方向の形状回復動作をな
し、かつ、上記二つの形状記憶複合体の一端にはそれぞ
れ連結棒(1)が接続され、該連結棒(1)はピン
(2)を介して回転可能に取り付けられた回転棒(3)
に接続されていることを特徴とするマイクロアクチュエ
ータ。7. A shape memory composite comprising a shape memory alloy and a shape memory polymer is laminated in the order of a shape memory composite, a Peltier element and a shape memory composite, wherein the two shape memory composites are heated. A shape recovery operation is performed in the same direction, and a connecting rod (1) is connected to one end of each of the two shape memory composites, and the connecting rod (1) is rotatably attached via a pin (2). Rotating rod (3)
A microactuator characterized by being connected to.
なる形状記憶複合体を、形状記憶複合体、ペルチェ素
子、形状記憶複合体の順に積層させてなり、上記二つの
形状記憶複合体は加熱時に異なる方向の形状回復動作を
なし、かつ、上記二つの形状記憶複合体の一端にはそれ
ぞれ連結棒(1)が接続され、該連結棒は作動体(4)
に接続されていることを特徴とするマイクロアクチュエ
ータ。8. A shape memory composite comprising a shape memory alloy and a shape memory polymer is laminated in the order of a shape memory composite, a Peltier element and a shape memory composite, wherein the two shape memory composites are heated. A shape recovery operation in different directions is performed, and a connecting rod (1) is connected to one end of each of the two shape memory composites, and the connecting rod is an operating body (4).
A microactuator characterized by being connected to.
記憶した形状記憶合金と、形状記憶合金の回復動作と異
なる方向の形状回復動作を記憶した形状記憶ポリマーと
からなり、形状記憶合金の形状回復温度(マルテンサ
イト逆変態温度、Af)が形状記憶ポリマーの形状回復
温度(ガラス転移温度、Tg)より高く、形状記憶合
金の(回復応力×断面積)または発生力が形状記憶ポリ
マーの(回復応力×断面積)と同じになる温度を、Af
と形状記憶合金のマルテンサイト変態温度(Mf)の間
にくるように設定してなる請求項7または請求項8に記
載のマイクロアクチュエータ。9. A shape memory composite comprising a shape memory alloy that remembers a shape recovery action and a shape memory polymer that remembers a shape recovery action in a direction different from that of the shape memory alloy. The shape recovery temperature (martensite reverse transformation temperature, Af) is higher than the shape recovery temperature (glass transition temperature, Tg) of the shape memory polymer, and the (recovery stress x cross-sectional area) or the generating force of the shape memory alloy is ( The temperature at which recovery stress x cross-sectional area) becomes the same as Af
And the martensitic transformation temperature (Mf) of the shape memory alloy.
状記憶ポリマーを被覆してなる請求項7〜9いずれかに
記載のマイクロアクチュエータ。10. The microactuator according to claim 7, wherein the shape memory composite comprises a shape memory alloy coated with a shape memory polymer.
イルの外周を形状記憶ポリマーで囲ってなる請求項7〜
10いずれかに記載のマイクロアクチュエータ。11. The shape memory composite comprises a shape memory alloy coil surrounded by a shape memory polymer.
10. The microactuator according to any one of 10.
ポリノルボルネン、ポリイソプレンおよびスチレン−ブ
タジエン共重合体から選ばれるポリマーである請求項7
〜11いずれかに記載のマイクロアクチュエータ。12. The shape memory polymer is polyurethane,
8. A polymer selected from polynorbornene, polyisoprene and styrene-butadiene copolymer.
11. The microactuator according to any one of 11 to 11.
憶合金または銅系形状記憶合金である請求項7〜12い
ずれかに記載のマイクロアクチュエータ。13. The microactuator according to claim 7, wherein the shape memory alloy is a Ti—Ni-based shape memory alloy or a copper-based shape memory alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7303677A JPH09123330A (en) | 1995-10-26 | 1995-10-26 | Shape-recovery device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7303677A JPH09123330A (en) | 1995-10-26 | 1995-10-26 | Shape-recovery device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09123330A true JPH09123330A (en) | 1997-05-13 |
Family
ID=17923913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7303677A Pending JPH09123330A (en) | 1995-10-26 | 1995-10-26 | Shape-recovery device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09123330A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6872433B2 (en) | 2001-03-27 | 2005-03-29 | The Regents Of The University Of California | Shape memory alloy/shape memory polymer tools |
JP2007247693A (en) * | 2006-03-14 | 2007-09-27 | National Institute Of Advanced Industrial & Technology | Ring enabling reversible change of shape and protective clothing and coming-in-and-out mechanism using it |
US8227681B2 (en) * | 2007-07-20 | 2012-07-24 | GM Global Technology Operations LLC | Active material apparatus with activating thermoelectric device thereon and method of fabrication |
CN114864452A (en) * | 2022-05-31 | 2022-08-05 | 北京北方华创微电子装备有限公司 | Cooling device of semiconductor heat treatment equipment and semiconductor heat treatment equipment |
-
1995
- 1995-10-26 JP JP7303677A patent/JPH09123330A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6872433B2 (en) | 2001-03-27 | 2005-03-29 | The Regents Of The University Of California | Shape memory alloy/shape memory polymer tools |
JP2007247693A (en) * | 2006-03-14 | 2007-09-27 | National Institute Of Advanced Industrial & Technology | Ring enabling reversible change of shape and protective clothing and coming-in-and-out mechanism using it |
US8227681B2 (en) * | 2007-07-20 | 2012-07-24 | GM Global Technology Operations LLC | Active material apparatus with activating thermoelectric device thereon and method of fabrication |
CN114864452A (en) * | 2022-05-31 | 2022-08-05 | 北京北方华创微电子装备有限公司 | Cooling device of semiconductor heat treatment equipment and semiconductor heat treatment equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Paik et al. | A novel low-profile shape memory alloy torsional actuator | |
CN101437705B (en) | Reversibly opening and closing a grille using active materials | |
JP2017534790A (en) | Thermal actuator device | |
Park et al. | Shape memory alloy-based spring bundle actuator controlled by water temperature | |
Sofla et al. | Two-way antagonistic shape actuation based on the one-way shape memory effect | |
Koh et al. | Self-folding origami using torsion shape memory alloy wire actuators | |
US5396769A (en) | Rotary actuator | |
CN101258774A (en) | Reconfigurable fixture device and use thereof | |
WO2009059332A1 (en) | Design of shape memory - shape memory polymer composites for reversible shape changes | |
EP3191710B1 (en) | Heat sensitive actuator device | |
Kumagai et al. | Neurofuzzy-model-based feedback controller for shape memory alloy actuators | |
JPH09123330A (en) | Shape-recovery device | |
US6006522A (en) | Translational actuator | |
JPH08199080A (en) | Shape-memory composite | |
Bacciotti et al. | On the use of shape memory alloys for deployable passive heat radiators in space satellites | |
Bupe et al. | Electronically reconfigurable virtual joints by shape memory Alloy-Induced buckling of curved sheets | |
JP7119136B2 (en) | Swing type SMA actuator | |
JPH09109320A (en) | Shape recovery device | |
KR102485764B1 (en) | Driving system based on thermal actuator and robot joint using the driving system and robot hand using the driving system | |
JP2019089306A (en) | Shape memory composite | |
JPS58214737A (en) | Automatically adjusting device of wind shift | |
JPS6153467A (en) | Form memory actuating body | |
Carnier et al. | Deployment of a CubeSat radiative surface through an autonomous torsional SMA actuator | |
Manzo et al. | Methodology for design of an active rigidity joint | |
JPH07167036A (en) | Actuator |