Nothing Special   »   [go: up one dir, main page]

JPH09121557A - Electronic parts cooling structure for rotary equipment and its manufacture - Google Patents

Electronic parts cooling structure for rotary equipment and its manufacture

Info

Publication number
JPH09121557A
JPH09121557A JP7274123A JP27412395A JPH09121557A JP H09121557 A JPH09121557 A JP H09121557A JP 7274123 A JP7274123 A JP 7274123A JP 27412395 A JP27412395 A JP 27412395A JP H09121557 A JPH09121557 A JP H09121557A
Authority
JP
Japan
Prior art keywords
heat
electronic component
cooling
heat sink
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7274123A
Other languages
Japanese (ja)
Inventor
Masanori Takeso
當範 武曽
Akio Yasukawa
彰夫 保川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7274123A priority Critical patent/JPH09121557A/en
Publication of JPH09121557A publication Critical patent/JPH09121557A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Inverter Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the heat transmitting ability of a cooling structure so as to improve the cooling ability of the structure by fixing heat generating electronic parts to a heat-conductive thin plate through an insulating substrate. SOLUTION: A substrate 20 mounted with a heat generating chip 16 is directly fitted to the upper opening end side of a liquid-cooled heat sink 12 through an O-ring 18 which is an airtight securing means. Since an untifreezing solution circularly supplied to the heat sink 12 by means of a pump directly comes into contact with the bottom face of the substrate 20 and absorbs the heat generated from the chip 16 and a radiator radiates the heat, the chip 16 is cooled. The chip 16 is incorporated with a semiconductor switching element, a diode, a capacitor, etc. Since the radiator is positioned at a distance from the chip 16, the heat radiated from the radiator does not raise the ambient temperature of the chip 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、回転機器の電子部
品冷却構造およびその製作方法に係り、特に回転機器の
速度を制御するインバータの電子部品の冷却に適した電
子部品冷却構造およびその製作方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for cooling electronic parts of rotating equipment and a method for manufacturing the same, and more particularly to a structure for cooling electronic parts suitable for cooling electronic parts of an inverter for controlling the speed of rotating equipment and a method for manufacturing the same. It is about.

【0002】[0002]

【従来の技術】電動機を駆動源とする回転機器において
は、電動機の制御装置を構成する半導体部品が発熱を伴
うので、その冷却手段を必要とする。例えば、電気車に
おいては、バッテリー電源を交流電源に変換する電力変
換用のインバータと、駆動用の電動機と、アクセル開度
に応じて電動機のトルク指令を決定するトルク指令演算
手段と、トルク指令及び電動機の回転数に基づいてすべ
り周波数を演算するすべり周波数演算手段と、演算手段
の出力に基づいてインバータに印加する信号を発生する
信号発生手段を備えている。このインバータは、IGB
Tと呼ばれるチップ、ダイオードその他の半導体部品を
含んでいるが、この半導体部品は電力変換に際して発熱
を伴うので、パワーヘットに搭載して冷却される。
2. Description of the Related Art In a rotating machine using an electric motor as a drive source, a semiconductor device forming a control device for the electric motor generates heat, so that a cooling means is required. For example, in an electric vehicle, a power conversion inverter that converts a battery power source into an AC power source, a driving electric motor, a torque command calculation unit that determines a torque command of the electric motor according to an accelerator opening degree, a torque command, and a torque command and It is provided with a slip frequency calculating means for calculating the slip frequency based on the rotation speed of the electric motor, and a signal generating means for generating a signal to be applied to the inverter based on the output of the calculating means. This inverter is IGB
It includes a chip called T, a diode, and other semiconductor parts. Since this semiconductor part generates heat during power conversion, it is mounted on a power head and cooled.

【0003】一般に、電気車用のパワーヘットの冷却に
関しは、特開昭47−31317号公報に記載されたよ
うな空冷方式が知られている。
Generally, regarding cooling of a power head for an electric vehicle, an air cooling system as described in JP-A-47-31317 is known.

【0004】しかしながら、電気車に対する走行特性の
要求向上に伴い、空冷方式では十分な冷却効果が得られ
ない。そのため、冷却水を用いた液冷方式も提案されて
いる。例えば、特開平6−303704号公報には、水
冷ヒートシンクの一端に厚さ5mm程度の一枚の銅製熱拡
散板を取付け、その上に、インバータの発熱電子部品が
装着された基板をボルトで固定する構成となっている。
水冷ヒートシンク内には冷却水の循環用水路が設けら
れ、電子部品の熱は熱拡散板、ヒートシンクを経て冷却
水に伝達されるようになっている。
However, with the improvement of the driving characteristics of the electric vehicle, a sufficient cooling effect cannot be obtained by the air cooling system. Therefore, a liquid cooling system using cooling water has also been proposed. For example, in Japanese Unexamined Patent Publication No. 6-303704, a copper heat diffusion plate having a thickness of about 5 mm is attached to one end of a water-cooled heat sink, and a board on which heat-generating electronic components of an inverter are mounted is fixed with a bolt on the heat diffusion plate. It is configured to do.
A water passage for circulating cooling water is provided in the water-cooled heat sink, and the heat of the electronic component is transmitted to the cooling water through the heat diffusion plate and the heat sink.

【0005】一方、静止機器の冷却手段の例として、特
開平7−106478号公報には、液冷媒が封入された
冷却槽の底面に発熱電子部品を装着し、沸騰した液冷媒
を冷却槽の上部に設けられたチューブとフィンにより冷
却する沸騰冷却方式により、発熱電子部品の冷却を行う
ものが示されている。
On the other hand, as an example of the cooling means for stationary equipment, in Japanese Patent Laid-Open No. 7-106478, heat generating electronic parts are mounted on the bottom surface of a cooling tank in which the liquid refrigerant is sealed, and the boiling liquid refrigerant is cooled in the cooling tank. It is shown that a heat-generating electronic component is cooled by a boiling cooling system in which a tube and fins provided in the upper portion cool the same.

【0006】[0006]

【発明が解決しようとする課題】上記水冷方式によれ
ば、空冷方式に比べて冷却効果が大巾に高まる。しか
し、電気車に対する走行特性のより一層の要求向上に伴
い、インバータの発熱素子に対してより冷却能力の高
い、しかも軽量でコンパクトな冷却装置が求められてい
る。
According to the above water cooling system, the cooling effect is greatly enhanced as compared with the air cooling system. However, with further improvement in the driving characteristics of the electric vehicle, there is a demand for a lightweight and compact cooling device having a higher cooling capacity for the heating element of the inverter.

【0007】他方、上記沸騰冷却方式では、電子部品の
上に位置する冷却槽のチューブとフィンが大きく、冷却
槽全体の重量が大きくなる。この発明を回転機器の冷却
に応用する場合、回転機器においては重量が大きいと振
動により大きな力を受けやすく、これが電子部品に及ぼ
す影響を無視できなくなると考えられる。また、発熱部
と放熱部が近接しているため、電子部品の周囲の雰囲気
温度が高くなり、冷却能力が劣る原因となることが考え
られる。
On the other hand, in the above boiling cooling system, the tubes and fins of the cooling tank located above the electronic parts are large, and the weight of the entire cooling tank is large. When the present invention is applied to the cooling of rotating equipment, it is considered that when the rotating equipment has a large weight, it is likely to be subjected to a large force due to vibration, and the influence of this on electronic components cannot be ignored. Further, since the heat generating portion and the heat radiating portion are close to each other, the ambient temperature around the electronic component becomes high, which may cause the cooling ability to deteriorate.

【0008】本発明の目的は、熱伝達性能を向上させて
冷却能力を高めた、回転機器の電子部品の冷却構造及び
その製法を提供することにある。
An object of the present invention is to provide a cooling structure for electronic components of rotating equipment, which has improved heat transfer performance and enhanced cooling capacity, and a manufacturing method thereof.

【0009】本発明の他の目的は、軽量で振動に強く、
コンパクトな、回転機器の電子部品の冷却構造及びその
製法を提供することにある。
Another object of the present invention is to be light weight and resistant to vibration,
An object of the present invention is to provide a compact cooling structure for electronic components of rotating equipment and a manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】本発明の特徴は、回転機
器駆動用の電動機と、該電動機の回転を制御する制御装
置と、該制御装置の発熱電子部品を冷却するための冷却
手段を備えた回転機器の電子部品冷却構造において、前
記冷却手段が、冷媒体液循環用の流路と該流路の一部に
面して設けられた開口部を有する液冷ヒートシンクと、
前記開口部を覆うようにして機密手段を介して前記液冷
ヒートシンクに固定された熱伝導性薄板と、前記液冷ヒ
ートシンクの流路にポンプ及びパイプを介して接続され
た流路を有する放熱器とを備え、前記発熱電子部品が絶
縁基板を介して前記熱伝導性薄板に固定され、該発熱電
子部品の熱が前記熱伝導性薄板を介して前記不凍液に伝
達されるように構成したことにある。
The features of the present invention include an electric motor for driving a rotating machine, a control device for controlling the rotation of the electric motor, and a cooling means for cooling the heat-generating electronic components of the control device. In an electronic component cooling structure for a rotating device, the cooling means includes a liquid cooling heat sink having a flow path for circulating a body fluid of the refrigerant and an opening provided so as to face a part of the flow path,
A radiator having a heat conductive thin plate fixed to the liquid cooling heat sink via a sealing means so as to cover the opening, and a flow path connected to a flow path of the liquid cooling heat sink via a pump and a pipe. The heat-generating electronic component is fixed to the heat-conductive thin plate via an insulating substrate, and the heat of the heat-generating electronic component is transferred to the antifreeze liquid via the heat-conductive thin plate. is there.

【0011】本発明の他の特徴は、電力を変換して電動
機に供給するインバータと、前記電動機を制御すべく前
記インバータに印加する信号を発生する制御回路と、前
記インバータの発熱電子部品を冷却する冷却手段を備え
た回転機器の電子部品冷却構造において、前記冷却手段
が、液冷媒循環用の流路と該流路の一部に面して設けら
れた開口部を有する液冷ヒートシンクと、絶縁基板を介
して前記発熱電子部品が装着された熱伝導性薄板と、前
記液冷ヒートシンクの流路にポンプ及びパイプを介して
接続された流路を有する放熱器とを備えており、液冷媒
が不凍液であり、前記熱伝導性薄板が機密手段を介して
前記液冷ヒートシンクの開口部に固定されていることに
ある。
Another feature of the present invention is that an inverter that converts electric power to be supplied to an electric motor, a control circuit that generates a signal to be applied to the inverter to control the electric motor, and a heating electronic component of the inverter is cooled. In an electronic component cooling structure for a rotating device including a cooling means, the cooling means, a liquid cooling heat sink having a flow passage for liquid refrigerant circulation and an opening provided facing a part of the flow passage, A heat conductive thin plate on which the heat-generating electronic component is mounted via an insulating substrate, and a radiator having a flow path connected to a flow path of the liquid cooling heat sink via a pump and a pipe, a liquid refrigerant Is an antifreeze liquid, and the heat conductive thin plate is fixed to the opening of the liquid cooling heat sink through a sealing means.

【0012】本発明の他の特徴は、回転機器駆動用の電
動機と、該電動機の回転を制御する制御装置と、該制御
装置の発熱電子部品を液冷媒で冷却するための冷却手段
とを備え、液冷媒が循環するカップ型液冷ヒートシンク
の開口側に前記発熱電子部品の装着された基板部を取り
付けた回転機器の電子部品冷却構造の製作方法であっ
て、前記基板部は、絶縁基板の下側に設けられた銅板製
の下張り、前記絶縁基板の上側に設けられた銅板製の上
張り、及び該上張り上に取付けられた前記半導体発熱素
子からなる薄板状部材であり、前記絶縁基板、前記銅板
製の上張り、及び前記銅板製の下張りを雰囲気炉で同時
に接合したことにある。
Another feature of the present invention comprises an electric motor for driving a rotating machine, a control device for controlling the rotation of the electric motor, and a cooling means for cooling the heat-generating electronic components of the control device with a liquid refrigerant. A method of manufacturing an electronic component cooling structure for a rotating device, wherein the substrate portion having the heat-generating electronic component mounted thereon is attached to the opening side of a cup-type liquid cooling heat sink through which a liquid refrigerant circulates, wherein the substrate portion is an insulating substrate. A thin plate-shaped member comprising a copper plate underlay provided on the lower side, a copper plate upholstery provided on the upper side of the insulating substrate, and the semiconductor heating element mounted on the upholstery, the insulating substrate The upper lining made of the copper plate and the lower lining made of the copper plate are simultaneously joined in an atmospheric furnace.

【0013】本発明によれば、液冷ヒートシンクの開口
部に制御装置の発熱電子部品が装着された熱伝導性薄板
を機密手段を介して直接取付けるため、電子部品を保持
する基板部分が薄肉構造となる。しかも発熱素子が直接
的にヒートシンクに固定される構成となる。従って、厚
肉の熱拡散板を用いた方式に比べて、熱抵抗を大巾に低
減できるので、発熱電子部品に対する冷却効果が増大す
る。また、熱伝導性薄板に接触して熱交換を行う液冷媒
を強制循環させる構成のため、沸騰冷却方式に比べて軽
量で耐震性に優れた回転機器の電子部品冷却構造を提供
することができる。
According to the present invention, since the heat conductive thin plate on which the heat-generating electronic components of the control device are mounted is directly attached to the opening of the liquid cooling heat sink through the secret means, the substrate portion holding the electronic components has a thin structure. Becomes Moreover, the heating element is directly fixed to the heat sink. Therefore, the thermal resistance can be greatly reduced as compared with the method using the thick heat diffusion plate, and the cooling effect for the heat-generating electronic component is increased. Further, since the liquid refrigerant for contacting the heat conductive thin plate and forcing heat to circulate the liquid refrigerant is provided, it is possible to provide an electronic component cooling structure for rotating equipment which is lighter in weight and superior in earthquake resistance as compared with the boiling cooling method. .

【0014】本発明の他の特徴によれば、液冷ヒートシ
ンクの開口部にインバータの発熱電子部品が装着された
熱伝導性薄板を機密手段を介して直接取付けるため、軽
量でコンパクトな、インバータ電子部品の冷却構造が得
られる。
According to another feature of the present invention, since the heat conductive thin plate on which the heat-generating electronic components of the inverter are mounted is directly attached to the opening of the liquid cooling heat sink through the secret means, the inverter electronic is lightweight and compact. A cooling structure for the parts is obtained.

【0015】本発明の他の特徴によれば、熱抵抗を大巾
に低減し発熱電子部品に対する冷却効果の大きな回転機
器の電子部品冷却構造を製造できる。
According to another feature of the present invention, it is possible to manufacture an electronic component cooling structure for a rotating machine, which greatly reduces thermal resistance and has a great cooling effect on heat-generating electronic components.

【0016】[0016]

【発明の実施の形態】図1は本発明が適用される電気自
動車の制御回路の一例を示す。電気自動車のトルク指令
装置1は、アクセル2の踏み込み量に応じて変化するポ
テンショメータの信号及び電動機3の回転速度を検出す
る回転数センサ4の信号を入力として、トルク指令値を
演算し、出力する。信号発生装置5は、指令値のトルク
を発生させるよう、PWM制御信号を出力し、このPW
M制御信号によりインバータ6はバッテリー7から供給
される直流電力を交流に変換して電動機3に供給する。
電動機やインバータの温度がサーミスタ8,9で検知さ
れ、所定温度以上に温度が上昇しないように、インバー
タ6の停止等の制御を行う。
1 shows an example of a control circuit of an electric vehicle to which the present invention is applied. The torque command device 1 for an electric vehicle receives a signal from a potentiometer that changes according to the amount of depression of the accelerator 2 and a signal from a rotation speed sensor 4 that detects the rotation speed of the electric motor 3, and calculates and outputs a torque command value. . The signal generator 5 outputs the PWM control signal so as to generate the torque of the command value, and the PW
The inverter 6 converts the DC power supplied from the battery 7 into AC by the M control signal and supplies the AC power to the electric motor 3.
The temperatures of the electric motor and the inverter are detected by the thermistors 8 and 9, and control such as stopping the inverter 6 is performed so that the temperature does not rise above a predetermined temperature.

【0017】電動機3やインバータ6を冷却するため
に、循環ポンプ10でパイプ11を介して電動機3やイ
ンバータ6の液冷ヒートシンク12に液体の冷媒例えば
不凍液を循環させ、放熱器としてのラジエータ13及び
冷却ファン14で放熱する。15は水温センサであり、
冷媒の温度上昇時に冷却ファン14の回転数を上げて、
冷却能力を高める。
In order to cool the electric motor 3 and the inverter 6, a liquid coolant, for example, an antifreezing liquid is circulated in the liquid cooling heat sink 12 of the electric motor 3 and the inverter 6 through the pipe 11 by the circulation pump 10, and a radiator 13 and a radiator as a radiator are provided. The cooling fan 14 radiates heat. 15 is a water temperature sensor,
When the temperature of the refrigerant rises, the rotation speed of the cooling fan 14 is increased,
Increase cooling capacity.

【0018】次に、インバータ6に設けられた液冷ヒー
トシンク12の拡大図を図2、図3に示す。図2は3相
(U相,V相,W相)のうち1相分だけの液冷ヒートシ
ンク部分の上面図、図3はその縦断面図である。液冷ヒ
ートシンクは断面がカップ型となっており、この液冷ヒ
ートシンク12のカップ部が不凍液の流路となる。ま
た、液冷ヒートシンク12の上側開放端側に、インバー
タの電子部品16が装着された基板20を、機密手段で
あるOリング18を介して直接取付ける。カップ型の液
冷ヒートシンクには、ポンプ10により不凍液が強制的
に循環供給され、基板20の底面に直接接触して基板上
の発熱電子部品16の熱を奪い、ラジエータ13で放出
することにより、電子部品16の冷却を行う。電子部品
16には半導体スィッチング素子、ダイオード、コンデ
ンサなどが含まれる。ラジエータ13は発熱電子部品1
6から離れた位置に設置されているので、ラジエータの
放熱が電子部品16の雰囲気温度を上昇させることはな
い。
Next, enlarged views of the liquid cooling heat sink 12 provided in the inverter 6 are shown in FIGS. FIG. 2 is a top view of a liquid-cooled heat sink portion for only one phase among the three phases (U phase, V phase, W phase), and FIG. 3 is a longitudinal sectional view thereof. The liquid-cooled heat sink has a cup-shaped cross section, and the cup portion of the liquid-cooled heat sink 12 serves as a flow path for the antifreeze liquid. Further, the substrate 20 on which the electronic component 16 of the inverter is mounted is directly attached to the upper open end side of the liquid cooling heat sink 12 via an O-ring 18 which is a secret means. The antifreeze liquid is forcibly circulated and supplied by the pump 10 to the cup-type liquid-cooled heat sink to directly contact the bottom surface of the substrate 20 to remove the heat of the heat-generating electronic component 16 on the substrate and release the heat with the radiator 13. The electronic component 16 is cooled. The electronic component 16 includes a semiconductor switching element, a diode, a capacitor and the like. The radiator 13 is a heat-generating electronic component 1.
Since it is installed at a position away from the radiator 6, heat radiation from the radiator does not raise the ambient temperature of the electronic component 16.

【0019】基板20は、銅板製の薄板からなる下張り
22と、その上側に設けられたアルミナ製の絶縁基板2
1と、絶縁基板21の上側に設けられた銅板製の上張り
23によって構成され、上張り23上に半導体電子部品
16が取り付けられている。
The substrate 20 is a subbing 22 made of a thin copper plate, and an insulating substrate 2 made of alumina provided on the upper side thereof.
1 and a copper plate overlay 23 provided on the upper side of the insulating substrate 21, and the semiconductor electronic component 16 is mounted on the overlay 23.

【0020】銅板製の上張り23は、半導体電子部品
(発熱素子)16を保護する押え板24の底面と、半導
体発熱素子16の取付け面に対応する複数のブロック2
3A,23B,23C…に分割されている。一方、銅板
製の下張り22は、絶縁基板21と同じ平面形状となっ
ている。
The copper plate overlay 23 includes a plurality of blocks 2 corresponding to the bottom surface of the holding plate 24 for protecting the semiconductor electronic component (heating element) 16 and the mounting surface of the semiconductor heating element 16.
It is divided into 3A, 23B, 23C ... On the other hand, the copper plate underlayer 22 has the same planar shape as the insulating substrate 21.

【0021】銅板製の下張り22及び上張り23の厚さ
は、それぞれ0.3乃至0.5mmが望ましい。あまり薄
いと、強度が不足する。逆に、厚さが0.5mmを越える
ようになると、アルミナ製の絶縁基板等との熱膨張の差
による変形量が大きくなって、機密を保持しながら固定
するのが困難になる。
The thickness of the underlayer 22 and the upper layer 23 made of a copper plate is preferably 0.3 to 0.5 mm. If it is too thin, the strength will be insufficient. On the other hand, when the thickness exceeds 0.5 mm, the amount of deformation due to the difference in thermal expansion from the insulating substrate made of alumina and the like becomes large, and it becomes difficult to fix the seal while holding it.

【0022】また、アルミナ製の基板20の厚さは、一
般に0.6乃至0.7mm程度となっている。従って、上
張り23、基板20及び下張り22を合わせた基板部全
体の厚さは、1.2乃至1.5程度と、ごく薄いものに
なる。このように、基板部全体が薄く、軽量なため、半
導体素子16は電動機3の回転に伴う振動の影響をほと
んど受けない。
The thickness of the alumina substrate 20 is generally about 0.6 to 0.7 mm. Therefore, the total thickness of the substrate portion including the upper layer 23, the substrate 20, and the lower layer 22 is as thin as about 1.2 to 1.5. As described above, since the entire substrate portion is thin and lightweight, the semiconductor element 16 is hardly affected by the vibration accompanying the rotation of the electric motor 3.

【0023】押え板24の底面と銅板製の上張り23と
の間には、厚さ0.1乃至0.2mmのゴムシートが配置
されている。また、銅板製の下張り22と液冷ヒートシ
ンク12との間にも、厚さ0.1乃至0.2mmのゴムシ
ートが配置されている。このゴムシートは、基板と上張
り、下張りの材料の相違に基づく熱膨張の差を吸収する
ためのものである。
A rubber sheet having a thickness of 0.1 to 0.2 mm is disposed between the bottom surface of the pressing plate 24 and the copper plate overlay 23. A rubber sheet having a thickness of 0.1 to 0.2 mm is also arranged between the copper plate underlayer 22 and the liquid cooling heat sink 12. This rubber sheet is for absorbing the difference in thermal expansion due to the difference in material between the substrate and the upper and lower layers.

【0024】図4に液冷ヒートシンク全体の上面図、図
5にそのA−A縦断面図を示す。ヒートシンク12は、
U相,V相,W相の基板に対応した開口部121を有
し、その周囲にはOリング溝25が設けられ、このOリ
ング溝の外側に押え板24を固定するための締結部26
が設けられている。不凍液の圧力は、0.6Kg/cm程
度なので、Oリング及び締結部26により、これに耐え
る機密性を確保する必要がある。
FIG. 4 is a top view of the entire liquid-cooled heat sink, and FIG. 5 is a vertical sectional view taken along the line AA. The heat sink 12 is
There is an opening 121 corresponding to the U-phase, V-phase, and W-phase substrates, an O-ring groove 25 is provided around the opening 121, and a fastening portion 26 for fixing the holding plate 24 to the outside of the O-ring groove.
Is provided. Since the pressure of the antifreeze liquid is about 0.6 kg / cm, it is necessary to secure the airtightness to withstand this by the O-ring and the fastening portion 26.

【0025】図5に示すように、液冷ヒートシンク12
の底面122は凸状と成っており、入口123から出口
124に向かって流れる冷却水は、開口部121に向か
って上昇する方向の速度成分を与えられる。そのため、
開口部121の上に位置する基板20の銅板製下張りに
冷却水の流れが直接接触し、冷却効果を増加させる。
As shown in FIG. 5, the liquid-cooled heat sink 12
Has a convex bottom surface 122, and the cooling water flowing from the inlet 123 toward the outlet 124 is given a velocity component in the direction of rising toward the opening 121. for that reason,
The flow of cooling water directly contacts the copper plate underlayer of the substrate 20 located above the opening 121, increasing the cooling effect.

【0026】ここで、基板部の製法について説明する。
まず、カップ型液冷ヒートシンク12はダイキャストで
製作される。次に、絶縁基板21、銅板製の上張り2
3、及び銅板製の下張り22を雰囲気炉で同時に接合さ
れる。
Here, a method of manufacturing the substrate portion will be described.
First, the cup-type liquid cooling heat sink 12 is manufactured by die casting. Next, the insulating substrate 21 and the copper plate overlay 2
3 and the copper plate underlayer 22 are simultaneously joined in an atmosphere furnace.

【0027】次に、図6を参照しながら、本発明の基板
部から冷却水(不凍液)までの熱抵抗を従来の構成の熱
拡散板を用いた場合の熱抵抗と比較して見ると次のよう
になる。図中、(a)は従来例、(b)は本発明の構成
を模式化したものである。
Next, referring to FIG. 6, comparing the thermal resistance from the substrate portion of the present invention to the cooling water (antifreeze liquid) with the thermal resistance in the case of using the conventional heat diffusion plate, become that way. In the figure, (a) is a conventional example, and (b) is a schematic representation of the configuration of the present invention.

【0028】従来の基板部では、基板の下に厚さ3mm程
度の熱拡散板が配置され、この熱拡散板とヒートシンク
との間に、接触熱抵抗を低減するためのグリースが装填
されていた。ヒートシンク内には冷却水の水路が設けら
れている。このような構成における熱抵抗は、 R0=
Rj-c +2(Rc-f + Rf-w) (構成比) (50%)(20%)(30%) となる。但し、 Rj-c :電子部品から熱拡散板までの熱抵抗 Rc-f :熱拡散板からヒートシンクまでの(グリース
部分の)熱抵抗 Rf-w :ヒートシンク内の冷却水までの熱抵抗 本発明の基板部の熱抵抗は、R1=Rj-c +2Rd-w (構成比) (50%)(10%) ≒0.6R0 となる。但し、 Rj-c :電子部品からヒートシンクまでの熱抵抗 Rd-w :ヒートシンク内の冷却水までの熱抵抗 本発明によれば、グリース部分がなく(Rc-f=0)、
また、基板20の下張り22に直接冷却水が接触する構
成であるためこの部分の熱抵抗(Rd-w)も非常に小さ
くなる。
In the conventional substrate part, a heat diffusion plate having a thickness of about 3 mm is arranged under the substrate, and grease for reducing the contact thermal resistance is filled between the heat diffusion plate and the heat sink. . A cooling water channel is provided in the heat sink. The thermal resistance in such a configuration is R0 =
Rj-c + 2 (Rc-f + Rf-w) (composition ratio) (50%) (20%) (30%). However, Rj-c: Thermal resistance from the electronic component to the heat diffusion plate Rc-f: Thermal resistance from the heat diffusion plate to the heat sink (at the grease portion) Rf-w: Thermal resistance to the cooling water in the heat sink The thermal resistance of the substrate is R1 = Rj-c + 2Rd-w (constituent ratio) (50%) (10%). Apprxeq.0.6R0. However, Rj-c: thermal resistance from electronic component to heat sink Rd-w: thermal resistance to cooling water in heat sink According to the present invention, there is no grease part (Rc-f = 0),
Further, since the cooling water directly contacts the underlayer 22 of the substrate 20, the thermal resistance (Rd-w) of this portion is also extremely small.

【0029】このように、本発明によれば、基板部から
冷却水までの熱抵抗が従来の0.6程度になり、それだ
け熱伝達率がよくなり、ひいては冷却効果が増大する。
As described above, according to the present invention, the thermal resistance from the substrate portion to the cooling water is about 0.6 of the conventional value, the heat transfer coefficient is improved, and the cooling effect is increased accordingly.

【0030】図7に本発明の他の実施例になる液冷ヒー
トシンク全体の上面図、図8にそのB−B縦断面図を示
す。ヒートシンク12は、U相,V相,W相の基板に対
応した開口部121を有し、底面122は平になってい
る。内部の水路は締結部26を避けて設けられている。
このように構成することにより、ヒートシンクの高さを
低く押えることができる。
FIG. 7 is a top view of the entire liquid-cooled heat sink according to another embodiment of the present invention, and FIG. 8 is a vertical sectional view taken along line BB thereof. The heat sink 12 has openings 121 corresponding to the U-phase, V-phase, and W-phase substrates, and the bottom surface 122 is flat. The internal water channel is provided so as to avoid the fastening portion 26.
With this configuration, the height of the heat sink can be kept low.

【0031】図9に本発明の他の実施例になる液冷ヒー
トシンク全体の上面図、図10にそのC−C縦断面図を
示す。この実施例では、固定部126によって開口部が
121A,121Bに2分割されている。この構成によ
れば、アルミナ製絶縁基板21の中央部をねじで固定部
126に固定することができ、基板20とヒートシンク
との接触を良好に保つことができる。
FIG. 9 is a top view of the entire liquid-cooled heat sink according to another embodiment of the present invention, and FIG. 10 is a vertical sectional view taken along the line CC. In this embodiment, the fixing portion 126 divides the opening into two parts 121A and 121B. With this configuration, the central portion of the alumina insulating substrate 21 can be fixed to the fixing portion 126 with a screw, and good contact between the substrate 20 and the heat sink can be maintained.

【0032】なお、アルミナ製絶縁基板21の中央部に
ねじなどの固定部を設けられないとき、図11、図12
に示すように、押え板24との間に介装された中央押え
27により抑えると、ヒートシンク12と基板20の接
触状態を良好に保てる。ここで、この実施例について、
絶縁基板21に生じる応力を、両端固定はりの式を用い
て、概算する。絶縁基板の固定端の間の距離のうちの短
い方の距離を、lとすると、このときの最大曲げモーメ
ントは M=pl2/12 (1) ここに、p:圧力。このときの応力σは σ=M/Z (2) ここに、Zは断面係数であり、 Z=h2/6 (3) ここに、h:板厚。
When a fixing part such as a screw cannot be provided at the center of the insulating substrate 21 made of alumina, as shown in FIGS.
As shown in FIG. 3, when the central presser 27 interposed between the presser plate 24 and the presser plate 24 suppresses the heat, the contact state between the heat sink 12 and the substrate 20 can be kept good. Now, for this example,
The stress generated in the insulating substrate 21 is roughly estimated using the formula of the beam fixed at both ends. Assuming that the shorter distance between the fixed ends of the insulating substrate is l, the maximum bending moment at this time is M = pl2 / 12 (1) where p: pressure. The stress σ at this time is σ = M / Z (2) where Z is the section modulus, and Z = h2 / 6 (3) where h: plate thickness.

【0033】式(1)(2)(3)より ここで、p=1[kgf/cm2]=0.1[MP
a],l=62[mm],h=0.635[mm]と置
いて計算すると、 σ=477[MPa] (5) 一方、AlNの破壊を防ぐためには、250[MPa]
程度以下にする必要があるから、上記応力は大きすぎ
る。
From equations (1), (2) and (3) Here, p = 1 [kgf / cm2] = 0.1 [MP
a], l = 62 [mm], h = 0.635 [mm], σ = 477 [MPa] (5) On the other hand, in order to prevent AlN from breaking, 250 [MPa]
The stress is too large because it needs to be below a certain level.

【0034】そこで、基板の中心線上にたわみを押さえ
る支えを付加した場合を考えると、l=31[mm]と
なるから、 σ=119[MPa] (6) となり、許容応力以下とできる。
Therefore, considering the case where a support for suppressing the deflection is added on the center line of the substrate, l = 31 [mm], so σ = 119 [MPa] (6), which is less than the allowable stress.

【0035】また、中央の押さえ27は、圧力を加える
前には、押しつけ力0で接触していることが理想である
が、これは困難なので、この影響を検討する。中央押さ
え27をセットした時点で、基板をδだけ押し込んでし
まった場合の応力σは、 ここに、E:基板のヤング率、h:基板の厚さ、l=基
板の全幅である。
Further, it is ideal that the pressing member 27 at the center is in contact with a pressing force of 0 before applying pressure, but this is difficult. At the time when the center presser 27 is set, the stress σ when the substrate is pushed in by δ is Here, E: Young's modulus of the substrate, h: thickness of the substrate, l = total width of the substrate.

【0036】E=300000[MPa]、h=0.6
35[mm]、δ=0.05[mm]として計算する
と、 σ=59[MPa] (8) 従って、絶縁基板21に生じる応力は、許容値以下とな
る。
E = 300000 [MPa], h = 0.6
Calculating with 35 [mm] and δ = 0.05 [mm], σ = 59 [MPa] (8) Therefore, the stress generated in the insulating substrate 21 is not more than the allowable value.

【0037】[0037]

【発明の効果】本発明によれば、液冷ヒートシンクの開
口部に制御装置の発熱電子部品が装着された熱伝導性薄
板を機密手段を介して直接取付けるため、電子部品を保
持する基板部分が薄肉構造となる。しかも発熱素子が直
接的にヒートシンクに固定される構成となる。従って、
厚肉の熱拡散板を用いた方式に比べて、熱抵抗を大巾に
低減できるので、発熱電子部品に対する冷却効果が増大
する。また、熱伝導性薄板に接触して熱交換を行う液冷
媒を強制循環させる構成のため、沸騰冷却方式に比べて
電子部品を保持する基板部がコンパクトになり、軽量で
耐震性に優れた回転機器の電子部品冷却構造を提供する
ことができる。
According to the present invention, since the heat conductive thin plate on which the heat-generating electronic components of the control device are mounted is directly attached to the opening of the liquid-cooled heat sink through the secret means, the substrate portion holding the electronic components is It has a thin structure. Moreover, the heating element is directly fixed to the heat sink. Therefore,
As compared with the method using a thick heat diffusion plate, the thermal resistance can be greatly reduced, so that the cooling effect on the heat-generating electronic components is increased. In addition, since the liquid refrigerant that exchanges heat by contacting the heat conductive thin plate is forcedly circulated, the board part that holds electronic components is more compact than the boiling cooling method, and it is lightweight and has excellent earthquake resistance. An electronic component cooling structure for a device can be provided.

【0038】また、本発明の他の特徴によれば、液冷ヒ
ートシンクの開口部にインバータの発熱電子部品が装着
された熱伝導性薄板を機密手段を介して直接取付けるた
め、軽量でコンパクトな、インバータ電子部品の冷却構
造が得られる。
According to another feature of the present invention, since the heat conductive thin plate having the heat generating electronic components of the inverter mounted directly on the opening of the liquid cooling heat sink through the secret means, it is lightweight and compact. A cooling structure for inverter electronic components can be obtained.

【0039】さらに、本発明の他の特徴によれば、熱抵
抗を大巾に低減し発熱電子部品に対する冷却効果の大き
な回転機器の電子部品冷却構造の製造を提供できる。
Further, according to another feature of the present invention, it is possible to provide the manufacturing of the electronic component cooling structure of the rotating machine, which greatly reduces the thermal resistance and has a great cooling effect on the heat-generating electronic components.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される電気自動車の制御回路の一
例を示す図である。
FIG. 1 is a diagram showing an example of a control circuit of an electric vehicle to which the present invention is applied.

【図2】本発明の一実施例になる液冷ヒートシンク部分
の上面拡大図である。
FIG. 2 is an enlarged top view of a liquid cooling heat sink portion according to an embodiment of the present invention.

【図3】厨2の縦断面図である。FIG. 3 is a vertical sectional view of a kitchen 2.

【図4】本発明の一実施例になる液冷ヒートシンク全体
の上面図である。
FIG. 4 is a top view of the entire liquid-cooled heat sink according to an embodiment of the present invention.

【図5】図4のA−A縦断面図を示す。5 is a vertical cross-sectional view taken along the line AA of FIG.

【図6】本発明の基板部付近の熱抵抗を従来の構成の熱
抵抗と比較説明する図である。
FIG. 6 is a diagram for explaining the thermal resistance near the substrate portion of the present invention in comparison with the thermal resistance of the conventional configuration.

【図7】本発明の他の実施例になる液冷ヒートシンク全
体の上面図である。
FIG. 7 is a top view of the entire liquid-cooled heat sink according to another embodiment of the present invention.

【図8】図7のB−B縦断面図を示す。8 is a vertical cross-sectional view taken along line BB of FIG.

【図9】本発明の他の実施例になる液冷ヒートシンク全
体の上面図である。
FIG. 9 is a top view of the entire liquid-cooled heat sink according to another embodiment of the present invention.

【図10】図9のC−C縦断面図を示す。10 shows a vertical cross-sectional view taken along the line CC of FIG.

【図11】本発明の他の実施例になる基板部付近の上面
図である。
FIG. 11 is a top view of the vicinity of a substrate unit according to another embodiment of the present invention.

【図12】図11の縦断面図を示す。FIG. 12 shows a vertical sectional view of FIG.

【符号の説明】[Explanation of symbols]

6…インバータ、7…バッテリー、10…循環ポンプ、
12…液冷ヒートシンク、16…インバータの電子部
品、21…アルミナ製の絶縁基板、22…下張り、23
…上張り、121…開口部
6 ... Inverter, 7 ... Battery, 10 ... Circulation pump,
12 ... Liquid-cooled heat sink, 16 ... Inverter electronic parts, 21 ... Alumina insulating substrate, 22 ... Underlay, 23
… Upholstery, 121… Opening

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】回転機器駆動用の電動機と、該電動機の回
転を制御する制御装置と、該制御装置の発熱電子部品を
冷却するための冷却手段を備えた回転機器の電子部品冷
却構造において、 前記冷却手段が、液冷媒循環用の流路と該流路の一部に
面して設けられた開口部を有する液冷ヒートシンクと、
前記開口部を覆うようにして機密手段を介して前記液冷
ヒートシンクに固定された熱伝導性薄板と、前記液冷ヒ
ートシンクの流路にポンプ及びパイプを介して接続され
た流路を有する放熱器とを備え、 前記発熱電子部品が絶縁基板を介して前記熱伝導性薄板
に固定され、該発熱電子部品の熱が前記熱伝導性薄板を
介して前記液冷媒に伝達されるように構成したことを特
徴とする回転機器の電子部品冷却構造。
1. An electronic component cooling structure for a rotating device, comprising: an electric motor for driving a rotating device; a control device for controlling rotation of the electric device; and a cooling means for cooling heat-generating electronic components of the control device. The cooling means, a liquid cooling heat sink having a flow path for liquid refrigerant circulation and an opening provided facing a part of the flow path,
A radiator having a heat conductive thin plate fixed to the liquid cooling heat sink via a sealing means so as to cover the opening, and a flow path connected to a flow path of the liquid cooling heat sink via a pump and a pipe. And the heat-generating electronic component is fixed to the heat-conductive thin plate via an insulating substrate, and heat of the heat-generating electronic component is transferred to the liquid refrigerant via the heat-conductive thin plate. A cooling structure for electronic components of rotating equipment.
【請求項2】電力を変換して電動機に供給するインバー
タと、前記電動機を制御すべく前記インバータに印加す
る信号を発生する制御回路と、前記インバータの発熱電
子部品を冷却する冷却手段を備えた回転機器の電子部品
冷却構造において、 前記冷却手段が、液冷媒循環用の流路と該流路の一部に
面して設けられた開口部を有する液冷ヒートシンクと、
絶縁基板を介して前記発熱電子部品が装着された熱伝導
性薄板と、前記液冷ヒートシンクの流路にポンプ及びパ
イプを介して接続された流路を有する放熱器とを備えて
おり、前記液冷媒が不凍液であり、前記熱伝導性薄板が
機密手段を介して前記液冷ヒートシンクの開口部に固定
されていることを特徴とする回転機器の電子部品冷却構
造。
2. An inverter that converts electric power and supplies the electric motor to the electric motor, a control circuit that generates a signal applied to the inverter to control the electric motor, and a cooling unit that cools heat-generating electronic components of the inverter. In an electronic component cooling structure for rotating equipment, the cooling means includes a liquid cooling heat sink having a flow path for liquid refrigerant circulation and an opening provided facing a part of the flow path,
A heat conductive thin plate on which the heat-generating electronic component is mounted via an insulating substrate; and a radiator having a flow path connected to a flow path of the liquid cooling heat sink via a pump and a pipe. The electronic component cooling structure for a rotating device, wherein the refrigerant is an antifreezing liquid, and the heat conductive thin plate is fixed to the opening of the liquid cooling heat sink via a sealing means.
【請求項3】前記絶縁基板の上側に銅板製の上張りが設
けられ、該上張りの上に前記発熱電子部品としての半導
体素子が取付けられていることを特徴とする請求項1ま
たは2記載の回転機器の電子部品冷却構造。
3. A copper plate lining is provided on the upper side of the insulating substrate, and a semiconductor element as the heat generating electronic component is mounted on the lining. Electronic component cooling structure for rotating equipment.
【請求項4】前記銅板製の上張りが、前記半導体素子を
保護する押え板の底面と、前記半導体素子の取付け面に
対応する複数のブロックに分割されており、前記熱伝導
性薄板は前記絶縁基板に沿った一枚の平面であることを
特徴とする請求項1または2記載の回転機器の電子部品
冷却構造。
4. The copper plate overlay is divided into a plurality of blocks corresponding to a bottom surface of a holding plate for protecting the semiconductor element and a mounting surface of the semiconductor element, and the heat conductive thin plate is formed of The electronic component cooling structure for a rotating device according to claim 1 or 2, wherein the structure is a single plane along the insulating substrate.
【請求項5】前記銅板製の上張り及び前記熱伝導性薄板
の厚さは、0.3乃至0.5mmであることを特徴とする
請求項3または4記載の回転機器の電子部品冷却構造。
5. The cooling structure for electronic parts of rotating equipment according to claim 3, wherein the thickness of the copper plate overlay and the heat conductive thin plate is 0.3 to 0.5 mm. .
【請求項6】前記押え板の底面と前記銅板製の上張りと
の間に配置された0.1乃至0.2mmのゴムシートを有
することを特徴とする請求項3ないし5のいずれかに記
載の回転機器の電子部品冷却構造。
6. The rubber sheet according to claim 3, further comprising a rubber sheet having a thickness of 0.1 to 0.2 mm arranged between the bottom surface of the holding plate and the copper plate overlay. Electronic component cooling structure for the rotating equipment described.
【請求項7】前記熱伝導性薄板と前記液冷ヒートシンク
との間に配置された0.1乃至0.2mmのゴムシートを
有することを特徴とする請求項3ないし5のいずれかに
記載の回転機器の電子部品冷却構造。
7. The rubber sheet according to claim 3, further comprising a rubber sheet having a thickness of 0.1 to 0.2 mm, which is disposed between the heat conductive thin plate and the liquid cooling heat sink. Electronic component cooling structure for rotating equipment.
【請求項8】前記機密手段は、Oリングであり、押え板
を介して前記熱伝導性薄板を前記液冷ヒートシンクの開
放端側に取付けたことを特徴とする請求項1乃至7のい
ずれかに記載の回転機器の電子部品冷却構造。
8. The secret means is an O-ring, and the heat conductive thin plate is attached to the open end side of the liquid cooling heat sink via a holding plate. The electronic component cooling structure for rotating equipment according to [1].
【請求項9】前記液冷ヒートシンクをタイキャストで製
作し、該ヒートシンクの開放端の周囲にOリング溝を設
け、該Oリング溝の外側に前記押え板を固定するための
締結部を設けたことを特徴とする請求項3ないし4のい
ずれかに記載の回転機器の電子部品冷却構造。
9. The liquid-cooled heat sink is manufactured by tie casting, an O-ring groove is provided around the open end of the heat sink, and a fastening portion for fixing the pressing plate is provided outside the O-ring groove. An electronic component cooling structure for rotating equipment according to any one of claims 3 to 4, wherein:
【請求項10】前記アルミナ製絶縁基板の中央部を、前
記押え板との間に介装された中央押えにより抑えたこと
を特徴とする請求項3ないし4のいずれかに記載の回転
機器の電子部品冷却構造。
10. The rotating device according to claim 3, wherein the central portion of the alumina insulating substrate is suppressed by a central retainer interposed between the retaining plate and the alumina insulating substrate. Electronic component cooling structure.
【請求項11】前記液冷ヒートシンクの底面は、前記開
口部に対応する部分で凸状となっており、該凸状部分の
作用で前記液冷媒が前記開口部に固定された前記熱伝導
性薄板に向かって流入するように構成されていることを
特徴とする請求項3ないし10のいずれかに記載の回転
機器の電子部品冷却構造。
11. A bottom surface of the liquid cooling heat sink has a convex shape at a portion corresponding to the opening, and the thermal conductivity of the liquid refrigerant fixed to the opening by the action of the convex portion. The electronic component cooling structure for a rotating device according to claim 3, wherein the electronic component cooling structure is configured to flow toward a thin plate.
【請求項12】前記液冷ヒートシンクの開口部は、固定
部によって2分割されていることを特徴とする請求項3
ないし11のいずれかに記載の回転機器の電子部品冷却
構造。
12. An opening of the liquid cooling heat sink is divided into two by a fixing portion.
12. An electronic component cooling structure for a rotating device according to any one of 1 to 11.
【請求項13】バッテリー電源を交流電源に変換して電
動機に供給する電力変換用のインバータと、アクセル開
度や電動機の回転数に基づいて前記電動機を制御すべく
前記インバータに印加する信号を発生する制御回路と、
前記インバータの発熱電子部品を冷却する冷却手段を備
えた電気車において、 前記冷却手段は、不凍液循環用の流路と該流路の一部に
設けられた開口部とを備えた液冷ヒートシンクと、該液
冷ヒートシンクの流路にポンプ及びパイプを介して接続
された流路を有する放熱器とを有し、前記液冷ヒートシ
ンクの開口部に前記インバータの発熱電子部品が装着さ
れた基板部を機密手段を介して直接取付けたことを特徴
とする電気車の電子部品冷却構造。
13. An inverter for converting power from a battery power source to an AC power source and supplying it to an electric motor, and a signal to be applied to the inverter to control the electric motor based on an accelerator opening degree and a rotation speed of the electric motor. Control circuit,
In an electric vehicle including a cooling means for cooling the heat-generating electronic components of the inverter, the cooling means includes a liquid cooling heat sink having a flow path for circulating antifreeze liquid and an opening provided in a part of the flow path. A radiator having a flow passage connected to the flow passage of the liquid cooling heat sink via a pump and a pipe, and a substrate portion having the heat generating electronic component of the inverter mounted in the opening portion of the liquid cooling heat sink. An electronic component cooling structure for an electric vehicle, which is directly mounted through a secret means.
【請求項14】回転機器駆動用の電動機と、該電動機の
回転を制御する制御装置と、該制御装置の発熱電子部品
を液冷媒で冷却するための冷却手段を備え、液冷媒が循
環するカップ型液冷ヒートシンクの開口側に前記発熱電
子部品の装着された基板部を取り付けた回転機器の電子
部品冷却構造の製作方法であって、 前記基板部は、絶縁基板の下側に設けられた銅板製の下
張り、前記絶縁基板の上側に設けられた銅板製の上張
り、及び該上張りの上に取付けられた前記半導体発熱素
子からなる薄板状部材であり、前記絶縁基板、前記銅板
製の上張り、及び前記銅板製の下張りを雰囲気炉で同時
に接合したことを特徴とする回転機器の電子部品冷却構
造の製作方法。
14. A cup in which a liquid refrigerant circulates, comprising an electric motor for driving a rotating device, a control device for controlling the rotation of the electric motor, and a cooling means for cooling the heat-generating electronic components of the control device with the liquid refrigerant. A method of manufacturing an electronic component cooling structure for a rotating device, wherein a substrate portion having the heat-generating electronic component mounted thereon is attached to an opening side of a mold liquid cooling heat sink, the substrate portion being a copper plate provided below an insulating substrate. Is a thin plate-like member consisting of a metal underlay, a copper plate upholstery provided on the upper side of the insulating substrate, and the semiconductor heating element mounted on the upholstery. A method of manufacturing an electronic component cooling structure for a rotating machine, characterized in that the upholstery and the copper plate underlay are simultaneously joined in an atmosphere furnace.
【請求項15】電力を変換して電動機に供給するインバ
ータと、前記電動機を制御すべく前記インバータに印加
する信号を発生する制御回路を備え、液冷媒が循環する
カップ型液冷ヒートシンクの開口側に、機密手段を介し
て前記インバータの半導体発熱素子の装着された基板部
を取り付けた電気車における電子部品冷却構造の製作方
法であって、 上記基板部は、アルミナ製の絶縁基板と、その下側に設
けられた銅板製の下張り、前記絶縁基板の上側に設けら
れた銅板製の上張り、及び該上張り上に取付けられた前
記半導体発熱素子からなる薄板状部材であり、前記絶縁
基板、前記銅板製の上張り、及び前記銅板製の下張りを
雰囲気炉で同時に接合したことを特徴とする電気車の電
子部品冷却構造の製作方法。
15. An opening side of a cup-type liquid-cooled heat sink, in which an inverter for converting electric power and supplying it to an electric motor and a control circuit for generating a signal to be applied to the inverter to control the electric motor are provided, and a liquid refrigerant circulates. In the method for manufacturing an electronic component cooling structure in an electric car, wherein the substrate portion on which the semiconductor heating element of the inverter is mounted is attached via a secret means, the substrate portion is an insulating substrate made of alumina, and A copper plate underlayer provided on the side, a copper plate overlay provided on the upper side of the insulating substrate, and a thin plate-shaped member composed of the semiconductor heating element mounted on the overlay, the insulating substrate, A method of manufacturing an electronic component cooling structure for an electric vehicle, comprising simultaneously bonding the copper plate overlay and the copper plate overlay under an atmosphere furnace.
JP7274123A 1995-10-23 1995-10-23 Electronic parts cooling structure for rotary equipment and its manufacture Pending JPH09121557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7274123A JPH09121557A (en) 1995-10-23 1995-10-23 Electronic parts cooling structure for rotary equipment and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7274123A JPH09121557A (en) 1995-10-23 1995-10-23 Electronic parts cooling structure for rotary equipment and its manufacture

Publications (1)

Publication Number Publication Date
JPH09121557A true JPH09121557A (en) 1997-05-06

Family

ID=17537348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7274123A Pending JPH09121557A (en) 1995-10-23 1995-10-23 Electronic parts cooling structure for rotary equipment and its manufacture

Country Status (1)

Country Link
JP (1) JPH09121557A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346480A (en) * 1998-06-02 1999-12-14 Hitachi Ltd Inverter device
JP2002315358A (en) * 2001-04-17 2002-10-25 Hitachi Ltd Inverter device
JP2002314281A (en) * 2001-04-16 2002-10-25 Hitachi Ltd Electric system with cooling water channel
US6621701B2 (en) 2001-10-09 2003-09-16 Hitachi, Ltd. Water cooled inverter
US7208678B2 (en) 2005-03-17 2007-04-24 Toyota Jidosha Kabushiki Kaisha Electronic component housing structural body
WO2007001414A3 (en) * 2005-01-11 2007-05-18 Midwest Research Inst Low thermal resistance power module assembly
DE102006028675A1 (en) * 2006-06-22 2007-12-27 Siemens Ag Electronic circuit arrangement has circuit supporting plate and cooling agent passage has heat sink which is coupled thermally with flat side
JP2008172017A (en) * 2007-01-11 2008-07-24 T Rad Co Ltd Liquid-cooling heat sink
DE102009010256A1 (en) * 2009-02-24 2010-08-26 Jungheinrich Aktiengesellschaft Printed circuit board with heat sink
DE102009010257A1 (en) * 2009-02-24 2010-08-26 Jungheinrich Aktiengesellschaft Power splitter for a motor control in an industrial truck, comprises a printed circuit board, whose substrate consists of metal or other good heat conducting material or good heat conducting lower layer, and a cooling body
WO2010096355A3 (en) * 2009-02-17 2011-01-06 Parker Hannifin Corporation Cooling system utilizing multiple cold plates
US8061412B2 (en) 2005-03-18 2011-11-22 Mitsubishi Electric Corporation Cooling structure, heatsink and cooling method of heat generator
CN104702127A (en) * 2013-12-03 2015-06-10 Ls产电株式会社 Inverter for electric vehicle
DE102016106180A1 (en) * 2016-04-05 2017-10-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling device for cooling at least one electrical component of a vehicle

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346480A (en) * 1998-06-02 1999-12-14 Hitachi Ltd Inverter device
JP2002314281A (en) * 2001-04-16 2002-10-25 Hitachi Ltd Electric system with cooling water channel
JP4626082B2 (en) * 2001-04-16 2011-02-02 株式会社日立製作所 Electric device with cooling channel
JP2002315358A (en) * 2001-04-17 2002-10-25 Hitachi Ltd Inverter device
US6621701B2 (en) 2001-10-09 2003-09-16 Hitachi, Ltd. Water cooled inverter
US6661659B2 (en) 2001-10-09 2003-12-09 Hitachi, Ltd. Water cooled inverter
WO2007001414A3 (en) * 2005-01-11 2007-05-18 Midwest Research Inst Low thermal resistance power module assembly
US7859846B2 (en) 2005-01-11 2010-12-28 Alliance For Sustainable Energy, Llc Low thermal resistance power module assembly
US7208678B2 (en) 2005-03-17 2007-04-24 Toyota Jidosha Kabushiki Kaisha Electronic component housing structural body
US8061412B2 (en) 2005-03-18 2011-11-22 Mitsubishi Electric Corporation Cooling structure, heatsink and cooling method of heat generator
DE102006028675A1 (en) * 2006-06-22 2007-12-27 Siemens Ag Electronic circuit arrangement has circuit supporting plate and cooling agent passage has heat sink which is coupled thermally with flat side
DE102006028675B4 (en) * 2006-06-22 2008-08-21 Siemens Ag Cooling arrangement for arranged on a support plate electrical components
US7542291B2 (en) 2006-06-22 2009-06-02 Siemens Vdo Automotive Aktiengesellschaft Electronic circuit configuration having a printed circuit board thermally coupled to a heat sink
JP2008172017A (en) * 2007-01-11 2008-07-24 T Rad Co Ltd Liquid-cooling heat sink
WO2010096355A3 (en) * 2009-02-17 2011-01-06 Parker Hannifin Corporation Cooling system utilizing multiple cold plates
DE102009010257A1 (en) * 2009-02-24 2010-08-26 Jungheinrich Aktiengesellschaft Power splitter for a motor control in an industrial truck, comprises a printed circuit board, whose substrate consists of metal or other good heat conducting material or good heat conducting lower layer, and a cooling body
DE102009010256A1 (en) * 2009-02-24 2010-08-26 Jungheinrich Aktiengesellschaft Printed circuit board with heat sink
CN104702127A (en) * 2013-12-03 2015-06-10 Ls产电株式会社 Inverter for electric vehicle
DE102016106180A1 (en) * 2016-04-05 2017-10-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling device for cooling at least one electrical component of a vehicle

Similar Documents

Publication Publication Date Title
EP2139036B1 (en) Semiconductor device
US7957145B2 (en) Electric power converter
US20090141451A1 (en) Heat dissipation apparatus
JP3676719B2 (en) Water-cooled inverter
US8169779B2 (en) Power electronics substrate for direct substrate cooling
EP2065934B1 (en) Heat dissipation apparatus
US7813135B2 (en) Semiconductor device
JPH09121557A (en) Electronic parts cooling structure for rotary equipment and its manufacture
WO2007105580A1 (en) Base for power module
JPWO2015079643A1 (en) Manufacturing method of semiconductor module cooler, semiconductor module cooler, semiconductor module, and electrically driven vehicle
JP2010171033A (en) Method of brazing heat sink
US12074082B2 (en) Semiconductor module and power conversion device
JP2007335518A (en) Container for storing electric apparatus for vehicle
JP2002315358A (en) Inverter device
US8995129B2 (en) Heat radiator and manufacturing method thereof
WO2008075409A1 (en) Base for power module, method for producing base for power module and power module
JP4626082B2 (en) Electric device with cooling channel
JP2007141932A (en) Power module base
JP2010245158A (en) Cooler
CN105849903B (en) Power inverter and power module
JPH09207583A (en) Electronic cooling structure of electric vehicle
JP2010221250A (en) Method for manufacturing cooler for power device
JP2012243808A (en) Cooling device
JP2001183042A (en) Device for cooling electric parts by circulating coolant
JP2021097135A (en) Radiator and cooling device