Nothing Special   »   [go: up one dir, main page]

JPH09104902A - Powder compacting method - Google Patents

Powder compacting method

Info

Publication number
JPH09104902A
JPH09104902A JP7258429A JP25842995A JPH09104902A JP H09104902 A JPH09104902 A JP H09104902A JP 7258429 A JP7258429 A JP 7258429A JP 25842995 A JP25842995 A JP 25842995A JP H09104902 A JPH09104902 A JP H09104902A
Authority
JP
Japan
Prior art keywords
powder
lubricant
mold
magnet
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7258429A
Other languages
Japanese (ja)
Inventor
Mitsuo Kawabata
光雄 川端
Toshiichi Yokoyama
敏一 横山
Soichiro Kenmochi
惣一郎 剱持
Kazuhiro Takaguchi
和博 高口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP7258429A priority Critical patent/JPH09104902A/en
Publication of JPH09104902A publication Critical patent/JPH09104902A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/108Mixtures obtained by warm mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F2003/026Mold wall lubrication or article surface lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the friction among powder particles or between a mold and powder particles at a low level or below and to improve the properties of a sintered product by forming a coating film consisting of a solid lubricant on the surface of at least any one of the powder and the mold inner wall and, thereafter, compacting the powder. SOLUTION: In powder metallurgy, a coating film consisting of a lubricant is formed on the surface of at least any one of the powder and the mold inner wall before filling a mold with a powder, by heating a solid lubricant consisting of a fatty acid or metallic soap to a temp. at or above the melting point of the lubricant to melt it and, thereafter, atomizing and spraying the melted lubricant. At this time, the atomized lubricant is allowed to impact on the surface of the powder or mold inner wall to stick it to the surface and, concurrently, the lubricant is cooled to instantaneously form a uniform lubricant coating film without requiring any drying time. By using this method, since the rotation of each of magnetic particles in the compacting process in a magnetic field becomes smooth, an anisotropic rare earth sintered magnet having a high degree of orientation, and accordingly, a high residual flux density can be manufactured. Further, the content of oxygen or hydrogen in the sintered magnet can be controlled at a low level or below to improve the coercive force of the magnet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は粉末成形方法、特に
は粉末冶金法の成形工程の成形時における金型潤滑法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder molding method, and more particularly to a die lubrication method at the time of molding in the molding step of powder metallurgy.

【0002】[0002]

【従来の技術】本発明は粉末冶金法の成形工程に関する
ものであるが、粉末冶金法とは金属や、酸化物、炭化
物、窒化物などセラミックスからなる粉体を、金型に充
填して加圧成形を行い、得られた成形体を加熱して焼結
する方法である。粉末冶金法によって製造される製品と
しては、磁性材料、超硬合金、機械部品、含油軸受部
品、耐熱材料、接点材料などがあり、近年、自動車産
業、機械産業、電子電気産業などの分野の発展により、
これら粉末冶金法によって製造される製品はますます重
要になってきている。
BACKGROUND OF THE INVENTION The present invention relates to a powder metallurgical molding process. Powder metallurgy is a method of filling powders made of metal or ceramics such as oxides, carbides, and nitrides into a mold and applying the powder. This is a method in which pressure molding is performed, and the obtained molded body is heated and sintered. Products manufactured by powder metallurgy include magnetic materials, cemented carbides, mechanical parts, oil-impregnated bearing parts, heat-resistant materials, contact materials, etc., and in recent years the development of fields such as the automobile industry, mechanical industry, electronic and electrical industry, etc. Due to
The products produced by these powder metallurgy methods are becoming increasingly important.

【0003】粉末冶金法の成形工程においては、潤滑剤
が用いられることが多く、成形工程で潤滑剤を使用する
ことにより、粉末相互の粒子間摩擦や粉末と金型の内壁
との摩擦が低減されるため、粉体の流動性が向上し、ま
た、粉体の凝集が防止される。その結果、成形体密度が
均一で、強度の優れた成形体を得ることができ、さらに
は、金型の摩耗を低減し、成形体を取り出す際の取り出
し圧を小さくすることもでき、作業面においても大きな
効果を得ることができる。
A lubricant is often used in the powder metallurgical molding process, and the use of the lubricant in the molding process reduces the friction between particles and the friction between the powder and the inner wall of the mold. Therefore, the fluidity of the powder is improved, and the agglomeration of the powder is prevented. As a result, it is possible to obtain a molded product having a uniform molded product density and excellent strength, and further, it is possible to reduce the wear of the mold and to reduce the take-out pressure when taking out the molded product. Also in, it is possible to obtain a great effect.

【0004】この成形工程で用いられる潤滑剤として
は、ステアリン酸、ステアリン酸亜鉛、ステアリン酸
鉛、ステアリン酸カルシウムなどの金属石けん、ステア
リン酸ビスアミド、パラフィンワックス、グラファイ
ト、二硫化モリブデンなどがあり、どのような潤滑剤を
使用するかは、粉体の組成や粒度、成形条件、焼結条
件、製品の仕上がりなどにより決定される。これら潤滑
剤は、一般的に粒状で使用され、成形工程前に粉体と混
合され、成形工程へと供される。潤滑剤の添加量、粒度
は、成形体、焼結製品の特性、仕上がりなどに大きく影
響するので、注意深く選定される。潤滑剤の添加量が多
すぎる場合には、焼結終了後の製品中に潤滑剤成分が残
存し、所定の製品特性が得られない場合があり、また少
ない場合には、潤滑効果が少なくなる。
Lubricants used in this molding process include metal soaps such as stearic acid, zinc stearate, lead stearate and calcium stearate, stearic acid bisamide, paraffin wax, graphite and molybdenum disulfide. Whether a different lubricant is used is determined by the composition and particle size of the powder, molding conditions, sintering conditions, finish of the product, and the like. These lubricants are generally used in the form of granules, mixed with powder before the molding step, and supplied to the molding step. The amount of lubricant added and the particle size have a great influence on the properties and finish of the molded product and the sintered product, so they are carefully selected. If the amount of lubricant added is too large, the lubricant components may remain in the product after sintering is complete, and the desired product characteristics may not be obtained. .

【0005】特に、焼結永久磁石の成形過程では、外部
磁場を印加することにより、磁性粒子の容易磁化方向を
外部磁場方向へ揃えて成形し、残留磁束密度の高い異方
性焼結磁石を得ているが、この場合、外部磁場印加によ
る各磁性粒子の回転をスムーズに行わせるためには、粒
子間に働く摩擦力を抑える必要がある。また、外部磁場
により磁性粒子を配向させた後、成形の圧縮力によりそ
の摩擦力で配向が乱されるので、磁性粒と金型内壁との
摩擦も抑える必要があることから、この潤滑剤は大きな
役割を果たしている。
In particular, in the process of molding a sintered permanent magnet, by applying an external magnetic field, the easy magnetization direction of the magnetic particles is aligned in the direction of the external magnetic field to form an anisotropic sintered magnet having a high residual magnetic flux density. However, in this case, in order to smoothly rotate each magnetic particle by applying an external magnetic field, it is necessary to suppress the frictional force acting between the particles. After the magnetic particles are oriented by the external magnetic field, the compression force of molding disturbs the orientation due to the frictional force, so it is necessary to suppress the friction between the magnetic particles and the inner wall of the mold. Plays a big role.

【0006】[0006]

【発明が解決しようとする課題】しかし、粉末冶金法に
おいては潤滑剤が粉体に混合されるが、この潤滑剤は一
般に粒子の形で使用されるので、たとえそれが十分に均
一に混合されたとしても粉体表面全面に潤滑剤が作用で
きるはずはなく、したがって潤滑剤の効果は局所的なも
のとなってその効果が限定され、潤滑効果を上げるため
にその添加量を増加させると得られる製品に支障がでる
ので、その添加量にも限界がある。
However, in the powder metallurgy method, a lubricant is mixed with a powder, but since this lubricant is generally used in the form of particles, even if it is mixed sufficiently uniformly. Even if it does, the lubricant should not be able to act on the entire surface of the powder, so the effect of the lubricant will be localized and the effect will be limited. However, there is a limit to the amount that can be added.

【0007】そのため、これについては潤滑剤を適当な
溶媒に溶かし、その溶媒を粉体と混合したり、またはこ
の溶媒に粉体を浸漬し、あるいはまたその溶媒を粉体に
噴霧するという方法もとられているが、この方法では溶
媒成分の酸素や炭素が焼結製品中に多量に残存して製品
の特性を悪化させることがあり、金属製品の場合にはそ
のような事態の生ずることが多い。なお、異方性希土類
焼結磁石の製造においては酸素や炭素と反応しやすい希
土類元素がその構成成分として含まれるために、この酸
素や炭素の存在は致命的になることがある。
Therefore, for this, a method of dissolving the lubricant in an appropriate solvent and mixing the solvent with the powder, or immersing the powder in the solvent, or spraying the solvent to the powder is also available. However, in this method, a large amount of oxygen and carbon as solvent components may remain in the sintered product to deteriorate the characteristics of the product, and in the case of a metal product, such a situation may occur. Many. In the production of anisotropic rare earth sintered magnets, the presence of oxygen and carbon may be fatal because rare earth elements that easily react with oxygen and carbon are included as constituent components.

【0008】[0008]

【課題を解決するための手段】本発明はこのような不
利、問題点を解決した粉末冶金法における粉体成形方法
に関するものであり、これは粉末冶金法の成形工程にお
いて、粉末を金型に充填する前に、粉末、金型内壁の少
なくともどちらか一方に、脂肪酸、または金属石けんか
らなる固体潤滑剤をその融点以上に加熱して溶融した
後、噴霧して、粉末、金型内壁の表面に潤滑剤の被膜を
形成させたのち、成形を行うことを特徴とするものであ
る。以下にこれをさらに詳述する。
The present invention relates to a powder molding method in the powder metallurgy method which solves the above disadvantages and problems, and in the molding step of the powder metallurgy method, the powder is formed into a mold. Before filling, at least one of the powder and the mold inner wall is heated and melted with a solid lubricant consisting of fatty acid or metal soap above its melting point, and then sprayed to the surface of the powder and the mold inner wall. The method is characterized in that after forming a film of a lubricant on, molding is performed. This will be described in more detail below.

【0009】本発明による粉末成形方法は、上記したよ
うに、粉末冶金法の成形工程において、粉末または金型
内壁に脂肪酸または金属石けんからなる固体潤滑剤を溶
融し噴霧するものであるが、これによれば粉体表面また
は金型内壁表面の全体に均一に潤滑性被膜を形成するこ
とができるので、粉体粒子間の摩擦、粉体と金型との摩
擦を局所的ではなく、全体的に抑制することができ、し
たがって成形体の特性、焼結製品の特性が向上し、その
作業性も向上し、さらには潤滑剤を混合する工程も省略
できるため工程を簡略化することができ、特に焼結磁石
の製造においては、外部磁場による配向が向上し、また
金型による配向の乱れも抑制できるので、磁気特性の高
い異方性焼結磁石を製造することができるという有利性
が与えられる。
As described above, the powder molding method according to the present invention involves melting and spraying a solid lubricant consisting of fatty acid or metallic soap on the inner wall of the powder or mold in the molding step of powder metallurgy. According to the method, a lubricious coating can be formed uniformly on the entire surface of the powder or the inner surface of the die, so that the friction between the powder particles and the friction between the powder and the die are not locally but Therefore, the characteristics of the molded body, the characteristics of the sintered product are improved, the workability thereof is improved, and the step of mixing the lubricant can be omitted, so that the steps can be simplified, In particular, in the production of a sintered magnet, the orientation due to an external magnetic field is improved and the disorder of the orientation due to a mold can be suppressed, which gives an advantage that an anisotropic sintered magnet with high magnetic properties can be produced. To be

【0010】[0010]

【発明の実施の形態】本発明の粉末成形方法で使用され
る脂肪酸または金属石けんからなる固体潤滑剤は、化学
式 CH3(CH2)nCOOHまたは CH3(CH2)nCOOM(MはPb、M
n、Al、Cu、Zn、Cr、Ca、Liのうちの1
種)で示される物質であるが、この代表的なものとして
はステアリン酸、ステアリン酸亜鉛、ステアリン酸カル
シウムなどである。これらは融点が 100℃前後と低いの
で簡便な装置で溶融噴霧することができ、溶融状態では
噴霧に十分な粘度のものとなるので保温した潤滑剤のタ
ンクとスプレーノズルを用いて噴霧することができる。
固体潤滑剤の噴霧量は粉末に対して 0.001重量%未満だ
と潤滑性能が不充分となり、2重量%を越えると焼結後
に炭素が多く残留して磁気特性が悪くなるので0.001〜
2重量%がよい。
BEST MODE FOR CARRYING OUT THE INVENTION The solid lubricant composed of fatty acid or metallic soap used in the powder molding method of the present invention has a chemical formula of CH 3 (CH 2 ) n COOH or CH 3 (CH 2 ) n COOM (M is Pb. , M
1 of n, Al, Cu, Zn, Cr, Ca, Li
The typical substances are stearic acid, zinc stearate, calcium stearate and the like. Since their melting points are as low as around 100 ° C, they can be melted and sprayed with a simple device.In the molten state, the viscosity is sufficient for spraying, so spraying can be done using a lubricant tank and a spray nozzle that retain heat. it can.
If the amount of solid lubricant sprayed is less than 0.001% by weight of the powder, the lubrication performance will be insufficient, and if it exceeds 2% by weight, a large amount of carbon will remain after sintering and the magnetic properties will deteriorate.
2% by weight is good.

【0011】また、ここに噴霧された潤滑剤は粉体表
面、金型内壁に衝突し付着すると同時に冷却され、瞬時
に均一な潤滑被膜を形成するので乾燥の時間は不要であ
り、この噴霧時間とノズルの形状を選択すれば、この潤
滑被膜の形状と厚みを任意のものとすることができる。
しかし、粉体に潤滑剤を噴霧する場合には、粉体全体に
潤滑剤が付着するように粉体を揺動しながら噴霧するこ
とがよく、また金属製品を製造する場合には、その金属
製品が酸化を嫌うため、この工程が不活性ガス中で行な
われているときには、潤滑剤の噴霧も不活性ガス中で行
なうことがよい。
Further, the lubricant sprayed here collides with the powder surface and the inner wall of the mold and adheres to the powder, and at the same time, it is cooled, and a uniform lubricating film is instantaneously formed, so that no drying time is required. By selecting the shape of the nozzle, the shape and thickness of this lubricating coating can be made arbitrary.
However, when spraying a lubricant onto powder, it is preferable to spray the powder while shaking the powder so that the lubricant adheres to the entire powder. When the process is carried out in an inert gas, the spray of the lubricant should also be carried out in an inert gas, since the product dislikes oxidation.

【0012】なお、本発明による粉末成形方法では溶剤
を使用することなく、粉体表面、金型内壁表面を全体的
に潤滑剤被膜で被覆することができるので、これは特に
異方性希土類焼結磁石の製造に有効な方法とされる。す
なわち、本発明の方法によれば磁場中の成形過程での磁
力粒子の回転がスムーズになるので配向度の高い、した
がって残留磁束密度の大きな異方性希土類焼結磁石を製
造することができ、さらには焼結磁石中の酸素や炭素の
量を抑えることもできるので、その保磁力が向上する。
In the powder molding method according to the present invention, the surface of the powder and the surface of the inner wall of the mold can be entirely coated with a lubricant film without using a solvent. This is an effective method for manufacturing a magnet. That is, according to the method of the present invention, since the rotation of the magnetic particles in the molding process in the magnetic field becomes smooth, the degree of orientation is high, and thus it is possible to manufacture an anisotropic rare earth sintered magnet having a large residual magnetic flux density, Furthermore, since the amounts of oxygen and carbon in the sintered magnet can be suppressed, its coercive force is improved.

【0013】この異方性希土類磁石にはR-Co系、R-Fe-B
系(RはYを含む希土類元素のうちの少なくとも1種)
などがある。R-Co系希土類磁石にはRCo5系、R2Co17系な
どがあるが、実用に供されているのは殆どがR2Co17系で
あり、通常重量百分率で20〜28%のR、5〜30%のF
e、3〜10%のCu、1〜5%のZr、残りがCoから
なるものであるが、原料金属を秤量して溶解、鋳造し、
得られた合金を平均粒径1〜20μmにまで微粉砕し、こ
れを磁場中で成形し、その後 1,100〜 1,250℃で0.5〜
5時間焼結する。ついで、これを焼結温度よりも0〜50
℃低い温度で 0.5〜5時間溶体化し、最後に通常 700〜
950℃で初段時効処理し、その後連続冷却または多段時
効することによって製造される。
The anisotropic rare earth magnets include R-Co type and R-Fe-B type.
System (R is at least one of rare earth elements including Y)
and so on. RCo system rare earth magnet RCo 5 system, there are such R 2 Co 17 series, what is put into practical use is mostly R 2 Co 17 series, 20 to 28% of R in normal weight percentage , 5-30% F
e, 3 to 10% Cu, 1 to 5% Zr, and the balance Co, but the raw material metal is weighed, melted and cast,
The obtained alloy is pulverized to an average particle size of 1 to 20 μm, shaped in a magnetic field, and then 0.5 to 100 at 1,100 to 1,250 ℃.
Sinter for 5 hours. Then, this is 0 ~ 50
℃ lower temperature for 0.5 ~ 5 hours, and finally 700 ~
It is manufactured by first-stage aging treatment at 950 ° C and then continuous cooling or multiple-stage aging.

【0014】また、このR-Fe-B系希土類磁石は通常重量
百分率で5〜40%のR、50〜90%のFe、 0.2〜8%の
Bからなるものとされるが、このものは磁気特性改善の
ためにC、Al、Si、Ti、V、Cr、Mn、Co、
Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、S
n、Hf、Ta、Wなどの添加元素を加えることが多
い。これら添加物の添加量はCoの場合30重量%以下、
その他の元素は8重量%以下とするのが普通であり、こ
れ以上とすると逆に磁気特性が劣化される。なお、この
R-Fe-B系希土類磁石の製造は、原料金属を秤量して溶
解、鋳造し、得られた合金を平均粒径が1〜20μmにな
るまで粉砕したのち、磁場内で成形し、 1,000〜 1,200
℃で 0.5〜5時間焼結し、最後に 400〜 1,000℃で時効
処理を行えばよい。
The R-Fe-B rare earth magnet is usually composed of 5-40% R by weight, 50-90% Fe, and 0.2-8% B by weight. C, Al, Si, Ti, V, Cr, Mn, Co, for improving magnetic properties
Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, S
Additive elements such as n, Hf, Ta, and W are often added. The amount of these additives added is 30% by weight or less in the case of Co,
It is usual that the content of the other elements is 8% by weight or less. Note that this
R-Fe-B rare earth magnets are manufactured by weighing raw material metals, melting and casting, and crushing the resulting alloy to an average particle size of 1 to 20 μm, then molding in a magnetic field, 1,200
Sintering may be performed at 0.5 ° C for 0.5 to 5 hours, and finally aging may be performed at 400 to 1,000 ° C.

【0015】[0015]

【実施例】【Example】

実施例1 図1に示した噴霧装置を用いて、ステアリン酸をヒータ
ーを用いて加熱溶融し、これを噴霧エアーにより噴霧ノ
ズルから平均粒径5μmのR-Fe-B系磁力粉に噴霧した
が、この噴霧量は磁石粉の重量測定値からその 0.1重量
%とすると共に、このステアリン酸はこの噴霧装置を用
いて金型内壁にも噴霧した。
Example 1 Using the spraying device shown in FIG. 1, stearic acid was melted by heating with a heater, and this was sprayed by spraying air from an atomizing nozzle onto R-Fe-B magnetic powder having an average particle size of 5 μm. The amount of this spray was 0.1% by weight based on the weight measured value of the magnet powder, and this stearic acid was also sprayed on the inner wall of the mold using this spray device.

【0016】ついで、この磁石粉を金型内に供給し、電
磁石により 15kOeの磁場を印加し、磁場を印加したまま
で磁場印加方向と垂直な方向に1ton/cm2 の圧力をかけ
て成形し、この成形体を真空中において 1,060℃で90分
焼結し、さらに 540℃で時効処理を行なったところ、R-
Fe-B系焼結磁石が得られたので、この磁気特性をB−H
トレーサーを用いて測定したところ、この残留磁束密度
は 12.73kGであった。
Then, this magnet powder was fed into a mold, a magnetic field of 15 kOe was applied by an electromagnet, and a pressure of 1 ton / cm 2 was applied in a direction perpendicular to the magnetic field application direction while the magnetic field was applied. When this molded body was sintered in vacuum at 1,060 ° C for 90 minutes and then aged at 540 ° C, R-
Since a Fe-B system sintered magnet was obtained, this magnetic property was measured by B-H
When measured using a tracer, this residual magnetic flux density was 12.73 kG.

【0017】実施例2 平均粒径が5μmであるR-Fe-B系磁力粉に図1に示した
噴霧装置で加熱溶融したステアリン酸を 0.1重量%を噴
霧したが、金型内壁にはステアリン酸を噴霧せず、この
金型内にステアリン酸を噴霧した磁石粉を供給し、以下
実施例1と同様に処理してR-Fe-B系焼結磁石を製造し、
その磁気特性をB−Hトレーサーを用いて測定したとこ
ろ、その残留磁束密度は 12.65kGであった。
Example 2 0.1% by weight of stearic acid heated and melted by the spraying device shown in FIG. 1 was sprayed on R-Fe-B magnetic powder having an average particle size of 5 μm. A magnet powder obtained by spraying stearic acid into the mold without supplying the acid was supplied and treated in the same manner as in Example 1 to produce an R-Fe-B system sintered magnet.
When its magnetic characteristics were measured using a BH tracer, its residual magnetic flux density was 12.65 kG.

【0018】実施例3 実施例1の方法において、金型にステアリン酸を噴霧し
たが、R-Fe-B系磁石粉にはステアリン酸を噴霧せず、以
下実施例1と同様に処理してR-Fe-B系焼結磁石を製造
し、その磁気特性をB−Hトレーサーを用いて測定した
ところ、その残留磁束密度は 12.51kGであった。
Example 3 In the method of Example 1, the mold was sprayed with stearic acid, but the R-Fe-B magnet powder was not sprayed with stearic acid. When an R-Fe-B system sintered magnet was manufactured and its magnetic characteristics were measured using a BH tracer, its residual magnetic flux density was 12.51 kG.

【0019】比較例1 R-Fe-B系磁石粉にも、また金型にもステアリン酸を噴霧
せず、このR-Fe-B系磁石を金型内に供給し、以下実施例
1と同様に処理してR-Fe-B系焼結磁石を製造し、その磁
気特性をB−Hトレーサーを用いて測定したところ、そ
の残留磁束密度は 12.08kGであった。
Comparative Example 1 No stearic acid was sprayed on the R-Fe-B magnet powder or the mold, and this R-Fe-B magnet was supplied into the mold, and When an R-Fe-B system sintered magnet was manufactured in the same manner and its magnetic characteristics were measured using a BH tracer, its residual magnetic flux density was 12.08 kG.

【0020】比較例2 実施例1のR-Fe-B系磁石粉にステアリン酸を 0.1重量%
添加し、混合した。この磁石粉を金型に充填し、実施例
1と同様な実験を行った。その結果、得られた磁石の残
留磁束密度は 12.38kGであった。
Comparative Example 2 0.1% by weight of stearic acid was added to the R-Fe-B magnet powder of Example 1.
Added and mixed. A mold was filled with this magnet powder and the same experiment as in Example 1 was performed. As a result, the residual magnetic flux density of the obtained magnet was 12.38 kG.

【0021】比較例3 図1に示した溶融ステアリン酸をステアリン酸をエタノ
ールに溶かしたエタノール溶液とし、これを実施例1で
用いたR-Fe-B系磁石粉にステアリン酸が 0.1重量%とな
るように噴霧し、これを金型内に供給し、以下実施例1
と同様に処理してR-Fe-B系焼結磁石を製造したところ、
この場合には焼結の際にR-Fe-B系磁石粉が酸化してしま
ったので、磁気特性を測定するまでに至らなかった。
Comparative Example 3 The molten stearic acid shown in FIG. 1 was used as an ethanol solution in which stearic acid was dissolved in ethanol. The R-Fe-B magnet powder used in Example 1 contained 0.1% by weight of stearic acid. And spray it into the mold, and
When an R-Fe-B system sintered magnet was manufactured by the same treatment as
In this case, since the R-Fe-B magnet powder was oxidized during sintering, the magnetic characteristics could not be measured.

【0022】実施例4 平均粒径が5μmであるR2Co17系磁石粉に図1に示した
噴霧装置を用いてステアリン酸を 0.1重量%を噴霧する
と共に、この金型内壁にもステアリン酸を噴霧し、この
金型にR2Co17系磁石粉を供給し、これに電磁石により 1
8kOeの磁場を印加し、磁場に印加したままで磁場印加方
向と垂直方向に0.8ton/cm2の圧力をかけて成形した。
Example 4 0.1 wt% of stearic acid was sprayed onto R 2 Co 17 magnet powder having an average particle diameter of 5 μm by using the spraying device shown in FIG. 1, and the inner wall of the mold was stearic acid. Is sprayed, R 2 Co 17 system magnet powder is supplied to this mold, and 1
A magnetic field of 8 kOe was applied, and a pressure of 0.8 ton / cm 2 was applied in the direction perpendicular to the magnetic field application direction while the magnetic field was applied.

【0023】ついで、この成形体をアルゴンガス雰囲気
において 1,200℃で焼結し、 1,180℃で溶体化し、初段
時効として 850℃で2時間保持したのち、1℃/分の冷
却速度で 400℃まで連続冷却し、その後急冷したとこ
ろ、R2Co17系焼結磁石が得られたので、この磁気特性を
B−Hトレーサーを用いて測定したところ、その残留磁
束密度は 10.46kGであった。
Next, this compact was sintered at 1,200 ° C. in an argon gas atmosphere, solutionized at 1,180 ° C., and held at 850 ° C. for 2 hours as a first stage aging, and then continuously cooled to 400 ° C. at a cooling rate of 1 ° C./min. When cooled and then rapidly cooled, an R 2 Co 17 series sintered magnet was obtained. When its magnetic characteristics were measured using a BH tracer, its residual magnetic flux density was 10.46 kG.

【0024】比較例4 実施例4で用いたR2Co17系磁石粉を用いたが、このR2Co
17系磁石粉および金型にはステアリン酸を噴霧せず、こ
のR2Co17系磁石粉を金型に供給し、実施例4と同様に処
理してR2Co17系焼結磁石を製造し、その磁気特性をB−
Hトレーサーを用いて測定したところ、その残留磁束密
度は 10.19kGであった。
[0024] While using R 2 Co 17 magnet powder used in Comparative Example 4 Example 4, the R 2 Co
Stearic acid was not sprayed on the 17- based magnet powder and the mold, and this R 2 Co 17- based magnet powder was supplied to the mold and treated in the same manner as in Example 4 to produce a R 2 Co 17- based sintered magnet. The magnetic characteristics of B-
When measured with an H tracer, the residual magnetic flux density was 10.19 kG.

【0025】実施例5〜7、比較例5〜6 粒度が 100メッシュ以下の金属Fe粉またはステンレス
鋼粉に表1に記載した潤滑剤(ステアリン酸亜鉛、ステ
アリン酸カルシウムまたはステアリン酸リチウム)を図
1に示した噴霧装置を用いて金属粉に対して 0.1重量%
噴霧すると共に、この金型内壁にもこの潤滑剤を噴霧
し、このように処理したFe粉、ステンレス鋼粉の流動
度を測定したところ、表1に記載した通りの結果得られ
た。
Examples 5 to 7 and Comparative Examples 5 to 6 Metal Fe powder having a particle size of 100 mesh or less or stainless steel powder and the lubricants (zinc stearate, calcium stearate or lithium stearate) shown in Table 1 were used. 0.1% by weight based on the metal powder using the spraying device shown in
Along with spraying, the lubricant was also sprayed on the inner wall of the mold, and the fluidity of the Fe powder and the stainless steel powder thus treated was measured, and the results as shown in Table 1 were obtained.

【0026】ついで、このように処理した金属Fe粉ま
たはステンレス鋼粉を金型に充填し、成形圧力6ton/cm
2 で成形したところ、この成形体密度は表1に示したと
おりのものとなったが、この粉末についてはこれを 1,2
00℃で1時間焼結し、この焼結体の引張強度を測定した
ところ、表1に併記したとおりの結果が得られた。な
お、比較例5〜6はこの金属Fe粉、ステンレス鋼粉に
潤滑剤を噴霧しないものの例であり、このものの流動
度、成形体密度、焼結体の引張強度は表1に併記したと
おりのものであった。
Then, the metallic Fe powder or stainless steel powder treated in this way is filled in a mold, and the molding pressure is 6 ton / cm.
When molded with No. 2 , the density of this compact was as shown in Table 1, but this powder was
When sintered at 00 ° C. for 1 hour and the tensile strength of this sintered body was measured, the results shown in Table 1 were obtained. In addition, Comparative Examples 5 to 6 are examples in which the lubricant is not sprayed on the metallic Fe powder and the stainless steel powder, and the fluidity, compact density, and tensile strength of the sintered body of these are as shown in Table 1. It was a thing.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明は粉末成形方法、特には粉末冶金
法における粉末成形方法に関するものであるが、これに
よれば粉体表面および/または金型内壁表面に潤滑剤被
膜が設けられるので、粒体粒子間の摩擦、粉体と金型と
の摩擦が抑制され、したがってこれから作られる成形体
は物性が向上し、作業性も向上するが、これは特に焼結
磁石の製造において磁気特性の高い異方性焼結磁石の製
造に有効とされるという有利性が与えられる。
INDUSTRIAL APPLICABILITY The present invention relates to a powder molding method, and more particularly to a powder molding method in the powder metallurgy method. According to this method, a lubricant film is provided on the powder surface and / or the mold inner wall surface. The friction between the particles and the friction between the powder and the mold are suppressed, so that the molded product made from this has improved physical properties and workability, which is particularly important in the production of sintered magnets because of the magnetic properties. It provides the advantage of being effective in the manufacture of highly anisotropic sintered magnets.

【図面の簡単な説明】[Brief description of the drawings]

【図1】潤滑剤としてステアリン酸を用いるステアリン
酸噴霧装置の縦断面図を示したものである。
FIG. 1 shows a longitudinal sectional view of a stearic acid spraying device using stearic acid as a lubricant.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高口 和博 福井県武生市北府2丁目1番5号 信越化 学工業株式会社磁性材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiro Takaguchi 2-15-5 Kitafu, Takefu City, Fukui Prefecture Shin-Etsu Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粉末冶金法の成形工程において、粉末を
金型に充填する前に、粉末、金型内壁の少なくともどち
らか一方に、脂肪酸、または金属石けんからなる固体潤
滑剤をその融点以上に加熱して溶融した後、噴霧して、
粉末、金型内壁の表面に潤滑剤の被膜を形成させたの
ち、成形を行うことを特徴とする粉末成形方法。
1. In the molding step of powder metallurgy, before filling the mold with the powder, at least one of the powder and the inner wall of the mold is filled with a solid lubricant composed of fatty acid or metallic soap to a temperature not lower than its melting point. After heating and melting, spray and
A powder molding method, comprising forming a film of a lubricant on the surface of the powder and the inner wall of the mold, and then molding.
【請求項2】 前記粉末が希土類磁石用合金粉末である
請求項1に記載の粉末成形方法。
2. The powder molding method according to claim 1, wherein the powder is an alloy powder for a rare earth magnet.
JP7258429A 1995-10-05 1995-10-05 Powder compacting method Pending JPH09104902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7258429A JPH09104902A (en) 1995-10-05 1995-10-05 Powder compacting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7258429A JPH09104902A (en) 1995-10-05 1995-10-05 Powder compacting method

Publications (1)

Publication Number Publication Date
JPH09104902A true JPH09104902A (en) 1997-04-22

Family

ID=17320097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7258429A Pending JPH09104902A (en) 1995-10-05 1995-10-05 Powder compacting method

Country Status (1)

Country Link
JP (1) JPH09104902A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043900A1 (en) * 1999-12-14 2001-06-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Powder green body forming method
US6482349B1 (en) 1998-11-02 2002-11-19 Sumitomo Special Metals Co., Ltd. Powder pressing apparatus and powder pressing method
EP1353341A1 (en) * 2001-01-19 2003-10-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Dust core and method for producing the same
CN1321767C (en) * 2004-11-11 2007-06-20 华南理工大学 Method for uniform distribution of greasing substance on solid surface, apparatus and application thereof
US7998361B2 (en) 2004-03-31 2011-08-16 Sumitomo Electric Industries, Ltd. Soft magnetic material and powder magnetic core
JP2014218699A (en) * 2013-05-08 2014-11-20 信越化学工業株式会社 Method of producing rare earth sintered magnet
JP2014220373A (en) * 2013-05-08 2014-11-20 信越化学工業株式会社 Manufacturing method of rare-earth sintered magnet
EP3067191A1 (en) 2015-03-05 2016-09-14 Shin-Etsu Chemical Co., Ltd. Powder molding apparatus and manufacture of rare earth sintered magnet using the apparatus
US10629370B2 (en) 2015-07-10 2020-04-21 Toyota Jidosha Kabushiki Kaisha Production method of compact
CN112530654A (en) * 2020-12-04 2021-03-19 安徽中马磁能科技股份有限公司 Sintered permanent magnetic ferrite and molding method thereof
DE102023117189A1 (en) 2022-07-05 2024-01-11 Miba Sinter Austria Gmbh Method for producing a component from a sinter powder

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482349B1 (en) 1998-11-02 2002-11-19 Sumitomo Special Metals Co., Ltd. Powder pressing apparatus and powder pressing method
WO2001043900A1 (en) * 1999-12-14 2001-06-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Powder green body forming method
EP1170075A1 (en) * 1999-12-14 2002-01-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Powder green body forming method
US7083760B2 (en) 1999-12-14 2006-08-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of forming a powder compact
EP1353341A1 (en) * 2001-01-19 2003-10-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Dust core and method for producing the same
EP1353341A4 (en) * 2001-01-19 2007-10-31 Toyota Chuo Kenkyusho Kk Dust core and method for producing the same
US7998361B2 (en) 2004-03-31 2011-08-16 Sumitomo Electric Industries, Ltd. Soft magnetic material and powder magnetic core
CN1321767C (en) * 2004-11-11 2007-06-20 华南理工大学 Method for uniform distribution of greasing substance on solid surface, apparatus and application thereof
JP2014218699A (en) * 2013-05-08 2014-11-20 信越化学工業株式会社 Method of producing rare earth sintered magnet
JP2014220373A (en) * 2013-05-08 2014-11-20 信越化学工業株式会社 Manufacturing method of rare-earth sintered magnet
EP3067191A1 (en) 2015-03-05 2016-09-14 Shin-Etsu Chemical Co., Ltd. Powder molding apparatus and manufacture of rare earth sintered magnet using the apparatus
KR20160108180A (en) 2015-03-05 2016-09-19 신에쓰 가가꾸 고교 가부시끼가이샤 Powder molding device and method for making rare earth sintered magnet using said molding device
US10607773B2 (en) 2015-03-05 2020-03-31 Shin-Etsu Chemical Co., Ltd. Powder molding apparatus and manufacture of rare earth sintered magnet using the apparatus
US10629370B2 (en) 2015-07-10 2020-04-21 Toyota Jidosha Kabushiki Kaisha Production method of compact
CN112530654A (en) * 2020-12-04 2021-03-19 安徽中马磁能科技股份有限公司 Sintered permanent magnetic ferrite and molding method thereof
CN112530654B (en) * 2020-12-04 2023-09-26 安徽中马磁能科技股份有限公司 Sintered permanent magnetic ferrite and forming method thereof
DE102023117189A1 (en) 2022-07-05 2024-01-11 Miba Sinter Austria Gmbh Method for producing a component from a sinter powder

Similar Documents

Publication Publication Date Title
JP6813443B2 (en) Rare earth magnet manufacturing method
JPH08504233A (en) Method of making lubricious metallurgical powder composition
JPH09104902A (en) Powder compacting method
JP2019178402A (en) Soft magnetic powder
US5963771A (en) Method for fabricating intricate parts with good soft magnetic properties
JPH0715121B2 (en) Fe-Co alloy fine powder for injection molding and Fe-Co sintered magnetic material
US4601876A (en) Sintered Fe-Cr-Co type magnetic alloy and method for producing article made thereof
JP3848217B2 (en) Sintered soft magnetic material and manufacturing method thereof
JP2837790B2 (en) Low oxygen rare earth alloy atomized powder and method for producing the same
WO1984004712A1 (en) Tin-containing iron powder and process for its production
JP2789364B2 (en) Manufacturing method of permanent magnet alloy with excellent oxidation resistance
JPH07263265A (en) Rare-earth intermetallic-compound permanent magnet and its manufacture
JPS631361B2 (en)
JP2639812B2 (en) Magnetic alloy powder for sintering
JP2007031841A (en) Iron-based powder mixture for warm die lubricating compaction
JPH0456702A (en) Raw material powder for powder metallurgy and manufacture thereof
WO2019159404A1 (en) INFILTRATION Cu-BASED POWDER
JP2599284B2 (en) Manufacturing method of soft sintered magnetic material
JPS61208807A (en) Permanent magnet
KR100332898B1 (en) Method for manufacturing soft magnetic core including steelmaking dust
US3519502A (en) Method of manufacturing sintered metallic magnets
JPH0248611B2 (en)
JP2005187908A (en) Iron based powdery mixture for powder metallurgy
JPS61127848A (en) Manufacture of sintered alnico magnet
JP2002289418A (en) High-density sintered body granulating powder and sintered body using the same