JPH0899039A - Amorphous alloy catalyst for nitrogen oxide decomposition - Google Patents
Amorphous alloy catalyst for nitrogen oxide decompositionInfo
- Publication number
- JPH0899039A JPH0899039A JP6237087A JP23708794A JPH0899039A JP H0899039 A JPH0899039 A JP H0899039A JP 6237087 A JP6237087 A JP 6237087A JP 23708794 A JP23708794 A JP 23708794A JP H0899039 A JPH0899039 A JP H0899039A
- Authority
- JP
- Japan
- Prior art keywords
- atomic
- amorphous alloy
- catalyst
- nox
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 42
- 229910000808 amorphous metal alloy Inorganic materials 0.000 title claims abstract description 37
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 13
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title 3
- 239000000919 ceramic Substances 0.000 claims abstract description 21
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 16
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 14
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 13
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 14
- 239000000956 alloy Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000007789 gas Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 9
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000007598 dipping method Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 150000001722 carbon compounds Chemical class 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- -1 20-80 atomic% Inorganic materials 0.000 description 1
- 229910002701 Ag-Co Inorganic materials 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、燃焼排気ガスに含まれ
るNOxを分解する高活性アモルファス合金触媒に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly active amorphous alloy catalyst for decomposing NOx contained in combustion exhaust gas.
【0002】[0002]
【従来の技術】各種有機物を燃焼する装置、機関では、
高温に加熱された大気中の窒素と酸素との反応によって
NOxが生じ、排気ガスに含まれて排出される。生物に
有害なだけでなく、温室効果をもたらし、オゾン層を破
壊するNOxの除去には、現在、大規模燃焼施設ではア
ンモニアとの反応によって窒素と水蒸気に変換する方法
が用いられ、乗用車では、不完全燃焼によって排気ガス
に含まれる炭素化合物との反応によって、二酸化炭素と
窒素ガスに変えることを原理とする反応を、セラミック
スに担持した白金族元素を触媒として用いて行ってい
る。2. Description of the Related Art In devices and engines that burn various organic substances,
NOx is generated by the reaction between nitrogen and oxygen in the atmosphere heated to a high temperature, and NOx is contained in the exhaust gas and discharged. Not only is it harmful to living organisms, but it also has a greenhouse effect and destroys the ozone layer. For the removal of NOx, a method of converting nitrogen and water vapor by reaction with ammonia is currently used in large-scale combustion facilities. A reaction based on the principle of changing to carbon dioxide and nitrogen gas by a reaction with a carbon compound contained in exhaust gas due to incomplete combustion is performed using a platinum group element supported on ceramics as a catalyst.
【0003】一方本発明者の3人は、各種有機物を燃焼
する装置、機関から排出されるNOx,COおよび燃え
残りの炭化水素などを含むガスから、炭素化合物を二酸
化炭素と水に変え、窒素酸化物を窒素ガスに変えること
を原理とする排気ガス浄化の反応を、常温に近い温度で
も行うことができ、高活性で製造および再生が容易なア
モルファス合金触媒を見いだし、特願平1−26298
6号として出願した。特願平1−262986号は下記
の3つの発明からなる。On the other hand, three of the inventors of the present invention convert carbon compounds into carbon dioxide and water from a gas containing NOx, CO and unburned hydrocarbons discharged from an apparatus for burning various organic substances, an engine, and nitrogen. We have found an amorphous alloy catalyst that can perform an exhaust gas purification reaction based on the principle of changing oxides to nitrogen gas even at a temperature close to room temperature, is highly active, and can be easily produced and regenerated.
Filed as No. 6. Japanese Patent Application No. 1-262986 comprises the following three inventions.
【0004】(1)NbおよびTaの1種または2種2
0−70原子%、Ru,Pd,Rh,PtおよびIrの
群から選ばれる1種以上の元素0.5−20原子%、残
部実質的にNiおよびCoの1種または2種からなるア
モルファス合金にフッ酸浸漬による活性化処理を施すこ
とを特徴とする排気ガス浄化用触媒。(2)Tiおよび
Zrの1種または2種20−80原子%、Ru,Pd,
Rh,PtおよびIrの群から選ばれる1種以上の元素
0.5−20原子%、残部実質的にNiおよびCoの1
種または2種10原子%以上からなるアモルファス合金
にフッ酸浸漬による活性化処理を施すことを特徴とする
排気ガス浄化用触媒。(3)NbおよびTaの1種また
は2種70原子%以下とTiおよびZrの1種または2
種との合計量20−80原子%(上記NbおよびTaの
1種又は2種の量を含む。)、Ru,Pd,Rh,Pt
およびIrの群から選ばれる1種以上の元素0.5−2
0原子%、残部実質的にNiおよびCoの1種または2
種10原子%以上からなるアモルファス合金にフッ酸浸
漬による活性化処理を施すことを特徴とする排気ガス浄
化用触媒。(1) One or two of Nb and Ta 2
Amorphous alloy consisting of 0-70 atom%, 0.5-20 atom% of one or more elements selected from the group of Ru, Pd, Rh, Pt and Ir, and the balance substantially one or two of Ni and Co. A catalyst for purifying exhaust gas, wherein the catalyst is subjected to activation treatment by dipping in hydrofluoric acid. (2) One or two kinds of Ti and Zr, 20-80 atomic%, Ru, Pd,
0.5-20 atomic% of one or more elements selected from the group of Rh, Pt and Ir, the balance being substantially 1 of Ni and Co.
A catalyst for purifying exhaust gas, which is obtained by subjecting an amorphous alloy of 10% by atom or more of 2 or more types to activation treatment by dipping in hydrofluoric acid. (3) One or two kinds of Nb and Ta, 70 atomic% or less, and one or two kinds of Ti and Zr
20-80 atomic% of the total amount with the seeds (including the amount of one or two of the above Nb and Ta), Ru, Pd, Rh, Pt.
And at least one element selected from the group of Ir 0.5-2
0 atomic%, the balance substantially one of Ni and Co or 2
An exhaust gas purifying catalyst, characterized by subjecting an amorphous alloy containing 10 atomic% or more of seed to activation treatment by dipping in hydrofluoric acid.
【0005】[0005]
【発明が解決しようとする課題】従来、NOxの分解
は、アンモニアあるいはCOなどを用いて、窒素に還元
することに基づいている。しかし、NOxは高温におけ
る窒素と酸素の反応によって生じるものであって、低温
では窒素と酸素に分解する方が熱力学的に安定である。
燃焼条件を制御しにくいディーゼル機関の排気ガスの処
理および大規模燃焼施設におけるアンモニア使用に変わ
る処理法として、直接NOxを分解する高性能触媒の出
現が待たれている。Conventionally, the decomposition of NOx is based on the reduction to nitrogen using ammonia or CO. However, NOx is generated by the reaction between nitrogen and oxygen at high temperature, and it is thermodynamically stable to decompose into nitrogen and oxygen at low temperature.
The advent of high-performance catalysts that directly decompose NOx is awaited as a treatment method for treating exhaust gas of diesel engines in which combustion conditions are difficult to control and for using ammonia in large-scale combustion facilities.
【0006】[0006]
【問題点を解決するための手段】本発明者らは、特願平
1−262986号に出願した組成以外の合金も含め
て、Ni,TaおよびPdを必須元素とするアモルファ
ス合金は、液体急冷法で作製した場合、特願平1−26
2986号に規定したフッ酸浸漬による活性化処理を施
すことなく、直接NOxを分解する高性能触媒たり得る
ことを見いだした。さらに、種々の触媒特性を発揮する
アモルファス合金が得られても、通常の方法で作製した
アモルファス合金は、触媒としての比表面積が小さく実
用化しにくい欠点を持っていたが、触媒活性の優れたア
モルファス合金を比表面積の大きなセラミックス上にP
VD法で作製することによって、比表面積を向上させて
この欠点を克服し、本発明を達成した。The inventors of the present invention have found that amorphous alloys containing Ni, Ta and Pd as essential elements, including alloys having compositions other than the composition applied for in Japanese Patent Application No. 1-262986, are liquid quenched. Japanese Patent Application No. 1-26
It has been found that it can be a high-performance catalyst that directly decomposes NOx without performing the activation treatment by dipping in hydrofluoric acid specified in No. 2986. Furthermore, even if amorphous alloys exhibiting various catalytic properties were obtained, the amorphous alloys produced by the usual method had a drawback that the specific surface area as a catalyst was small and it was difficult to put them into practical use. Alloy P on ceramics with a large specific surface area
The present invention has been achieved by improving the specific surface area by using the VD method to overcome this drawback.
【0007】本発明は請求項1ないし請求項4から成る
ものであり、Ni,TaおよびPdを必須成分とするア
モルファス合金とTaの一部をNb,TiおよびZrで
置換したアモルファス合金、Niの一部をCoで置換し
たアモルファス合金をPVD法によって比表面積の大き
なセラミックスに被覆した高活性と優れた反応選択性を
備えたNOx分解用触媒を提供するものである。The present invention consists of claims 1 to 4, and includes an amorphous alloy containing Ni, Ta and Pd as essential components and an amorphous alloy obtained by substituting a part of Ta with Nb, Ti and Zr. It is intended to provide a catalyst for NOx decomposition having high activity and excellent reaction selectivity in which an amorphous alloy partially substituted with Co is coated on a ceramic having a large specific surface area by a PVD method.
【0008】次の表1にこれら第1ないし第4の発明の
構成元素および含有率を示す。Table 1 below shows the constituent elements and the contents of these first to fourth inventions.
【0009】 [0009]
【0010】特定の化学反応に対する高い選択的触媒活
性を備えかつ製造・再生が容易な触媒を得るためには、
アルミナ、チタニア、シリカなどセラミックスに白金族
元素などを担持するよりは、有効元素を必要量含む合金
を用いる方が便利である。しかし、通常の方法で作られ
る結晶質金属の場合、多種多量の合金元素を添加する
と、しばしば、化学的性質の異なる多相構造となること
が多く、所定の特性を備えることができないだけでな
く、また脆いために触媒として必要な比表面積の大きな
材料は得難い。In order to obtain a catalyst which has a high selective catalytic activity for a specific chemical reaction and which can be easily produced and regenerated,
It is more convenient to use an alloy containing a necessary amount of an effective element than to support a platinum group element on ceramics such as alumina, titania, and silica. However, in the case of a crystalline metal produced by an ordinary method, addition of a large amount of various alloying elements often results in a multiphase structure having different chemical properties, and it is not possible to have predetermined properties. Moreover, since it is brittle, it is difficult to obtain a material having a large specific surface area required as a catalyst.
【0011】これに対し、PVD法で得られる上記組成
の本発明アモルファス合金は、構成元素が局在すること
を許さず所定の元素を均一に固溶している。これらの合
金をPVD法で比表面積の大きなセラミックス上に形成
すると、従来では実現しなかった本発明のアモルファス
合金固有の優れた触媒活性を備え、かつ比表面積が通常
の触媒と同様に大きく迅速にNOxを分解する触媒が生
じる。On the other hand, in the amorphous alloy of the present invention having the above composition obtained by the PVD method, the constituent elements are not allowed to be localized and the predetermined elements are uniformly solid-dissolved. When these alloys are formed on a ceramic having a large specific surface area by the PVD method, they have excellent catalytic activity peculiar to the amorphous alloy of the present invention, which has not been realized in the past, and the specific surface area is large like a normal catalyst and rapidly. A catalyst is generated that decomposes NOx.
【0012】すなわち、燃焼排気ガスに含まれるNOx
を分解する高活性アモルファス合金触媒は、上記組成の
合金を比表面積の大きなセラミックスに被覆する本発明
の触媒によって実現される。本発明で言うセラミックス
は粉末状、多孔質の粒状体又は板状体とし、適用個所に
応じ任意に選択することができる。That is, NOx contained in the combustion exhaust gas
The highly active amorphous alloy catalyst for decomposing the is realized by the catalyst of the present invention in which the alloy having the above composition is coated on the ceramic having a large specific surface area. The ceramics referred to in the present invention is a powdery, porous granular or plate-like body, and can be arbitrarily selected according to the application site.
【0013】次に、本発明における各成分組成を限定す
る理由を述べる。Next, the reasons for limiting the composition of each component in the present invention will be described.
【0014】NiおよびCoは本発明合金の基礎となる
元素であって、バルブメタルであるTa,Ti,Zr,
Nbの1種以上と共存してアモルファス構造を形成する
元素である。また、PdはNOx分解の触媒活性を付与
する基本元素である。このうちNiおよびTaを含まな
いアモルファス合金は、フッ酸に浸漬してバルブメタル
とNiおよびCoを選択溶解させ合金表面にPdを濃縮
させない限り、NOx分解に対して高い活性は得られな
い。しかし、本発明の高活性アモルファス合金をセラミ
ックスに被覆した触媒の場合、フッ化水素酸に浸漬する
と、セラミックス自体が侵され触媒が破壊されてしま
う。これに対し、本発明のNi,TaおよびPdを基本
成分とするアモルファス合金は、フッ酸浸漬によって表
面にPdを濃縮させる処理を施さなくとも高活性触媒で
あり、従って、本発明においてはNi,TaおよびPd
を基本成分とする必要がある。この場合、アモルファス
合金を最も作りやすいTa濃度は10−50原子%であ
るので、本発明の請求項1および請求項2においてTa
の含量は10−50原子%とする必要がある。また、T
aをNb,TiおよびZrと置換することはアモルファ
ス合金を得るのに何ら支障はないが、本発明の目的のた
めにはTaが必須元素であるので、本発明の請求項3お
よび請求項4においては、Taは50原子%未満含み、
Nb,TiおよびZrの少なくとも1種とTaとの合計
で10−50原子%とする必要がある。PdはNOx分
解の触媒活性を与える必須元素であるが、多量の添加は
触媒の価格を上げるだけで本発明の触媒のように高活性
を備えたものでは無駄なため、0.5−40原子%とす
る。Niは、Taおよびその他のバルブメタルとアモル
ファス合金を形成する必須元素であるがNiをPdで置
換することはアモルファス合金の形成に何ら支障がな
い。しかし、多量のPdの使用は前述のように無駄であ
るため、本発明の請求項1および請求項3においてNi
は実質的残部として30原子%以上必要である。また、
CoもNiを置換してアモルファス合金となる元素であ
るが、多量にNiをCoで置換すると触媒活性が低下す
る傾向があるため、本発明の請求項2および請求項4に
おいてCoの添加は10原子%未満に限定した。また、
Pd以外に種々の白金族元素を添加することは本発明の
目的に何ら支障がない。Ni and Co are elements that form the basis of the alloy of the present invention, and are valve metals such as Ta, Ti, Zr, and
It is an element that forms an amorphous structure in coexistence with one or more kinds of Nb. Further, Pd is a basic element that imparts catalytic activity for NOx decomposition. Of these, an amorphous alloy containing no Ni or Ta cannot obtain high activity for NOx decomposition unless it is immersed in hydrofluoric acid to selectively dissolve the valve metal and Ni and Co to concentrate Pd on the alloy surface. However, in the case of a catalyst in which the highly active amorphous alloy of the present invention is coated on ceramics, when immersed in hydrofluoric acid, the ceramics itself is attacked and the catalyst is destroyed. On the other hand, the amorphous alloy of the present invention containing Ni, Ta and Pd as basic components is a highly active catalyst without the treatment of concentrating Pd on the surface by dipping in hydrofluoric acid. Ta and Pd
Must be the basic ingredient. In this case, the concentration of Ta that is most likely to form an amorphous alloy is 10 to 50 atom%, and therefore Ta in Claim 1 and Claim 2 of the present invention is the same.
Content of 10-50 atomic% is required. Also, T
Although substituting a with Nb, Ti and Zr does not hinder obtaining an amorphous alloy, since Ta is an essential element for the purpose of the present invention, claims 3 and 4 of the present invention. In, Ta contains less than 50 atomic%,
It is necessary to make the total of at least one of Nb, Ti and Zr and Ta 10-50 atomic%. Pd is an essential element that gives catalytic activity for NOx decomposition, but addition of a large amount only raises the cost of the catalyst and is useless with a highly active catalyst such as the catalyst of the present invention. %. Ni is an essential element that forms an amorphous alloy with Ta and other valve metals, but replacing Ni with Pd does not hinder the formation of the amorphous alloy. However, since the use of a large amount of Pd is wasteful as described above, the Ni content in claims 1 and 3 of the present invention is large.
Is required to be 30 atomic% or more as a substantial balance. Also,
Co is also an element that replaces Ni to form an amorphous alloy. However, if Ni is replaced by Co in a large amount, the catalytic activity tends to decrease. Therefore, the addition of Co is 10 in Claims 2 and 4 of the present invention. Limited to less than atomic%. Also,
The addition of various platinum group elements other than Pd does not hinder the purpose of the present invention.
【0015】[0015]
【実施例】次に本発明を実施例によって説明する。EXAMPLES The present invention will now be described with reference to examples.
【0016】実施例1 粒度0.006μmのガンマ・アルミナ粉末をブタノー
ルに懸濁させてガラス板に塗布した後ブタノールを蒸発
させ比表面積の大きなスパッター用セラミックスサブス
トレイトとした。直径100mm、厚さ6mmのTa円
板上の中心から半径29mmの円周上に、20mm角の
Niを6個と10mm角のPd板4個を載せたものをタ
ーゲットとし、図1に示した装置を用い、Arを5ml
/minの速度で流しながら2×104 Torrの真空
に保ち、自転ならびに公転しているサブストレイトに約
400Wの出力でスパッターデポジションを行った。ガ
ラス板を直接サブストレイトとして同時にデポジットし
た合金についてX線回折の結果、生じた合金はアモルフ
ァスであることが確認された。またX線マイクロアナラ
イザーを用いた分析によってアモルファス合金の組成は
Niが50原子%、Taが34原子%、Pdが16原子
%であることが明らかになった。アルミナとアモルファ
ス合金との総量1g当たり3重量%のPdが含まれてい
た。この触媒1gを内径8mm長さ500mmの石英管
の中央部に充填し、昇温しながら、He中にNOを50
00ppm含むガスを30ml/minの速度で流し、
種々の温度で反応させ、反応後のガスをガスクロマトグ
ラフによって分析した。種々の温度におけるNOの変換
率を表2に示す。Example 1 A gamma-alumina powder having a particle size of 0.006 μm was suspended in butanol and applied on a glass plate, and then butanol was evaporated to obtain a ceramics substrate for sputtering having a large specific surface area. As shown in FIG. 1, a Ta disk having a diameter of 100 mm and a thickness of 6 mm was mounted with 6 pieces of 20 mm square Ni and 4 pieces of 10 mm square Pd plate on a circumference having a radius of 29 mm from the center. 5 ml Ar using the device
While maintaining a vacuum of 2 × 10 4 Torr while flowing at a speed of / min, sputter deposition was performed on the substrate rotating and revolving at an output of about 400 W. As a result of X-ray diffraction of an alloy simultaneously deposited using a glass plate as a direct substrate, it was confirmed that the resulting alloy was amorphous. An analysis using an X-ray microanalyzer revealed that the composition of the amorphous alloy was Ni at 50 atomic%, Ta at 34 atomic%, and Pd at 16 atomic%. 3% by weight of Pd was contained per 1 g of the total amount of alumina and the amorphous alloy. 1 g of this catalyst was filled in the central part of a quartz tube having an inner diameter of 8 mm and a length of 500 mm, and while heating the temperature, NO in He was adjusted to 50%.
A gas containing 00 ppm is caused to flow at a rate of 30 ml / min,
The reaction was carried out at various temperatures, and the gas after the reaction was analyzed by gas chromatography. Table 2 shows the conversion rates of NO at various temperatures.
【0017】 [0017]
【0018】以上のように本発明のアルミナ微粉末にア
モルファスNi−34原子%Ta−16原子%Pd合金
を被覆した触媒はNOx分解用高性能触媒である。As described above, the catalyst obtained by coating the fine alumina powder of the present invention with the amorphous Ni-34 at% Ta-16 at% Pd alloy is a high-performance catalyst for NOx decomposition.
【0019】実施例2 粒度0.006μmのガンマ・アルミナ粉末をブタノー
ルに懸濁させてガラス板に塗布した後ブタノールを蒸発
させ比表面積の大きなスパッター用セラミックスサブス
トレイトとした。直径100mm、厚さ6mmのTa円
板上の中心から半径29mmの円周上に、20mm角の
Ni、10mm角のPd板および種々の金属元素を載せ
たものをターゲットとし、図1に示した装置を用い、A
rを5ml/minの速度で流しながら2×104 To
rrの真空に保ち、自転ならびに公転しているサブスト
レイトに約400Wの出力でスパッターデポジションを
行った。ガラス板を直接サブストレイトとして同時にデ
ポジットした合金についてX線回折の結果、生じた合金
はアモルファスであることが確認された。またX線マイ
クロアナライザーを用いてアモルファス合金の組成を分
析した。これらの触媒1gを内径8mm長さ500mm
の石英管の中央部に充填し、He中にNOを5000p
pm含むガスを30ml/minの速度で流し、900
℃において、反応後のガスをガスクロマトグラフによっ
て分析した。結果を表3に示す。Example 2 Gamma-alumina powder having a particle size of 0.006 μm was suspended in butanol and applied on a glass plate, and then butanol was evaporated to obtain a ceramics substrate for sputtering having a large specific surface area. A target having a 20 mm square Ni plate, a 10 mm square Pd plate and various metal elements placed on a circumference of a radius of 29 mm from the center of a Ta disk having a diameter of 100 mm and a thickness of 6 mm is shown in FIG. Using the device, A
2 × 10 4 To while flowing r at a rate of 5 ml / min
A vacuum deposition of rr was carried out, and sputter deposition was performed at an output of about 400 W on the rotating and revolving substrate. As a result of X-ray diffraction of an alloy simultaneously deposited using a glass plate as a direct substrate, it was confirmed that the resulting alloy was amorphous. The composition of the amorphous alloy was analyzed using an X-ray microanalyzer. 1g of these catalysts, 8mm inner diameter and 500mm length
The central part of the quartz tube of NO is filled with NO in He at 5000p.
Gas containing pm is flowed at a speed of 30 ml / min to 900
The gas after the reaction was analyzed by gas chromatography at 0 ° C. The results are shown in Table 3.
【0020】 表3 本発明のアルミナ微粉末を担持したガラス板上に アモルファス合金を被覆した触媒のアモルファス合金組成と 900℃におけるNOのN2 およびO2 への変換率(%) 合金の組成(原子%) 900℃におけるNOのN2 およびO2 への変換率(%) Ni−10Ta−0.5Pd 50 Ni−16Ta−26Pd 80 Ni−20Ta−10Pd 70 Ni−20Ta−20Pd 78 Ni−20Ta−40Pd 90 Ni−30Ta−0.5Pd 48 Ni−30Ta−10Pd 65 Ni−30Ta−20Pd 75 Ni−30Ta−40Pd 81 Ni−40Ta−0.5Pd 45 Ni−40Ta−10Pd 62 Ni−40Ta−14Pd 65 Ni−40Ta−20Pd 72 Ni−40Ta−30Pd 76 Ni−50Ta−0.5Pd 42 Ni−50Ta−10Pd 61 Ni−50Ta−20Pd 69 Ni−10Co−20Ta−40Pd 85 Ni−5Co−20Ta−40Pd 87 Ni−1Co−20Ta−40Pd 90 Ni−10Co−30Ta−40Pd 75 Ni−5Co−30Ta−40Pd 78 Ni−1Co−30Ta−40Pd 81 Ni−10Co−40Ta−30Pd 70 Ni−5Co−40Ta−30Pd 73 Ni−1Co−40Ta−30Pd 76 Ni−10Co−50Ta−20Pd 60 Ni−5Co−50Ta−20Pd 65 Ni−1Co−50Ta−20Pd 69 Ni−20Ti−40Pd 65 Ni−1Ta−20Ti−40Pd 65 Ni−5Ta−20Ti−40Pd 62 Ni−10Ta−20Ti−40Pd 61 Ni−20Ta−20Ti−30Pd 58 Ni−30Ta−20Ti−20Pd 50 Ni−20Zr−40Pd 50 Ni−1Ta−20Zr−40Pd 50 Ni−5Ta−20Zr−40Pd 48 Ni−10Ta−20Zr−40Pd 45 Ni−20Ta−20Zr−30Pd 42 Ni−30Ta−20Zr−20Pd 40 Ni−20Nb−40Pd 65 Ni−1Ta−20Nb−40Pd 65 Ni−5Ta−20Nb−40Pd 63 Ni−10Ta−20Nb−40Pd 62 Ni−20Ta−20Nb−30Pd 59 Ni−30Ta−20Nb−20Pd 51 Ni−30Ti−40Pd 55 Ni−10Ta−30Ti−30Pd 45 Ni−20Ta−30Ti−20Pd 38 Ni−30Zr−40Pd 45 Ni−10Ta−30Zr−30Pd 38 Ni−20Ta−30Zr−20Pd 31 Ni−30Nb−40Pd 56 Ni−10Ta−30Nb−30Pd 43 Ni−20Ta−30Nb−20Pd 37 Ni−40Ti−30Pd 42 Ni−10Ta−40Ti−20Pd 34 Ni−40Zr−40Pd 35 Ni−10Ta−40Zr−30Pd 28 Ni−40Nb−40Pd 43 Ni−10Ta−40Nb−30Pd 31 Ni−10Co−20Ti−40Pd 52 Ni−5Co−20Ti−40Pd 58 Ni−1Co−20Ti−40Pd 65 Ni−10Co−20Zr−40Pd 39 Ni−5Co−20Zr−40Pd 46 Ni−1Co−20Zr−40Pd 50 Ni−10Co−20Nb−40Pd 51 Ni−5Co−20Nb−40Pd 55 Ni−1Co−20Nb−40Pd 65 Ni−10Ta−0.5Pd 48 Ni−10Ta−10Pd 65 Ni−10Ta−20Pd 75 Ni−10Ta−40Pd 85 Ni−15Ta−0.5Pd 52 Ni−15Ta−10Pd 69 Ni−15Ta−20Pd 82 Ni−15Ta−40Pd 91 Ni−10Co−10Ta−40Pd 80 Ni−5Co−10Ta−40Pd 82 Ni−1Co−10Ta−40Pd 85 Ni−10Co−15Ta−40Pd 77 Ni−5Co−15Ta−40Pd 80 Ni−1Co−15Ta−40Pd 91 Ni−10Zr−40Pd 55 Ni−1Ta−10Zr−40Pd 55 Ni−5Ta−10Zr−40Pd 51 Ni−10Ta−10Zr−40Pd 47 Ni−20Ta−10Zr−40Pd 43 Ni−30Ta−10Zr−30Pd 41 Ni−40Ta−10Zr−20Pd 41 Ni−10Ti−40Pd 70 Ni−1Ta−10Ti−40Pd 70 Ni−5Ta−10Ti−40Pd 68 Ni−10Ta−10Ti−40Pd 64 Ni−20Ta−10Ti−40Pd 62 Ni−30Ta−10Ti−30Pd 55 Ni−40Ta−10Ti−20Pd 50 Ni−10Nb−40Pd 71 Ni−1Ta−10Nb−40Pd 71 Ni−5Ta−10Nb−40Pd 67 Ni−10Ta−10Nb−40Pd 64 Ni−20Ta−10Nb−40Pd 62 Ni−30Ta−10Nb−30Pd 55 Ni−40Ta−10Nb−20Pd 50 Ni−10Co−10Ti−40Pd 55 Ni−5Co−10Ti−40Pd 66 Ni−1Co−10Ti−40Pd 70 Ni−10Co−10Zr−40Pd 42 Ni−5Co−10Zr−40Pd 49 Ni−1Co−10Zr−40Pd 55 Ni−10Co−10Nb−40Pd 54 Ni−5Co−10Nb−40Pd 64 Ni−1Co−10Nb−40Pd 70 比較例 Cu−ZSM−5 500℃以上で触媒活性低下 Ag−Co3 O4 700℃以上で劣化 Co3 O4 700℃以上で劣化 La15Sr0.5 CuO4 40(800℃) BaFeO3-x 19(800℃) 以上のように本発明のアルミナ微粉末にアモルファス合
金を被覆した触媒はNOx分解用高性能触媒である。Table 3 Amorphous alloy composition of a catalyst prepared by coating an amorphous alloy on a glass plate supporting the fine alumina powder of the present invention and NO conversion to N 2 and O 2 at 900 ° C. (%) Alloy composition ( Atomic%) Conversion rate of NO to N 2 and O 2 at 900 ° C. (%) Ni-10Ta-0.5Pd 50 Ni-16Ta-26Pd 80 Ni-20Ta-10Pd 70 Ni-20Ta-20Pd 78 Ni-20Ta- 40Pd 90 Ni-30Ta-0.5Pd 48 Ni-30Ta-10Pd 65 Ni-30Ta-20Pd 75 Ni-30Ta-40Pd 81 Ni-40Ta-0.5Pd 45 Ni-40Ta-10Pd 62 Ni-40Ta-14Pd 65 Ni- 40Ta-20Pd 72 Ni-40Ta-30Pd 76 Ni-50 Ta-0.5Pd 42 Ni-50Ta-10Pd 61 Ni-50Ta-20Pd 69 Ni-10Co-20Ta-40Pd 85 Ni-5Co-20Ta-40Pd 87 Ni-1Co-20Ta-40Pd 90 Ni-10Co-30Ta-40Pd 75 Ni-5Co-30Ta-40Pd 78 Ni-1Co-30Ta-40Pd 81 Ni-10Co-40Ta-30Pd 70 Ni-5Co-40Ta-30Pd 73 Ni-1Co-40Ta-30Pd 76 Ni-10Co-50Ta-20Pd 60 Ni- 5Co-50Ta-20Pd 65 Ni-1Co-50Ta-20Pd 69 Ni-20Ti-40Pd 65 Ni-1Ta-20Ti-40Pd 65 Ni-5Ta-20Ti-40Pd 62 Ni-10Ta-20Ti- 0Pd 61 Ni-20Ta-20Ti-30Pd 58 Ni-30Ta-20Ti-20Pd 50 Ni-20Zr-40Pd 50 Ni-1Ta-20Zr-40Pd 50 Ni-5Ta-20Zr-40Pd 48 Ni-10Ta-20Zr-40Pd 45. 20Ta-20Zr-30Pd 42 Ni-30Ta-20Zr-20Pd 40 Ni-20Nb-40Pd 65 Ni-1Ta-20Nb-40Pd 65 Ni-5Ta-20Nb-40Pd 63 Ni-10Ta-20Nb-40Pd 62Ni-20-20a- 30Pd 59 Ni-30Ta-20Nb-20Pd 51 Ni-30Ti-40Pd 55 Ni-10Ta-30Ti-30Pd 45 Ni-20Ta-30Ti-20Pd 38 Ni-30Zr-40P 45 Ni-10Ta-30Zr-30Pd 38 Ni-20Ta-30Zr-20Pd 31 Ni-30Nb-40Pd 56 Ni-10Ta-30Nb-30Pd 43 Ni-20Ta-30Nb-20Pd 37 Ni-40Ti-30Pd 42Ni-10Ta-40 -20Pd 34 Ni-40Zr-40Pd 35 Ni-10Ta-40Zr-30Pd 28 Ni-40Nb-40Pd 43 Ni-10Ta-40Nb-30Pd 31 Ni-10Co-20Ti-40Pd 52 Ni-5Co-20Ti-40Pd 58 Ni-1Co. -20Ti-40Pd 65 Ni-10Co-20Zr-40Pd 39 Ni-5Co-20Zr-40Pd 46 Ni-1Co-20Zr-40Pd 50 Ni-10Co-20Nb-40Pd 51 i-5Co-20Nb-40Pd 55 Ni-1Co-20Nb-40Pd 65 Ni-10Ta-0.5Pd 48 Ni-10Ta-10Pd 65 Ni-10Ta-20Pd 75 Ni-10Ta-40Pd 85 Ni-15Ta-0.5Pd 52 Ni-15Ta-10Pd 69 Ni-15Ta-20Pd 82 Ni-15Ta-40Pd 91 Ni-10Co-10Ta-40Pd 80 Ni-5Co-10Ta-40Pd 82 Ni-1Co-10Ta-40Pd 85 Ni-10Co-15Ta-40Pd 77 Ni-5Co-15Ta-40Pd 80 Ni-1Co-15Ta-40Pd 91 Ni-10Zr-40Pd 55 Ni-1Ta-10Zr-40Pd 55 Ni-5Ta-10Zr-40Pd 51 Ni-10Ta-10Z r-40Pd 47 Ni-20Ta-10Zr-40Pd 43 Ni-30Ta-10Zr-30Pd 41 Ni-40Ta-10Zr-20Pd 41 Ni-10Ti-40Pd 70 Ni-1Ta-10Ti-40Pd 70 Ni-5Ta-10Ti-40Pd 68 Ni-10Ta-10Ti-40Pd 64 Ni-20Ta-10Ti-40Pd 62 Ni-30Ta-10Ti-30Pd 55 Ni-40Ta-10Ti-20Pd 50 Ni-10Nb-40Pd 71 Ni-1Ta-10Nb-40Pd 71 Ni-5Ta- 10Nb-40Pd 67 Ni-10Ta-10Nb-40Pd 64 Ni-20Ta-10Nb-40Pd 62 Ni-30Ta-10Nb-30Pd 55 Ni-40Ta-10Nb-20Pd 50 Ni-1 Co-10Ti-40Pd 55 Ni-5Co-10Ti-40Pd 66 Ni-1Co-10Ti-40Pd 70 Ni-10Co-10Zr-40Pd 42 Ni-5Co-10Zr-40Pd 49 Ni-1Co-10Zr-40Pd 55 Ni-10Co- 10Nb-40Pd 54 Ni-5Co- 10Nb-40Pd 64 Ni-1Co-10Nb-40Pd degradation at 70 Comparative example Cu-ZSM- 5 500 ℃ or more catalytically active reduced Ag-Co 3 O 4 700 ℃ or Co 3 O 4 700 Deterioration above ℃ La 15 Sr 0.5 CuO 4 40 (800 ℃) BaFeO 3-x 19 (800 ℃) As described above, the catalyst of the present invention, which is obtained by coating the alumina fine powder with the amorphous alloy, is a high-performance catalyst for NOx decomposition. .
【0021】[0021]
【発明の効果】以上記述したとおり、本発明の比表面積
の大きなセラミックスにアモルファス合金を被覆した触
媒はNOx分解用高性能触媒である。As described above, the catalyst of the present invention in which the ceramic having a large specific surface area is coated with the amorphous alloy is a high-performance catalyst for decomposing NOx.
【0022】また、本発明のNOx分解用高活性触媒
は、適当な比表面積の大きなセラミックスにPVD法で
容易に作られ実用性に優れている。Further, the highly active catalyst for decomposing NOx of the present invention is excellent in practicability since it can be easily formed on a suitable ceramic having a large specific surface area by the PVD method.
【図1】本発明アモルファス合金を作製するスパッター
装置の一例を示す概略頭である。FIG. 1 is a schematic head showing an example of a sputtering apparatus for producing an amorphous alloy of the present invention.
1 サブストレイトの公転軸 2 自転するサブストレイト 3 ターゲット 6 スパッターチャンバー 1 Substrate's revolution axis 2 Rotating substrate 3 Target 6 Target 6 Sputter chamber
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 37/02 301 P C22C 45/04 D C23C 14/18 8939−4K (72)発明者 浅見 勝彦 宮城県仙台市太白区太白2丁目5−3 (72)発明者 幅崎 浩樹 宮城県仙台市太白区長町8丁目6−10− 111 (72)発明者 秋山 英二 宮城県仙台市太白区向山2丁目13−5 ハ イツルーベンス210号─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 37/02 301 P C22C 45/04 D C23C 14/18 8939-4K (72) Inventor Katsuhiko Asami 2-5-3 Taichiro, Taichiro-ku, Sendai-shi, Miyagi Prefecture 72-72 Inventor Hiroki widthzaki 6-10-111, Nagamachi, Taichiro-ku, Sendai-shi Miyagi Prefecture (72) Eiji Akiyama 2-chome, Mukaiyama, Taichiro-ku, Sendai-shi, Miyagi Prefecture 13-5 High Rubens 210
Claims (5)
−40原子%と残部実質的にNiを30原子%以上含む
アモルファス合金をPVD法でセラミックスに被覆した
NOx分解用触媒。1. Ta: 10-50 atomic%, Pd: 0.5
A catalyst for NOx decomposition in which a ceramic is coated with an amorphous alloy containing -40 atom% and the balance substantially 30 atom% or more of Ni by PVD method.
−40原子%、Coを10原子%未満と残部実質的にN
iからなり、NiとCoとの合計で30原子%以上を含
むアモルファス合金をPVD法でセラミックスに被覆し
たNOx分解用触媒。2. Ta of 10-50 atomic% and Pd of 0.5
-40 atomic% and Co less than 10 atomic% with the balance being substantially N
A catalyst for NOx decomposition in which an amorphous alloy containing i and containing 30 atomic% or more of Ni and Co in total is coated on ceramics by a PVD method.
びZrの少なくとも1種との合計で10−50原子%、
Pdを0.5−40原子%と残部実質的にNiを30原
子%以上含むアモルファス合金をPVD法でセラミック
スに被覆したNOx分解用触媒。3. A total of less than 50 atomic% Ta and at least one of Nb, Ti and Zr is 10-50 atomic%,
A catalyst for NOx decomposition in which a ceramic is coated with an amorphous alloy containing 0.5 to 40 atomic% of Pd and the balance of substantially 30 atomic% or more of Ni by a PVD method.
びZrの少なくとも1種との合計で10−50原子%、
Pdを0.5−40原子%、Coを10原子%未満と残
部実質的にNiからなり、NiとCoとの合計で30原
子%以上を含むアモルファス合金をPVD法でセラミッ
クスに被覆したNOx分解用触媒。4. A total of Ta of less than 50 atomic% and at least one of Nb, Ti and Zr is 10-50 atomic%,
NOx decomposition in which Pd is 0.5-40 atomic% and Co is less than 10 atomic% and the balance substantially consists of Ni, and an amorphous alloy containing 30 atomic% or more in total of Ni and Co is coated on ceramics by the PVD method. Catalyst.
質状である請求項1乃至4の何れかに記載のNOx分解
用触媒。5. The catalyst for decomposing NOx according to claim 1, wherein the ceramic is powdery or molded porous.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6237087A JPH0899039A (en) | 1994-09-30 | 1994-09-30 | Amorphous alloy catalyst for nitrogen oxide decomposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6237087A JPH0899039A (en) | 1994-09-30 | 1994-09-30 | Amorphous alloy catalyst for nitrogen oxide decomposition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0899039A true JPH0899039A (en) | 1996-04-16 |
Family
ID=17010224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6237087A Pending JPH0899039A (en) | 1994-09-30 | 1994-09-30 | Amorphous alloy catalyst for nitrogen oxide decomposition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0899039A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010142699A (en) * | 2008-12-16 | 2010-07-01 | Kumamoto Univ | Method for producing exhaust gas catalyst by using coaxial vacuum arc vapor deposition source |
CN105727952A (en) * | 2014-12-26 | 2016-07-06 | 丰田自动车株式会社 | Exhaust Gas Purifying Catalyst And Production Method Thereof |
CN106000398A (en) * | 2015-03-27 | 2016-10-12 | 丰田自动车株式会社 | Exhaust gas purification catalyst and the method for producing the same |
JP2016538992A (en) * | 2013-11-18 | 2016-12-15 | コーニング精密素材株式会社Corning Precision Materials Co., Ltd. | Oxidation catalyst, method for producing the same, and exhaust gas purification filter including the same |
JP2017064680A (en) * | 2015-10-02 | 2017-04-06 | トヨタ自動車株式会社 | Catalyst for purifying exhaust gas, and method for manufacturing the same |
-
1994
- 1994-09-30 JP JP6237087A patent/JPH0899039A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010142699A (en) * | 2008-12-16 | 2010-07-01 | Kumamoto Univ | Method for producing exhaust gas catalyst by using coaxial vacuum arc vapor deposition source |
JP2016538992A (en) * | 2013-11-18 | 2016-12-15 | コーニング精密素材株式会社Corning Precision Materials Co., Ltd. | Oxidation catalyst, method for producing the same, and exhaust gas purification filter including the same |
CN105727952A (en) * | 2014-12-26 | 2016-07-06 | 丰田自动车株式会社 | Exhaust Gas Purifying Catalyst And Production Method Thereof |
JP2016123932A (en) * | 2014-12-26 | 2016-07-11 | トヨタ自動車株式会社 | Exhaust gas purification catalyst and method for producing the same |
CN106000398A (en) * | 2015-03-27 | 2016-10-12 | 丰田自动车株式会社 | Exhaust gas purification catalyst and the method for producing the same |
JP2016185535A (en) * | 2015-03-27 | 2016-10-27 | トヨタ自動車株式会社 | Catalyst for exhaust gas purification and method for producing the same |
JP2017064680A (en) * | 2015-10-02 | 2017-04-06 | トヨタ自動車株式会社 | Catalyst for purifying exhaust gas, and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6107239A (en) | Heat resistant metallic oxide catalyst for reducing pollution emission | |
US5585083A (en) | Catalytic process for formaldehyde oxidation | |
JP3348276B2 (en) | Method and apparatus for purifying waste gas | |
US5609022A (en) | Method of reducing NOx emissions from lean-burn combustion engines | |
JPH01130735A (en) | Catalyst for purifying exhaust gas | |
JP2773428B2 (en) | Exhaust gas purification method | |
JPH08155303A (en) | Exhaust gas purification catalyst carrier, production of the same and exhaust gas purification catalyst using the same and method for purifying exhaust gas | |
JPH0899039A (en) | Amorphous alloy catalyst for nitrogen oxide decomposition | |
JP3441267B2 (en) | Catalyst production method | |
JP2006055807A (en) | Method for preparing catalyst carrying noble metal cluster | |
JP2897958B2 (en) | Amorphous alloy catalyst for exhaust gas purification | |
JPH05154381A (en) | Exhaust gas purifying catalyst forming process | |
JPH09108570A (en) | Oxidation catalyst for cleaning exhaust gas and preparation thereof | |
US3945948A (en) | Catalyst and the process for preparing it | |
JPH03221144A (en) | Exhaust gas purifying catalyst | |
JP3794035B2 (en) | Catalyst for exhaust gas purification of internal combustion engine | |
JPH0356140A (en) | Catalyst for purifying exhaust gas | |
JP2909230B2 (en) | Exhaust gas treatment catalyst and method for producing the same | |
JPH04187247A (en) | Production of catalyst for purification of exhaust gas | |
JP2001219033A (en) | Method and device for cleaning harmful gas | |
JPH0775737A (en) | Regenerating method of catalyst for purifying waste gas | |
JPH0557191A (en) | Catalyst for purifying exhaust gas of diesel engine | |
JPH10180117A (en) | Preparation of catalyst for exhaust gas purification | |
JPH10151357A (en) | Production of catalyst | |
JP2006326477A (en) | Method for manufacturing catalyst for cleaning exhaust gas |