JPH089805B2 - Far infrared radiation polyester fiber - Google Patents
Far infrared radiation polyester fiberInfo
- Publication number
- JPH089805B2 JPH089805B2 JP63146360A JP14636088A JPH089805B2 JP H089805 B2 JPH089805 B2 JP H089805B2 JP 63146360 A JP63146360 A JP 63146360A JP 14636088 A JP14636088 A JP 14636088A JP H089805 B2 JPH089805 B2 JP H089805B2
- Authority
- JP
- Japan
- Prior art keywords
- silica
- polyester fiber
- infrared radiation
- far
- titanium oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Artificial Filaments (AREA)
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、遠赤外線を放射する新規なポリエステル繊
維に関するもので、特にふとん綿、カーペット、肌着内
地、防寒着等の用途に用いた場合好ましい保温効果を示
すポリエステル繊維に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a novel polyester fiber that radiates far infrared rays, and is particularly preferable when used for applications such as cotton fluff, carpet, underwear inner lining, and winter clothes. The present invention relates to a polyester fiber having a heat retaining effect.
〈従来の技術〉 遠赤外線を用いて物体を加熱する場合の特徴として
は、輻射特性が極めて強く、被加熱物体は直接加熱され
中間に空気層があつても阻害されず、被加熱物体の表面
と内部との熱伝達時間差が少なく、全体がほとんど同時
に加熱されることおよび有機高分子化合物に対する加熱
効果が高く、人体に対する暖房感覚が柔らかであること
が挙げられる。このような特徴を利用して、加熱、乾燥
用としての産業用のほか、民生用としての暖房器具に加
えて遠赤外線サウナや温灸器として医療および保健面な
どの用途が開発されている。<Prior art> When heating an object using far infrared rays, the radiation characteristics are extremely strong, the object to be heated is directly heated, and even if there is an air layer in the middle, it is not hindered, and the surface of the object to be heated is There is little difference in heat transfer time between the inside and the inside, the whole is heated almost at the same time, the heating effect for the organic polymer compound is high, and the heating feeling to the human body is soft. Utilizing such characteristics, in addition to industrial use for heating and drying, in addition to heating appliances for consumer use, far infrared ray saunas and moxibustion devices have been used for medical and health purposes.
遠赤外線放射源用の材料としては、有機化合物の赤外
線吸収剤も知られているが金属酸化物が中でも優れてい
るものの一つに挙げられている。実際、耐熱性、遠赤外
線吸収特性と整合のとれた放射特性をもつ金属酸化物
は、今日、遠赤外線ヒーターや遠赤外線染料として量産
されている。As a material for the far-infrared radiation source, an infrared absorber of an organic compound is also known, but a metal oxide is mentioned as one of the excellent ones. In fact, metal oxides having heat-resistant properties and radiation properties that match the far-infrared absorption properties are mass-produced today as far-infrared heaters and far-infrared dyes.
尚、人体に対して効果のある好ましい遠赤外線の波長
は、3〜20ミクロン(μm)と言われており、この波長
域のものを放射する素材が良好なものである。It is said that the preferable wavelength of far infrared rays that is effective for the human body is 3 to 20 microns (μm), and a material that emits light in this wavelength range is good.
〈発明が解決しようとする課題〉 金属酸化物を用いた繊維製品は、特開昭61-12908号公
報及び特開昭62-238811号公報等において公知である。
前者に用いられている金属酸化物は、ジルコン(ZrO2・Si
O2)、チタニア(TiO2)を主成分とし、これに必要に応じ
てマンガン酸化物(MnO2)、酸化鉄(Fe2O3)、酸化コバル
ト(CoO)、酸化ニツケル(NiO)、酸化クロム(Cr2O5)
を適宜添加し、1100〜1700℃で焼成し、粉砕したセラミ
ツクスの微粉を用いており、後者はアルミナ、マグネシ
ア、ジルコニア、ムライト(3Al2O3・2SiO2)の粉末を用い
ている。しかしながら、従来技術において用いられてい
るセラミツクスは、高価であるばかりでなく硬度が高い
ため1μm以下の粒径にするために、粉砕費がかなりか
かるというコストデメリツトがあつた。又、従来の遠赤
外線放射ポリエステル繊維は紡糸時の曵糸性に問題があ
った。<Problems to be Solved by the Invention> Textile products using metal oxides are known in JP-A-61-12908 and JP-A-62-238811.
The metal oxide used in the former is zircon (ZrO 2 · Si
O 2 ), titania (TiO 2 ) as the main component, and if necessary, manganese oxide (MnO 2 ), iron oxide (Fe 2 O 3 ), cobalt oxide (CoO), nickel oxide (NiO), oxidation Chromium (Cr 2 O 5 )
Is used, and fine powder of ceramics is used, which is fired at 1100 to 1700 ° C. and crushed, and the latter uses powder of alumina, magnesia, zirconia, and mullite (3Al 2 O 3 .2SiO 2 ). However, the ceramics used in the prior art are not only expensive, but also have a high hardness, so that the particle size is 1 μm or less, so that the grinding cost is considerably high. Further, the conventional far-infrared radiation polyester fiber has a problem in the spinnability during spinning.
本発明者等は、こうした欠点を改善すべく鋭意研究す
ると同時に人体に対して最も有効な3〜20μmの遠赤外
線を放射する特定粒径の酸化チタンおよびシリカ粉末を
ポリエステル繊維に対して特定量含有させることによつ
て人体に有効な遠赤外線放射特性を有し、かつ紡糸調子
の良好なポリエステル繊維が得られることを見い出し本
発明に到達した。The present inventors have diligently studied to improve such defects, and at the same time, contain a specific amount of titanium oxide and silica powder having a specific particle size that emits far infrared rays of 3 to 20 μm, which is most effective for the human body, in a polyester fiber. It was found that the polyester fiber having a far infrared ray radiation property effective for the human body and having a good spinning tone can be obtained by the above process, and thus the present invention has been accomplished.
〈課題を解決するための手段〉 即ち、本発明は、平均粒径が2μm以下の酸化チタン
(TiO2)および平均粒径が1μm以下のシリカ(SiO2)を合
計で5〜15重量%含有しており、かつ、酸化チタンとシ
リカの割合が(TiO2)/(SiO2)=8/1〜1/4(重量比)であ
ることを特徴とする遠赤外線放射ポリエステル繊維であ
る。<Means for Solving the Problems> That is, the present invention provides titanium oxide having an average particle size of 2 μm or less.
(TiO 2 ) and silica (SiO 2 ) having an average particle size of 1 μm or less are contained in a total amount of 5 to 15% by weight, and the ratio of titanium oxide and silica is (TiO 2 ) / (SiO 2 ) = 8. It is a far-infrared radiation polyester fiber characterized by being 1/1 to 1/4 (weight ratio).
本発明においてポリエステルは、特に限定されること
はなく、繊維形成能を有するポリエステルであればよ
い。又、ポリエステルはDMT法、直接重合法のどちらの
方法で製造されるものでもよく、重合成分としては、例
えば、テレフタル酸、イソフタル酸、5−ナトリウムス
ルホイソフタル酸、アジピン酸、セバシン酸、またはそ
れらのエステル類等のジカルボン酸成分を用いることが
でき、グリコール成分としては、エチレングリコール、
1,4−ブチレングリコール等の脂肪族グリコール、ある
いは、脂肪族グリコールの一部をジエチレングリコー
ル、プロピレングリコール、ポリアルキレングリコール
等に置き換えて用いることができる。更にオキシ酸やポ
リオール等も適宜共重合可能である。本発明におけるポ
リエステルは安定剤、染料や顔料などの着色剤等通常の
ポリエステル繊維に適用される改質剤や機能性付与剤を
含んでいてもよい。In the present invention, the polyester is not particularly limited as long as it has a fiber-forming ability. The polyester may be produced by either the DMT method or the direct polymerization method, and examples of the polymerization component include terephthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, adipic acid, sebacic acid, or those. A dicarboxylic acid component such as an ester of can be used, and as the glycol component, ethylene glycol,
An aliphatic glycol such as 1,4-butylene glycol or a part of the aliphatic glycol can be used by replacing it with diethylene glycol, propylene glycol, polyalkylene glycol or the like. Further, oxyacid, polyol, etc. can be appropriately copolymerized. The polyester in the present invention may contain a modifier and a functional-imparting agent which are applied to ordinary polyester fibers such as a stabilizer and a coloring agent such as a dye or a pigment.
本発明で使用する酸化チタン(以下、単にTiO2と記す
こともある。)は、平均粒径が2μm以下であり、好ま
しくは、1μm以下がよい。2μmより大きくなると凝
集しやすくなつたり、あるいは、可紡性の点で問題が発
生し易くなる。また、本発明で使用する酸化チタンはAl
2O3、SiO2、P2O5、Fe2O3、あるいはK2O等で表面を被覆させ
たものを用いてもかまわない。Titanium oxide used in the present invention (hereinafter sometimes simply referred to as TiO 2 ) has an average particle size of 2 μm or less, preferably 1 μm or less. If it is larger than 2 μm, it tends to agglomerate, or a problem tends to occur in terms of spinnability. Further, titanium oxide used in the present invention is Al
A material whose surface is coated with 2 O 3 , SiO 2 , P 2 O 5 , Fe 2 O 3 or K 2 O may be used.
また本発明で使用するシリカ(以下、単にSiO2と記す
こともある。)は、平均粒径が1μm以下であり、好ま
しくは1〜100ミリミクロンのものがよく中でも微粒子
が単粒子状で存在するコロイダルシリカの使用が推奨さ
れる。このコロイダルシリカとは、ケイ素酸化物を主成
分とする微粒子が水または単価のアルコール類またはジ
オール類またはこれらの混合物を分散媒としてコロイド
として存在するものを言う。The silica used in the present invention (hereinafter sometimes simply referred to as SiO 2 ) has an average particle size of 1 μm or less, preferably 1 to 100 mm, and fine particles are present as single particles. The use of colloidal silica is recommended. The colloidal silica is one in which fine particles containing silicon oxide as a main component are present as a colloid using water, monohydric alcohols or diols or a mixture thereof as a dispersion medium.
本発明における平均粒径とはメジアン径(積算分布曲
線の50%に相当する粒子径)であり、粉砕された微粉末
の分散希釈液について光の透過率を測定して求められる
光透過法によるものであり、例えば、具体的には(株)
セイシン企業製、ミクロン・フオトサイザーSKC-2000S
を用いて測定されるものである。The average particle diameter in the present invention is the median diameter (particle diameter corresponding to 50% of the cumulative distribution curve), and is determined by a light transmission method obtained by measuring the light transmittance of a dispersion liquid of pulverized fine powder. For example, specifically,
Made by Seishin Enterprise, Micron Photosizer SKC-2000S
Is measured using.
本発明においては、ポリエステル中で酸化チタンとシ
リカの合計量が5〜15重量%であることが重要である。
これらの微粉末の含有量が5重量%未満では遠赤外線の
放射効果を僅かであるが5重量%以上で温感効果が増大
する。しかし15重量%を越えると繊維化が困難になつた
り、繊維物性が劣つてくる。また含有する酸化チタンと
シリカの重量割合は、TiO2/SiO2=8/1〜1/4さらに好ま
しくは、6/1〜5/5の重量割合がよい。これらの範囲を外
れた場合、人体に有効である遠赤外線の波長域(3〜20
μm)での効果は低くなる。また、TiO2/SiO2が8/1より
も大きくなくなると、即ちシリカの量が少な過ぎると曵
糸性が悪くなる傾向にある。In the present invention, it is important that the total amount of titanium oxide and silica in the polyester is 5 to 15% by weight.
When the content of these fine powders is less than 5% by weight, the radiation effect of far infrared rays is small, but when it is 5% by weight or more, the warming effect is increased. However, if it exceeds 15% by weight, it becomes difficult to form fibers and the physical properties of fibers become poor. The weight ratio of titanium oxide and silica contained is TiO 2 / SiO 2 = 8/1 to 1/4, more preferably 6/1 to 5/5. If it deviates from these ranges, it is effective in the far infrared wavelength range (3 to 20).
μm) is less effective. Further, when TiO 2 / SiO 2 is not larger than 8/1, that is, when the amount of silica is too small, the spinnability tends to deteriorate.
特に、本発明においては酸化チタンとシリカを併用す
る点に大きな特徴がある。これらのうち、いずれが欠け
ても十分な遠赤外線放射効果は得られない。これは、酸
化チタンとシリカが互いに放射効率の悪い部分を補つて
全体として人体に対して最も有効な波長域である3〜20
μの範囲の遠赤外線を満遍無く効率よく放射する為であ
ると想像される。In particular, the present invention is characterized in that titanium oxide and silica are used in combination. If any of these is lacking, a sufficient far-infrared radiation effect cannot be obtained. This is the wavelength range in which titanium oxide and silica are the most effective wavelength range for the human body as a whole, complementing each other in areas where radiation efficiency is poor.
It is supposed that this is because it radiates far infrared rays in the μ range uniformly and efficiently.
更に、一般的に無機粒子の相当量配合されたポリエス
テルを溶融紡糸する際には切糸など曵糸性が悪くなると
いう重大な欠点を有していたのであるが、意外にも、シ
リカを酸化チタンと併用した場合は、酸化チタン単独使
用時よりも曳糸性に改善が認められた。Further, in general, when melt-spinning polyester containing a considerable amount of inorganic particles, it had a serious defect that the spinnability such as a cutting thread deteriorates, but unexpectedly, silica was oxidized. When used in combination with titanium, the spinnability was improved compared to when titanium oxide was used alone.
本発明のポリエステル繊維の製造方法は従来公知の、
無機粒子をポリエステル繊維に配合および/または付着
する方法をそのまま適用することが可能である。例え
ば、 (1)染液に微粉末を添加して染色する方法 (2)紡糸液へ微粉末を添加する方法 (3)重合工程で微粉末を反応系へ添加する方法 等がある。The method for producing the polyester fiber of the present invention is conventionally known,
It is possible to directly apply the method of blending and / or attaching the inorganic particles to the polyester fiber. For example, there are (1) a method of adding fine powder to a dyeing solution for dyeing, (2) a method of adding fine powder to a spinning solution, and (3) a method of adding fine powder to a reaction system in a polymerization step.
ここで、(1)の方法は、微粉末を繊維表面上に付着
させるものであるので曵糸性については特に問題はない
が、微粉末が脱落し、遠赤外線放射性能が漸時低下し易
い。尚、「付着」は本発明でいう「含有」に含まれるも
のである。また、(2)の方法は、重縮合終了後に微粉
末を添加するものであるが、この場合の添加は、溶剤な
しで混合するため、巨大な粒子となり、紡糸口金のフイ
ルター詰り、あるいは、単糸切れ等を起こし易い。Here, since the method (1) attaches the fine powder to the surface of the fiber, there is no particular problem with the spinnability, but the fine powder falls off and the far-infrared radiation performance tends to gradually decrease. . The "adhesion" is included in the "inclusion" in the present invention. Further, in the method (2), fine powder is added after the completion of polycondensation, but in this case, since the mixture is mixed without a solvent, it becomes huge particles, and the spinneret is clogged with a filter or a single particle is added. It is easy to cause thread breakage.
本発明においては、優れた遠赤外線放射効果と良好な
紡糸調子の両立を図るものであるので、(3)の方法、
即ち、ポリエステルの製造時重縮合反応完結までに酸化
チタンおよびシリカの微粉末を反応系に添加することが
好ましく、特に、エステル化から重縮合反応完結までの
間に添加することが好ましい。この時期に酸化チタン、
シリカを添加して得られたポリエステル繊維は、繊維内
部でこれらの微粉末が凝集することなく均一に分散され
ている。これに対し、従来方法のように、溶融紡糸原液
に酸化物セラミツクスを混練したものは、前述したよう
に酸化物セラミツクスの微粉末が、凝集して巨大な粒子
となり易いので、良好な紡糸調子を得ることができず、
単糸切れ、あるいは、ローラー捲付き等が発生してあま
り好ましくない。In the present invention, since the excellent far infrared radiation effect and the good spinning tone are both achieved, the method (3),
That is, it is preferable to add fine powders of titanium oxide and silica to the reaction system before the polycondensation reaction is completed during the production of polyester, and it is particularly preferable to add them between the esterification and the completion of the polycondensation reaction. Titanium oxide at this time,
In the polyester fiber obtained by adding silica, these fine powders are uniformly dispersed inside the fiber without agglomerating. On the other hand, as in the conventional method, the one in which the oxide ceramics are kneaded in the melt spinning stock solution, as described above, the fine powder of the oxide ceramics is apt to aggregate into huge particles, so that a good spinning tone is obtained. Can't get,
Single yarn breakage or roller winding occurs, which is not preferable.
酸化チタン、シリカの添加方法としては、例えば、予
めジカルボン酸成分とジオール成分とのスラリー中にこ
れらの微粉末を加えておいて該スラリーをエステル化槽
へ供給する方法と、これらの微粉末を直接エステル化槽
へ供給する方法とがある。前者の場合、微粉末は先ずジ
オール成分と混合し、十分に撹拌した後にジカルボン酸
成分と混合し、スラリーとするのが好ましい。なお、酸
化チタンとシリカは、それぞれ別にジオール成分に添加
しておいてほうが取扱い性の点で有利である。As a method of adding titanium oxide or silica, for example, a method of previously adding these fine powders to a slurry of a dicarboxylic acid component and a diol component and then supplying the slurry to an esterification tank, or a method of adding these fine powders There is a method of directly supplying to the esterification tank. In the former case, it is preferable that the fine powder is first mixed with the diol component, then sufficiently stirred and then mixed with the dicarboxylic acid component to form a slurry. It is advantageous in terms of handling that titanium oxide and silica are separately added to the diol component.
かかる方法で製造して得られるポリエステル繊維は微
粉末が繊維中で高濃度でしかも高い分散状態で存在し、
特に耐久性のある遠赤外線放射効果を発揮できる。The polyester fiber produced by such a method has a fine powder in the fiber in a high concentration and in a highly dispersed state,
In particular, it can exhibit a far-infrared radiation effect with durability.
尚、本発明において溶融紡糸そのものは、従来公知の
溶融紡糸の装置等をそのまま利用して行うことが可能で
ある。In the present invention, the melt spinning itself can be carried out by using a conventionally known melt spinning apparatus or the like as it is.
このようにして得られる本発明の遠赤外線放射ポリエ
ステル繊維は、優れた保温効果を有するものであるの
で、例えばふとん綿、カーペツト、防寒着、肌着、座ぶ
とん等の用途が考えられる。The far-infrared radiation polyester fiber of the present invention thus obtained has an excellent heat-retaining effect, so that it can be used for, for example, cotton fluff, carpet, winter clothes, underwear, sitting cloth, and the like.
〈実施例〉 次に実施例をもつて本発明を説明するが、本発明は以
下の実施例に限定されるものではない。<Example> Next, the present invention will be described with reference to examples, but the present invention is not limited to the following examples.
実施例1〜5、比較例1〜5 実施例、比較例に用いた酸化チタンは0.8〜0.05μm
の粒径分布(平均粒径0.3μm)をもつチタン工業社製
の市販品で顔料用の酸化チタンである。また、シリカは
10〜20ミリミクロンの範囲の粒子径分布(平均粒径14m
μ)をもつ濃度20重量%の水系シリカゲルである。これ
らの酸化チタンとシリカを所定の濃度となるよう室温で
エチレングリコールに混合し、十分撹拌した後、テレフ
タル酸と該テレフタル酸とのモル比が1.2となるように
調整して混合し、スラリーを作成した。このスラリーを
エステル化槽に連続的に供給してエステル化を行いエス
テル化率98%のエステル化物を得、続いて重合を行い、
ポリエステルを得た。尚、重合触媒は、Sb2O3を使用し
た。このようなポリマーの製造法にしたがい、酸化チタ
ン、シリカの添加量も変更した。Examples 1 to 5, Comparative Examples 1 to 5 Titanium oxide used in Examples and Comparative Examples is 0.8 to 0.05 μm.
It is a commercially available product manufactured by Titanium Industry Co., Ltd. having a particle size distribution of (average particle size 0.3 μm) and is titanium oxide for pigments. Also, silica is
Particle size distribution in the range of 10 to 20 millimicrons (average particle size 14m
It is an aqueous silica gel having a concentration of 20% by weight. These titanium oxide and silica were mixed with ethylene glycol at room temperature so as to have a predetermined concentration, and after sufficiently stirring, the terephthalic acid and the terephthalic acid were adjusted to a molar ratio of 1.2 and mixed to prepare a slurry. Created. This slurry is continuously supplied to an esterification tank to perform esterification to obtain an esterified product with an esterification rate of 98%, followed by polymerization,
I got polyester. The polymerization catalyst used was Sb 2 O 3 . The amounts of titanium oxide and silica added were changed according to the method for producing such a polymer.
公知の方法により、紡糸延伸を行い極限粘度[η]0.
64、繊度6デニール、繊維長64mmの中空ふとん綿タイプ
の遠赤外線放射ポリエステル繊維を得た。By a known method, spinning drawing is performed to obtain an intrinsic viscosity [η] of 0.
A hollow cotton wool type far-infrared radiation polyester fiber having a fineness of 64, a fineness of 6 denier and a fiber length of 64 mm was obtained.
なお、ポリエステルの極限粘度[η]は、フエノール
と四塩化エタンとの等重量混合物を溶媒として、温度30
℃で測定した溶液粘度から換算して求めた値である。In addition, the intrinsic viscosity [η] of polyester was measured at a temperature of 30 with an equal weight mixture of phenol and ethane tetrachloride as a solvent.
It is a value calculated from the solution viscosity measured at ° C.
遠赤外線放射効果の評価方法としては、赤外線映像処
理装置(商品名サーモヴユア:日本電子(株)製)を用
いて試料の発する温度を測定した。すなわち、黒体熱板
上に測定試料および対照試料を載せ、試料の真上の位置
にカメラを設置し、20分放置後、スクリーン上のそれぞ
れの試料の温度表示を読みとつた。評価は対照試料(Ti
O2 0.4%含有繊維)に対し、どの程度高くなるか(温度
差:ΔT℃)にて行つた。各種評価結果を第1表に示し
たが、本発明の製法による繊維は良好な繊維物性を有
し、紡糸時の糸切れも全く認められず、かつ優れた遠赤
外線放射特性を有するものであつた。一方、比較例1〜
5では遠赤外線放射特性に劣り、特にシリカを含有して
いない系では洩糸性が悪く(比較例1)、TiO2およびSi
O2の合計量が15wt%を越えてしまうと紡糸調子が不調で
あつた(比較例4)。As a method of evaluating the far infrared radiation effect, the temperature emitted by the sample was measured using an infrared image processing device (trade name: Thermovure: manufactured by JEOL Ltd.). That is, a measurement sample and a control sample were placed on a black body heating plate, a camera was installed at a position directly above the sample, and after standing for 20 minutes, the temperature display of each sample on the screen was read. The evaluation is based on the control sample (Ti
It was determined by the degree of increase (temperature difference: ΔT ° C.) with respect to O 2 0.4% content fiber. The results of various evaluations are shown in Table 1. The fibers produced by the method of the present invention have good fiber properties, no yarn breakage during spinning, and excellent far infrared radiation characteristics. It was On the other hand, Comparative Examples 1 to
In 5 poor far-infrared radiation properties, particularly poor Moito of the system with no silica (Comparative Example 1), TiO 2 and Si
When the total amount of O 2 exceeded 15 wt%, the spinning tone was unsatisfactory (Comparative Example 4).
〈発明の効果〉 本発明によれば、紡糸調子が極めて良好で、得られた
繊維の物性も殆ど損われず、しかも優れた遠赤外線放射
特性を有するポリエステル繊維を得ることが可能となつ
た。<Effects of the Invention> According to the present invention, it is possible to obtain a polyester fiber which has a very good spinning tone, hardly deteriorates the physical properties of the obtained fiber, and has excellent far-infrared radiation characteristics.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−12908(JP,A) 特開 昭62−238811(JP,A) 特開 昭63−92720(JP,A) 特開 昭62−6913(JP,A) 特開 昭62−6906(JP,A) 特開 昭62−15325(JP,A) 特開 昭56−45922(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 61-12908 (JP, A) JP 62-238811 (JP, A) JP 63-92720 (JP, A) JP 62- 6913 (JP, A) JP 62-6906 (JP, A) JP 62-15325 (JP, A) JP 56-45922 (JP, A)
Claims (1)
および平均粒径が1μm以下のシリカ(SiO2)を合計で5
〜15重量%含有しており、かつ、酸化チタンとシリカの
割合がTiO2/SiO2=8/1〜1/4(重量比)であることを特
徴とする遠赤外線放射ポリエステル繊維。1. A titanium oxide (TiO 2 ) having an average particle size of 2 μm or less.
And silica (SiO 2 ) having an average particle size of 1 μm or less is 5 in total.
Far-infrared emitting polyester fiber, characterized in that the content of titanium oxide and silica is TiO 2 / SiO 2 = 8/1 to 1/4 (weight ratio).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63146360A JPH089805B2 (en) | 1988-06-13 | 1988-06-13 | Far infrared radiation polyester fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63146360A JPH089805B2 (en) | 1988-06-13 | 1988-06-13 | Far infrared radiation polyester fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01314723A JPH01314723A (en) | 1989-12-19 |
JPH089805B2 true JPH089805B2 (en) | 1996-01-31 |
Family
ID=15405958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63146360A Expired - Fee Related JPH089805B2 (en) | 1988-06-13 | 1988-06-13 | Far infrared radiation polyester fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH089805B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW550313B (en) * | 2000-05-22 | 2003-09-01 | Toray Industries | Process for producing polyester fiber and polyester composition |
KR20030054074A (en) * | 2001-12-24 | 2003-07-02 | (주)아이벡스 | Multi-Functional Fiber Containing Natural Magma-Stone Powder and A Manufacturing Process for the Same |
JP5122236B2 (en) * | 2007-10-16 | 2013-01-16 | 株式会社クラレ | Far-infrared radiation fiber, fabric comprising the same, and method for producing the same |
PT2402387E (en) | 2007-12-14 | 2014-07-11 | Rhodia Poliamida E Especialidades Ltda | Use of an article based on a polymeric composition |
JP7481830B2 (en) * | 2018-11-15 | 2024-05-13 | ポリプラスチックス株式会社 | Method for producing highly thermally conductive resin composition |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5645922A (en) * | 1979-09-21 | 1981-04-25 | Kuraray Co Ltd | Production of silica-containing polyester |
JPS6112908A (en) * | 1984-06-28 | 1986-01-21 | Hoton Ceramic Kk | Textile product containing ceramic powder |
JPS626913A (en) * | 1985-07-02 | 1987-01-13 | Toray Ind Inc | Production of polyester yarn |
JPS626906A (en) * | 1985-07-03 | 1987-01-13 | Toray Ind Inc | Production of polyester fiber |
JPS6215325A (en) * | 1985-07-04 | 1987-01-23 | Toray Ind Inc | Production of polyester fiber |
JPS62238811A (en) * | 1986-04-08 | 1987-10-19 | Toko Gijutsu Kaihatsu Kk | Mixed spinning process |
JPS6392720A (en) * | 1986-10-03 | 1988-04-23 | Nobuhide Maeda | Sheath-core composite fiber emitting far infrared radiation |
-
1988
- 1988-06-13 JP JP63146360A patent/JPH089805B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01314723A (en) | 1989-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0155608B1 (en) | The preparation of far-infrared radiating polyester fiber | |
TW318192B (en) | ||
TW505713B (en) | Copolyester fiber | |
JP6707725B1 (en) | Antibacterial fiber and method for producing antibacterial fiber | |
JPH089805B2 (en) | Far infrared radiation polyester fiber | |
CN107109721A (en) | Heat-storage heat-preserving grabs suede and the method for manufacturing it | |
CN108842217A (en) | It is a kind of with magnetism, far infrared, antibacterial functions composite fibre | |
JPH01280016A (en) | Production of polyester fiber emitting far-infrared ray | |
JPS63126971A (en) | Production of far infrared ray emissive fiber structure | |
EP1186628A2 (en) | Raw material dispersion for the manufacture of polyester, process for the preparation thereof, and process for the preparation of polyester products using the dispersion | |
JP7209547B2 (en) | UV shielding polyester fiber | |
JPS61278558A (en) | Polyester composition | |
JPH05117910A (en) | Radiation shielding fiber or its production | |
TWI458683B (en) | Sodalite-containing composition and polyester composite | |
JPS63203873A (en) | Far infrared ray radiant composite fiber | |
KR0120017B1 (en) | Method for manufacturing polyester fiber | |
JP3053248B2 (en) | Polyester composition having ultraviolet shielding performance, method for producing the polyester composition, and fiber | |
WO2024190441A1 (en) | Fired object | |
JP2004068215A (en) | Negative ion-radiating fiber | |
JPH041111B2 (en) | ||
KR920007108B1 (en) | Producing process of polyester fiber | |
KR850001829B1 (en) | Method of producing for novel polyoster yarn | |
JP2014077214A (en) | Heat-shielding composite fiber with excellent cool sensation | |
JP2882636B2 (en) | Far-infrared radiating composite fiber, woven or knitted fabric containing the fiber and nonwoven fabric | |
TW412608B (en) | Method of producing fiber with far-infrared light emission characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |