JPH0896973A - Electronic lighting device for discharge lamp - Google Patents
Electronic lighting device for discharge lampInfo
- Publication number
- JPH0896973A JPH0896973A JP6258930A JP25893094A JPH0896973A JP H0896973 A JPH0896973 A JP H0896973A JP 6258930 A JP6258930 A JP 6258930A JP 25893094 A JP25893094 A JP 25893094A JP H0896973 A JPH0896973 A JP H0896973A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- output
- discharge lamp
- voltage
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
- Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
- Inverter Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は交流電源から取り出す
電流を正弦波状にするとともに、放電灯の電力制御を行
い安定に点灯する放電灯用電子点灯装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic lighting device for a discharge lamp, in which a current drawn from an AC power supply is made sinusoidal and the electric power of the discharge lamp is controlled to stably light up.
【0002】[0002]
【従来の技術】従来の放電灯用の点灯装置としては磁気
漏れトランスによるものがほとんどで、電力制御は行わ
れず、入力電圧が変動すると放電灯の消費電力も変動
し、明るさが変わったり、放電灯寿命に影響するなどの
問題があるとともに、図9に示すように商用電圧の電圧
変化に応じて放電灯の消費電力も変化するため輝度リプ
ルが生じ、投影装置に使用した場合、ちらつきがあり映
像が見にくいという問題があった。磁気漏れトランス方
式は上述の問題のほかに、大きくかつ重く、持ち運びが
不便なため、近年、高速スイッチング素子を使用した高
周波変調方式による電子式点灯装置が利用され始めてき
た。2. Description of the Related Art Most conventional lighting devices for discharge lamps use a magnetic leakage transformer. Power control is not performed, and when the input voltage changes, the power consumption of the discharge lamp also changes and the brightness changes, There is a problem such as affecting the life of the discharge lamp, and as shown in FIG. 9, the power consumption of the discharge lamp also changes according to the voltage change of the commercial voltage, which causes brightness ripples and causes flicker when used in a projection device. There was a problem that the image was difficult to see. In addition to the above-mentioned problems, the magnetic leakage transformer system is large and heavy and is inconvenient to carry. Therefore, in recent years, an electronic lighting device using a high frequency modulation system using a high speed switching element has begun to be used.
【0003】従来の放電灯用電子点灯装置の一例を図10
に示す。この回路では交流電圧を整流回路21で整流し、
入力電圧が100V系の時はSW1を閉じて倍電圧整
流、200V系の時はSW1を開いて全波整流とし、直
流の270〜330V程度の電圧を得て、降圧チョッパ
回路22で放電灯に必要な電圧に変換する。変換された直
流電圧をブリッジ回路23のスイッチ素子Q2,Q5とQ
3,Q4の導通を切り替えて矩形波の交流電圧を発生さ
せ,放電灯に供給する。降圧チョッパ回路22を高周波で
動作させることにより、小形軽量の安定器を実現でき
る。An example of a conventional electronic lighting device for a discharge lamp is shown in FIG.
Shown in. In this circuit, the AC voltage is rectified by the rectifier circuit 21,
When the input voltage is 100V system, SW1 is closed to double voltage rectification, and when it is 200V system, SW1 is opened to perform full-wave rectification to obtain DC voltage of about 270 to 330V, and the step-down chopper circuit 22 is used as a discharge lamp. Convert to the required voltage. The converted DC voltage is converted into switching elements Q2, Q5 and Q of the bridge circuit 23.
The conduction of 3 and Q4 is switched to generate a rectangular wave AC voltage, which is supplied to the discharge lamp. By operating the step-down chopper circuit 22 at high frequency, a small and lightweight ballast can be realized.
【0004】[0004]
【発明が解決しようとする課題】しかしこのような従来
の放電灯用電子点灯装置においては、その入力電流が交
流周期の一部の電気角度のみ流れる波形で、多くの高調
波電流を配電系統に流すため受・配電容量の増加や高調
波障害の原因となった。また近く実施される予定の高調
波規制を満足できず、実際上大きな問題となる。高調波
規制を満足するには前段に昇圧チョッパなどの高調波抑
制手段を使用しなければならないが、そうすると昇圧チ
ョッパと降圧チョッパの双方が必要となり、高価になる
とともに大型化するという問題がある。However, in such a conventional electronic lighting device for a discharge lamp, a large amount of harmonic current is supplied to the distribution system in a waveform in which the input current flows only in a part of the electrical angle of the AC cycle. This caused an increase in power receiving and distribution capacity and harmonic interference. In addition, the harmonic regulations that are scheduled to be implemented soon cannot be satisfied, which is a serious problem in practice. In order to satisfy the harmonic regulation, it is necessary to use a harmonic suppressing means such as a step-up chopper in the preceding stage, but then, both the step-up chopper and the step-down chopper are required, which causes a problem that the cost is increased and the size is increased.
【0005】この発明はこのような問題点に着目し、放
電灯用電子点灯装置において、入力電流を正弦波状にし
て高調波を低減すると同時に、負荷である放電灯にちら
つきのない安定した輝度を発生させることを課題とす
る。In the electronic lighting device for a discharge lamp, the present invention pays attention to such a problem and reduces the harmonics by making the input current sinusoidal, and at the same time, the discharge lamp as a load has a stable brightness without flicker. The task is to generate.
【0006】[0006]
【課題を解決するための手段】この発明はこの課題を解
決するため、昇降圧チョッパ回路で高調波を抑制しなが
ら出力に定電力を供給し、負荷である放電灯にちらつき
のない低周波交流の定電力を供給するように制御するも
のである。まず第1の基本的な手段として、以下の手段
を提案する。商用交流電源に接続される一対の入力端子
と、この一対の入力端子に接続され脈流に変換する整流
回路と、この整流回路の脈流出力に接続される昇降圧形
コンバータ回路であって、この脈流の周波数に比較して
十分高い周波数でスイッチングするスイッチング素子
と、昇降圧用インダクタンス手段と、整流回路とからな
り、前記スイッチ素子のオン期間に前記昇降圧用インダ
クタンス手段に溜まったエネルギーをすべてオフ期間に
出力側へ放出する昇降圧形コンバータ回路と、この昇降
圧形コンバータ回路の出力を一定電力に保つように制御
する演算制御回路と、前記昇降圧形コンバータ回路の出
力に接続されて一定周波数の交番電圧に変換するインバ
ータ回路と、このインバータ回路の出力に接続され、放
電灯に電力供給する一対の出力端子とからなる放電灯用
電子点灯装置。In order to solve this problem, the present invention supplies a constant power to the output while suppressing harmonics in a buck-boost chopper circuit, and a low-frequency alternating current that does not flicker in a discharge lamp that is a load. It is controlled so as to supply constant power. First, the following means is proposed as the first basic means. A pair of input terminals connected to a commercial AC power supply, a rectifier circuit connected to the pair of input terminals for converting into a pulsating flow, and a step-up / down converter circuit connected to the pulsating flow output of the rectifying circuit, It consists of a switching element that switches at a frequency sufficiently higher than the frequency of this pulsating flow, a buck-boost inductance means, and a rectifier circuit, and turns off all the energy accumulated in the buck-boost inductance means during the ON period of the switch element. A step-up / down converter circuit that discharges to the output side during a period, an arithmetic control circuit that controls the output of the step-up / down converter circuit to keep constant power, and a constant frequency connected to the output of the step-up / down converter circuit. An inverter circuit for converting into an alternating voltage of, and a pair of output terminals connected to the output of this inverter circuit and supplying power to the discharge lamp Consisting of a discharge lamp electronic ballast device.
【0007】第2の手段として演算制御回路について
は、昇降圧形コンバータ回路のスイッチング素子を、固
定周波数で動作させると共に、商用交流電圧の少なくと
も1サイクルの期間は固定時比率で動作させ、昇降圧形
コンバータ回路の出力電流の平均値と出力電圧値の積が
一定になるようにスイッチング素子の時比率制御を行う
ことを提案するものである。As a second means, in the arithmetic control circuit, the switching element of the step-up / step-down converter circuit is operated at a fixed frequency, and is operated at a fixed time ratio for at least one cycle of the commercial AC voltage. It is proposed that the duty ratio control of the switching element be performed so that the product of the average value of the output current and the output voltage value of the converter circuit becomes constant.
【0008】第3の手段として演算制御回路について
は、昇降圧形コンバータ回路のスイッチング素子を固定
周波数で動作させると共に、商用交流電圧の少なくとも
1サイクルの期間は固定時比率で動作させ、昇降圧形コ
ンバータ回路の入力電圧の平均値に反比例するように、
スイッチング素子の時比率制御を行うことを提案するも
のである。As a third means, in the arithmetic control circuit, the switching element of the step-up / down type converter circuit is operated at a fixed frequency, and is operated at a fixed time ratio for at least one cycle of the commercial AC voltage. To be inversely proportional to the average value of the input voltage of the converter circuit,
It is proposed to control the duty ratio of the switching element.
【0009】第4の手段として演算制御回路について
は、昇降圧形コンバータ回路のスイッチング素子を固定
オン時間で動作させ、商用交流電圧の少なくとも1サイ
クルの期間は固定時比率で動作させ、昇降圧形コンバー
タ回路の入力電圧の平均値の2乗に比例させて前記スイ
ッチ素子の動作周期を制御することを提案するものであ
る。As a fourth means, in the arithmetic control circuit, the switching element of the step-up / down type converter circuit is operated at a fixed on-time, and is operated at a fixed time ratio for at least one cycle of the commercial AC voltage. It is proposed to control the operation cycle of the switch element in proportion to the square of the average value of the input voltage of the converter circuit.
【0010】第5の手段として演算制御回路について
は、昇降圧形コンバータ回路のスイッチング素子を固定
周波数で動作させ、昇降圧形コンバータ回路の入力電圧
波形と相似で入力電圧の平均値の変動に対して安定な電
圧を電流基準信号とし、スイッチング素子の電流が電流
基準信号に達したときスイッチング素子をオフさせるこ
とを提案するものである。As the fifth means, in the arithmetic control circuit, the switching element of the step-up / down converter circuit is operated at a fixed frequency, and the input voltage waveform of the step-up / down converter circuit is similar to the fluctuation of the average value of the input voltage. It is proposed that the stable and stable voltage is used as the current reference signal, and the switching element is turned off when the current of the switching element reaches the current reference signal.
【0011】第6の手段として、昇降圧形コンバータ回
路の出力端子間に抵抗器と第1のコンデンサとの直列回
路を接続し、前記第1のコンデンサの出力にインバータ
回路を接続し、このインバータ回路の出力には第2のコ
ンデンサと負荷を接続し、前記ブリッジ回路には、電流
が流れたことを検出する手段を設け、この検出手段の信
号により前記抵抗器を短絡することを提案するものであ
る。As a sixth means, a series circuit of a resistor and a first capacitor is connected between the output terminals of the step-up / down converter circuit, and an inverter circuit is connected to the output of the first capacitor. It is proposed to connect a second capacitor and a load to the output of the circuit, provide the bridge circuit with means for detecting that a current has flowed, and short-circuit the resistor by the signal of the detection means. Is.
【0012】第7の手段として、昇降圧形コンバータ回
路が、入力電圧の平均値の変動に対して、平均値が上昇
するに従い前記スイッチング素子の導通幅を狭めるよう
な補正手段を設けることを提案するものである。As a seventh means, it is proposed that the step-up / down converter circuit is provided with a correcting means for narrowing the conduction width of the switching element as the average value rises with respect to the fluctuation of the average value of the input voltage. To do.
【0013】第8の手段として、昇降圧形コンバータ回
路は非絶縁形であることを提案するものである。この非
絶縁形の場合には入力側と出力側とが直流的に接続され
ている点には注意しなければならないが、変圧器を利用
した場合と比較して電力伝達効率は高くなる利点があ
る。As an eighth means, it is proposed that the buck-boost converter circuit is non-insulated. It should be noted that in the case of this non-insulated type, the input side and the output side are connected in direct current, but there is an advantage that the power transfer efficiency is higher than that when a transformer is used. is there.
【0014】第9の手段として、昇降圧形コンバータ回
路が絶縁形であることを提案するものである。この絶縁
形の場合には非絶縁形と比較して電力伝達効率はやや低
くなるが、出力電圧設定の自由度が広くなる利点があ
る。As a ninth means, it is proposed that the buck-boost converter circuit is of an insulating type. In the case of this insulated type, the power transmission efficiency is slightly lower than that of the non-insulated type, but there is an advantage that the degree of freedom in setting the output voltage is widened.
【0015】[0015]
【実施例】図1はこの発明の第1の実施例を示す。な
お、安定器には図示した以外に、フィルタや始動回路を
有しているが、本発明の構成要件には関係ないので省略
している。交流入力端子U,Vに高周波用フィルタ1を
接続し、その出力に整流回路2を接続する。整流回路2
の出力に昇降圧コンバータ回路3を接続し、その出力に
はインバータ回路4を接続する。インバータ回路の出力
には負荷である放電灯5が接続される。そして,コンバ
ータ回路のトランスTの2次電流を変流器CT1で検出
し、ダイオードD2、抵抗R3,R4、コンデンサC3
で平均化し乗算器MP1の一方の入力端子Xに接続す
る。他方の入力端子Yには抵抗R1、R2で検出した昇
降圧コンバータ回路の出力電圧の検出値を接続する。乗
算器MP1の出力は増幅器OA1の非反転入力端子に接
続し、増幅器の反転入力端子には基準値Er1を接続す
る。増幅器の出力はホ・カプラOCのホトダイオードと
抵抗R5を介して出力側制御電圧Vcc2 に接続する。ホ
トトランジスタは制御回路6のパルス幅変調回路(以下
PWM回路と称す)の入力端子に接続する。PWM回路
の他方の入力端子は発振回路に接続する。PWM回路の
出力は駆動回路7を介して昇降圧コンバータ回路3のス
イッチング素子Q1の制御端子に接続する。FIG. 1 shows a first embodiment of the present invention. The ballast has a filter and a starting circuit other than those shown in the figure, but they are omitted because they are not related to the constituent features of the present invention. A high frequency filter 1 is connected to the AC input terminals U and V, and a rectifier circuit 2 is connected to the output thereof. Rectifier circuit 2
The buck-boost converter circuit 3 is connected to the output of and the inverter circuit 4 is connected to the output. A discharge lamp 5 as a load is connected to the output of the inverter circuit. Then, the secondary current of the transformer T of the converter circuit is detected by the current transformer CT1, and the diode D2, the resistors R3 and R4, and the capacitor C3 are detected.
Is averaged and connected to one input terminal X of the multiplier MP1. The detected value of the output voltage of the step-up / down converter circuit detected by the resistors R1 and R2 is connected to the other input terminal Y. The output of the multiplier MP1 is connected to the non-inverting input terminal of the amplifier OA1 and the reference value Er1 is connected to the inverting input terminal of the amplifier. The output of the amplifier is connected to the output side control voltage Vcc2 through the photodiode of the photo coupler OC and the resistor R5. The phototransistor is connected to the input terminal of the pulse width modulation circuit (hereinafter referred to as the PWM circuit) of the control circuit 6. The other input terminal of the PWM circuit is connected to the oscillator circuit. The output of the PWM circuit is connected to the control terminal of the switching element Q1 of the buck-boost converter circuit 3 via the drive circuit 7.
【0016】次にこの実施例の作用を説明する。昇降圧
コンバータ回路による高調波抑制方法については、本出
願人がすでに出願している(特開平3−250753)
ため本発明に係る部分について説明する。交流電圧を全
波整流して得られた脈流電圧をスイッチ素子Q1を利用
し、変圧器Tの1次巻線に印加して、交流電圧よりはる
かに高い周波数(例えば100kHz)で断続印加してエネル
ギーを蓄え、蓄えられたエネルギーをスイッチ素子のオ
フ期間にすべて取り出すように動作させる。スイッチ素
子のスイッチ周期をT、時比率をDr、入力電圧の瞬時
値をei ,チョークコイルのインダクタンス値をLとす
ると、スイッチ素子のオン時の電流ピーク値はiは(1)
式で表される。 i=(ei ・Dr・T)/L (1) T,Lは定数であり、Drを交流入力電圧の1周期の間
一定とすると、ピーク値iは入力電圧ei に比例するこ
とになる。スイッチング1サイクルの期間に流れる交流
入力電流の平均値の絶対値iavは(2) 式で表される。 iav=(ei ・Dr2 ・T)/2L (2) スイッチ素子を固定周波数(T一定)、固定時比率(D
r一定)で動作させると、スイッチングの毎サイクルの
電流平均値は(2) 式から入力電圧に比例しする事が分か
る。平均値の連続である入力電流波形は入力電圧波形と
相似形となり、高調波成分を含まなくなる。このように
動作するコンバータの時比率制御を、出力電力が一定に
なるようにコンバータトランスの2次電流と出力電圧そ
れぞれの比例値の積(出力電力の比例値)を乗算器MP
1で演算し、その値を基準電圧Er1に保つように増幅器
OA1で誤差増幅し、その誤差信号をホトカプラOCで
制御回路のPWM回路に送りスイッチ素子Q1のパルス
幅制御する。コンバータの出力に表れる入力周波数成分
に対して応答しないように制御速度を遅くすることで、
交流入力電圧の1サイクル期間は同じ時比率となる。な
お、交流入力電圧の平均値の変動に対しては時比率を制
御し負荷側に定電力を供給する。したがって、入力電流
を正弦波にするとともに出力に定電力を供給できる。こ
のように動作するコンバータの出力側にブリッジ型のイ
ンバータ回路4を接続し、100Hz〜300Hz程度
の低周波数で、スイッチング素子をほぼ180°の一定
導通角度で動作させることで、負荷である放電灯に定電
力の方形波交流電圧を供給できる。Next, the operation of this embodiment will be described. The applicant has already applied for a method of suppressing harmonics using a buck-boost converter circuit (Japanese Patent Laid-Open No. 3-250753).
Therefore, a portion related to the present invention will be described. The pulsating current voltage obtained by full-wave rectifying the AC voltage is applied to the primary winding of the transformer T using the switching element Q1 and intermittently applied at a frequency much higher than the AC voltage (for example, 100 kHz). Energy is stored in the switch element, and all the stored energy is taken out during the off period of the switch element. Assuming that the switching period of the switch element is T, the duty ratio is Dr, the instantaneous value of the input voltage is ei, and the inductance value of the choke coil is L, the current peak value when the switch element is on is i (1)
It is represented by a formula. i = (ei * Dr * T) / L (1) T and L are constants, and assuming that Dr is constant for one cycle of the AC input voltage, the peak value i is proportional to the input voltage ei. The absolute value iav of the average value of the AC input current flowing during the period of one switching cycle is expressed by equation (2). iav = (ei * Dr < 2 > * T) / 2L (2) The switching element has a fixed frequency (constant T) and a fixed time ratio (D).
When operated at a constant r), it can be seen from Equation (2) that the average current value of each switching cycle is proportional to the input voltage. The input current waveform, which is a continuous average value, has a similar shape to the input voltage waveform and does not include harmonic components. The duty ratio control of the converter operating in this way is performed by multiplying the product of the proportional values of the secondary current of the converter transformer and the output voltage (proportional value of the output power) so that the output power becomes constant.
The error is amplified by the amplifier OA1 so as to maintain the value at the reference voltage Er1, and the error signal is sent to the PWM circuit of the control circuit by the photocoupler OC to control the pulse width of the switch element Q1. By slowing the control speed so that it does not respond to the input frequency component appearing in the output of the converter,
One cycle period of the AC input voltage has the same duty ratio. It should be noted that the duty ratio is controlled with respect to the fluctuation of the average value of the AC input voltage, and constant power is supplied to the load side. Therefore, the input current can be made a sine wave and a constant power can be supplied to the output. The bridge-type inverter circuit 4 is connected to the output side of the converter operating in this way, and the switching element is operated at a constant conduction angle of about 180 ° at a low frequency of about 100 Hz to 300 Hz, so that the discharge lamp, which is a load, is operated. A constant-wave square-wave AC voltage can be supplied to.
【0017】次にインバータ回路4の動作を簡単に説明
する。Q2・Q5とQ3・Q4とを交互にオン・オフさ
せることで、ブリッジ回路の出力に、コンバータの出力
電流の極性を交互に切り替えて供給する。放電灯は一般
に、点灯中電圧のバラツキが大きく、かつ経年変化も大
きく、点灯時のインピーダンスが小さいため、定電圧や
定電流の供給では安定に点灯することができない。本実
施例のように、負荷側に供給する電力を定電力とするこ
とで、放電灯を安定に点灯させることができる。なお、
電流検出をインバータ回路4の出力電流で行っても制御
は可能であるが、低周波電流のため、電流検出用の変流
器が大型化し得策でない。Next, the operation of the inverter circuit 4 will be briefly described. By alternately turning on / off Q2 / Q5 and Q3 / Q4, the polarity of the output current of the converter is alternately switched and supplied to the output of the bridge circuit. In general, a discharge lamp has a large variation in voltage during lighting, a large change over time, and a small impedance at the time of lighting, and therefore cannot be stably lit by supplying a constant voltage or a constant current. As in the present embodiment, the electric power supplied to the load side is constant power, so that the discharge lamp can be stably turned on. In addition,
Control is possible even if current detection is performed by the output current of the inverter circuit 4, but because of the low frequency current, the current transformer for current detection becomes large and it is not a good idea.
【0018】[0018]
【第2の実施例】図3は本発明にかかる放電灯用電子点
灯装置の第2の実施例である。主たる回路は図1に示す
実施例と同様である。整流回路 の出力に抵抗R21,R
22、コンデンサC21を接続し平均値を検出し、検出値を
反比例回路8の入力に接続する。反比例回路の出力を制
御回路6のPWM回路の入力端子に接続する。PWM回
路の他方の入力端子は発振回路に接続される。PWM回
路の出力は駆動回路の入力に接続される。駆動回路の出
力は昇降圧コンバータ回路3のスイッチ素子Q1の被制
御端子に接続する。Second Embodiment FIG. 3 shows a second embodiment of the electronic lighting device for a discharge lamp according to the present invention. The main circuit is similar to that of the embodiment shown in FIG. Resistors R21 and R for the output of the rectifier circuit
22 and the capacitor C21 are connected to detect the average value, and the detected value is connected to the input of the inverse proportional circuit 8. The output of the inverse proportional circuit is connected to the input terminal of the PWM circuit of the control circuit 6. The other input terminal of the PWM circuit is connected to the oscillator circuit. The output of the PWM circuit is connected to the input of the drive circuit. The output of the drive circuit is connected to the controlled terminal of the switch element Q1 of the buck-boost converter circuit 3.
【0019】次に動作説明をする。スイッチ素子Q1を
交流入力電圧よりはるかに高い周波数(例えば100kHz)
でスイッチングさせ、スイッチ素子のオン時に、交流電
圧を全波整流して得られた脈流電圧を、変圧器Tの1次
巻線に印加してエネルギーを蓄え、スイッチ素子のオフ
期間に蓄えられたエネルギーをすべて出力側に取り出す
ように動作させる。このようなコンバータは第1の実施
例にて説明したように、スイッチング素子を固定周波
数、固定時比率で動作させることで入力電流波形を入力
電圧波形と相似形にすることができ、高調波成分を含ま
なくなる。一方、スイッチの毎サイクル、電流が2次側
に放出される昇降圧形コンバータの、スイッチ1サイク
ルで、出力に伝達されるエネルギー量Ejは(3) 式で表
される。 Ej=(L・i2 )/2 (3) (3) 式から入力電圧の平均値の変動に関わらず、交流入
力電圧の各位相でのiに変化がなければ、出力に伝達さ
れるエネルギー量は変わらないことになる。(1) 式から
iはei ・Drに比例するのでDrをei に反比例させ
れば出力電力は入力電圧の平均値の変動に対して一定と
なる。したがって、図3の実施例のように反比例回路8
で入力電圧の平均値に反比例する電圧を発生させ、PW
M回路で反比例信号に応じてパルス幅に変換し、このパ
ルス幅信号でスイッチ素子を駆動すると、入力電圧の平
均値が変動しても出力に定電力を供給できる。入力電圧
の平均値の比例値は抵抗R21≫R22であればコンデンサ
C21の両端で求められる。PWM回路で、反比例信号に
応じてパルス幅に変換するには、三角波を利用すること
で簡単にできる。また、時比率Drを入力電圧の平均値
に反比例させることで、交流入力電圧の周波数による変
化(周期的変化)に対しては時比率が一定となるため、
入力電流は正弦波となる。Next, the operation will be described. The switching element Q1 has a frequency much higher than the AC input voltage (for example, 100 kHz).
Is applied to the primary winding of the transformer T to store the energy, which is stored during the OFF period of the switch element. It is operated so that all the stored energy is extracted to the output side. In such a converter, as described in the first embodiment, the input current waveform can be made similar to the input voltage waveform by operating the switching element at a fixed frequency and a fixed duty ratio. No longer include. On the other hand, the energy amount Ej transmitted to the output in one cycle of the switch of the step-up / down converter in which the current is discharged to the secondary side in each cycle of the switch is expressed by the equation (3). Ej = (L · i 2 ) / 2 (3) Regardless of the fluctuation of the average value of the input voltage, if there is no change in i at each phase of the AC input voltage, the energy transferred to the output The amount will not change. From the equation (1), i is proportional to ei.Dr. Therefore, if Dr is inversely proportional to ei, the output power becomes constant with respect to the fluctuation of the average value of the input voltage. Therefore, as in the embodiment of FIG.
To generate a voltage that is inversely proportional to the average value of the input voltage.
If the M circuit converts the pulse width into a pulse width according to the inverse proportional signal and drives the switch element with this pulse width signal, constant power can be supplied to the output even if the average value of the input voltage changes. If the resistance R21 >> R22, the proportional value of the average value of the input voltage can be obtained at both ends of the capacitor C21. A PWM circuit can easily convert a pulse width into a pulse width according to an inverse proportional signal by using a triangular wave. Further, by making the duty ratio Dr inversely proportional to the average value of the input voltage, the duty ratio becomes constant with respect to the change (periodic change) of the AC input voltage due to the frequency.
The input current is a sine wave.
【0020】[0020]
【第3の実施例】図4は本発明にかかる放電灯用電子点
灯装置の第3の実施例である。主たる回路は図1に示す
実施例と同様である。整流回路の出力に抵抗R21,R2
2、コンデンサC21を接続し平均値を検出し、この検出
値を2乗回路9の入力に接続し2乗回路の出力を電圧制
御発振器VCOの入力に接続し、VCOの出力を単安定
回路11の入力に接続する。単安定回路の出力を駆動回路
7の入力に接続し、出力を昇降圧形コンバータ回路のス
イッチ素子Q1の被駆動端子に接続する。[Third Embodiment] FIG. 4 shows a third embodiment of the electronic lighting device for a discharge lamp according to the present invention. The main circuit is similar to that of the embodiment shown in FIG. Resistors R21 and R2 for the output of the rectifier circuit
2. Connect the capacitor C21 to detect the average value, connect the detected value to the input of the squaring circuit 9, connect the output of the squaring circuit to the input of the voltage controlled oscillator VCO, and connect the output of the VCO to the monostable circuit 11 Connect to the input of. The output of the monostable circuit is connected to the input of the drive circuit 7, and the output is connected to the driven terminal of the switch element Q1 of the buck-boost converter circuit.
【0021】次に動作説明をする。スイッチ素子Q1を
交流電圧よりはるかに高い周波数でスイッチングさせ、
スイッチ素子のオン時に、交流電圧を全波整流して得ら
れた脈流電圧を、変圧器Tの1次巻線に印加してエネル
ギーを蓄え、スイッチ素子のオフ期間に蓄えられたエネ
ルギーをすべて取り出すように動作させる。スイッチ素
子のスイッチ周期をT、時比率をDr、入力電圧の瞬時
値をei,1次巻線のインダクタンス値をLとした時
の、スイッチ素子のオン時に入力に流れる電流平均値i
avは(2) 式で表される。(2) 式においてスイッチのオン
時間をtonとすると、(4) 式のように改められる。 iav=(ei ・ton2 )/2LT (4) (4) 式にei を掛けると入力電力の瞬時値pになり(5)
式で表される。 p=(ei 2 ・ton2 )/2LT (5) (5) 式から、tonを一定にし、周期Tを入力電圧の平均
値の2乗に比例させると入力電力は一定になり入力電圧
の平均値の変動の影響を受けないことが理解できる。Next, the operation will be described. Switching the switching element Q1 at a frequency much higher than the AC voltage,
When the switch element is on, the pulsating current voltage obtained by full-wave rectifying the AC voltage is applied to the primary winding of the transformer T to store energy, and all the energy stored in the off period of the switch element is stored. Operate to take out. When the switch period of the switch element is T, the duty ratio is Dr, the instantaneous value of the input voltage is ei, and the inductance value of the primary winding is L, the average value i of the current flowing to the input when the switch element is turned on.
av is expressed by equation (2). In equation (2), if the on time of the switch is ton, it can be rewritten as equation (4). iav = (ei · ton 2 ) / 2LT (4) (4) Multiplying ei by the equation gives the instantaneous value p of the input power (5)
It is represented by a formula. p = (ei 2 · ton 2 ) / 2LT (5) From equation (5), if ton is constant and the period T is proportional to the square of the average value of the input voltage, the input power becomes constant and the average of the input voltage becomes It can be understood that it is not affected by the fluctuation of the value.
【0022】この実施例では、入力電圧の平均値の比例
値を2乗回路9で二乗し、この平均値の二乗値に電圧制
御発振器VCOの発振周期を比例させる。周期は周波数
の逆数のためVCOの発振周期は入力電圧の平均値の2
乗に反比例することになる。VCOの発振信号を単安定
回路で固定パルス幅のパルスを発生させることで、周波
数に影響されない固定パルス幅を得ることができる。単
安定回路の出力を駆動回路で駆動信号とし、コンバータ
回路のスイッチ素子を駆動する。二乗回路は入力電圧の
平均値で動作しているため、スイッチ素子の動作周期、
パルス幅は交流入力電圧の周波数による電圧の変化(周
期的な変化)の影響を受けず、固定周波数、固定時比率
となる。したがって入力電流波形は入力電圧波形と相似
形となり、高調波成分を含まなくなり、入力電力は一定
となる。入力電力は内部損失を差し引いてインバータ出
力に接続された負荷の放電灯に伝達される。放電灯は電
圧、電流にバラツキがあるが、極端な差はないため、放
電灯のバラツキによる内部損失の変化はほとんどないと
いえる。したがって、負荷にはほぼ定電力が伝達され
る。なお、入力電圧の二乗に比例する信号を得るには掛
け算器の入力端子XとYに入力電圧の比例値を入れてや
ればよい。In this embodiment, the square value of the average value of the input voltage is squared by the squaring circuit 9, and the oscillation cycle of the voltage controlled oscillator VCO is proportional to the square value of the average value. Since the cycle is the reciprocal of the frequency, the oscillation cycle of the VCO is 2 times the average value of the input voltage.
It will be inversely proportional to the square. By generating a pulse having a fixed pulse width by the monostable circuit for the oscillation signal of the VCO, it is possible to obtain a fixed pulse width that is not influenced by the frequency. The output of the monostable circuit is used as a drive signal by the drive circuit to drive the switch element of the converter circuit. Since the square circuit operates at the average value of the input voltage, the operating cycle of the switch element,
The pulse width is not affected by the voltage change (periodic change) due to the frequency of the AC input voltage, and has a fixed frequency and a fixed duty ratio. Therefore, the input current waveform becomes similar to the input voltage waveform, the harmonic component is not included, and the input power becomes constant. The input power is transferred to the discharge lamp of the load connected to the output of the inverter after subtracting the internal loss. Although the discharge lamp has variations in voltage and current, since there is no extreme difference, it can be said that there is almost no change in internal loss due to variations in the discharge lamp. Therefore, almost constant power is transmitted to the load. In addition, in order to obtain a signal proportional to the square of the input voltage, a proportional value of the input voltage may be input to the input terminals X and Y of the multiplier.
【0023】[0023]
【第4の実施例】図5は本発明にかかる放電灯用電子点
灯装置の第4の実施例である。整流回路の出力に抵抗R
21,R22、コンデンサC21を接続し平均値電圧を検出
し、さらに抵抗R41とR42で整流電圧の比例値を検出す
る。コンデンサC21の検出値を反比例回路8に接続し、
反比例回路の出力とR42の電圧とを掛け算器MP4で掛
け算する。掛け算器の出力と変流器CT4で検出した変
圧器1次巻線電流の検出値をコンパレータCL4のそれ
ぞれ非反転入力、反転入力に接続する。コンパレータの
出力と発振器OSCの出力をパルス幅回路に接続する。
パルス幅回路の出力を駆動回路7に接続し、駆動回路の
出力を昇降圧形コンバータ回路3のスイッチング素子Q
1の被駆動端子に接続する。[Fourth Embodiment] FIG. 5 shows a fourth embodiment of the electronic lighting device for a discharge lamp according to the present invention. Resistor R at the output of rectifier
21 and R22 and the capacitor C21 are connected to detect the average value voltage, and the resistors R41 and R42 detect the proportional value of the rectified voltage. Connect the detected value of the capacitor C21 to the inverse proportional circuit 8,
The output of the inversely proportional circuit and the voltage of R42 are multiplied by the multiplier MP4. The output of the multiplier and the detected value of the transformer primary winding current detected by the current transformer CT4 are connected to the non-inverting input and the inverting input of the comparator CL4, respectively. The output of the comparator and the output of the oscillator OSC are connected to the pulse width circuit.
The output of the pulse width circuit is connected to the drive circuit 7, and the output of the drive circuit is connected to the switching element Q of the buck-boost converter circuit 3.
1 to the driven terminal.
【0024】次に動作説明をする。スイッチング素子Q
1を交流電圧よりはるかに高い周波数でスイッチングさ
せ、スイッチング素子Q1のオン時に、交流電圧を全波
整流して得られた脈流電圧を、変圧器Tの1次巻線に印
加してエネルギーを蓄え、スイッチング素子のオフ期間
に蓄えられたエネルギーをすべて出力側に放出するよう
に動作する昇降圧形コンバータにおいてスイッチング素
子のスイッチ周期をT、時比率をDr、入力電圧の瞬時
値をei,1次巻線のインダクタンス値をLとすると、
スイッチング素子のオン時に入力に流れる電流ピーク値
iは(1) 式で表される。一方、スイッチング素子のオン
期間に蓄えられるエネルギー量Ejは(3) 式で表され
る。(3) 式からスイッチング素子のオン期間を入力電圧
の1サイクルの期間一定にし、入力電圧の平均値に関係
なく入力電圧の各位相でスイッチング素子のオン期間の
電流ピーク値を一定にすると、入力電力は入力電圧の平
均値の変動に関係なく一定になる。Next, the operation will be described. Switching element Q
1 is switched at a frequency much higher than the AC voltage, and when the switching element Q1 is turned on, the pulsating current voltage obtained by full-wave rectifying the AC voltage is applied to the primary winding of the transformer T to supply energy. In the buck-boost converter that operates to store and release all the energy stored in the OFF period of the switching element to the output side, the switching cycle of the switching element is T, the duty ratio is Dr, and the instantaneous value of the input voltage is ei, 1 If the inductance value of the next winding is L,
The peak value i of the current flowing to the input when the switching element is turned on is expressed by equation (1). On the other hand, the energy amount Ej stored in the ON period of the switching element is represented by the equation (3). From equation (3), if the ON period of the switching element is constant for one cycle of the input voltage and the current peak value of the ON period of the switching element is constant for each phase of the input voltage regardless of the average value of the input voltage, the input The power is constant regardless of the fluctuation of the average value of the input voltage.
【0025】この実施例においては、入力電圧の平均値
の比例値に反比例する電圧を反比例回路8で作り、この
反比例電圧と入力電圧(整流電圧)の比例値とを掛け算
器MP4で掛け算する。k1 ・ei ×(1/(k2 ・e
i av))となるので出力には入力電圧に相似で入力電圧
の平均値の変動に影響されない電圧が現れる。掛け算器
の出力電圧と、CT4で検出したトランスTの1次巻線
電流の比例値とをコンパレータCL4で比較する。PW
M回路では発振器からのハイレベル信号でハイレベル出
力、コンパレータからのローレベル信号でローレベル出
力を駆動回路7へ送る。駆動回路はPWM回路からの信
号に従いスイッチ素子Q1を駆動する。なお、これらの
ハイレベル、ローレベルの符号はどのようにしても良
く、変流器CT4からの電圧が掛け算器からの電圧と一
致した時点で、スイッチング素子をオフさせれば良い。
このようにスイッチング素子Q1を動かすことで、入力
電流を正弦波とし、入力電力を一定にする。以下、第3
の実施例と同様にして負荷の放電灯5にはほぼ一定電力
が伝達される。In this embodiment, a voltage inversely proportional to the proportional value of the average value of the input voltage is produced by the inverse proportional circuit 8, and this inverse proportional voltage is multiplied by the proportional value of the input voltage (rectified voltage) by the multiplier MP4. k1 · ei × (1 / (k2 · e
Therefore, a voltage similar to the input voltage and not affected by the fluctuation of the average value of the input voltage appears at the output. The comparator CL4 compares the output voltage of the multiplier with the proportional value of the primary winding current of the transformer T detected by CT4. PW
The M circuit sends a high level output to the drive circuit 7 by a high level signal from the oscillator and a low level output from a low level signal from the comparator. The drive circuit drives the switch element Q1 according to the signal from the PWM circuit. The signs of the high level and the low level may be set to any values, and the switching element may be turned off when the voltage from the current transformer CT4 matches the voltage from the multiplier.
By moving the switching element Q1 in this way, the input current is made a sine wave and the input power is made constant. Below, the third
In the same manner as in the above embodiment, almost constant power is transmitted to the discharge lamp 5 of the load.
【0026】[0026]
【第5の実施例】図6は本発明にかかる放電灯用電子点
灯装置の第5の実施例である。入力端子にトランスT4
の1次巻線を接続し、2次巻線を同期発振回路12に接続
する。同期発振回路の出力は正弦波発生回路13の入力と
接続する。同期発振回路12の他の入力端子は正弦波発生
回路13の出力に接続され、交流入力電圧と正弦波発生回
路13の出力とが同期した信号となるように同期発振回路
12が動作する。正弦波発生回路13の出力とトランスの1
次電流を検出する変流器CT4の出力をコンパレータC
L4のそれぞれ非反転入力端子と反転入力端子に接続
し、出力をパルス幅発生回路の入力に接続する。PWM
回路の他方の入力にはさらに同期発振回路12の出力に接
続する。PWM回路の出力を駆動回路7に接続し、駆動
回路7の出力をスイッチング素子Q1の制御端子に接続
する。[Fifth Embodiment] FIG. 6 is a fifth embodiment of an electronic lighting device for a discharge lamp according to the present invention. Transformer T4 at the input terminal
, And the secondary winding is connected to the synchronous oscillation circuit 12. The output of the synchronous oscillation circuit is connected to the input of the sine wave generation circuit 13. The other input terminal of the synchronous oscillation circuit 12 is connected to the output of the sine wave generating circuit 13 so that the AC input voltage and the output of the sine wave generating circuit 13 become a synchronized signal.
12 works. Output of sine wave generator 13 and transformer 1
The output of the current transformer CT4 that detects the next current is output to the comparator C.
L4 is connected to the non-inverting input terminal and the inverting input terminal, respectively, and the output is connected to the input of the pulse width generating circuit. PWM
The other input of the circuit is further connected to the output of the synchronous oscillation circuit 12. The output of the PWM circuit is connected to the drive circuit 7, and the output of the drive circuit 7 is connected to the control terminal of the switching element Q1.
【0027】動作説明をすると、交流入力電圧に比例し
た電圧を変圧器T4で検出し、フェーズ・ロックト・ル
ープPLLなどを用いた同期発振回路12と正弦波発生回
路13で、交流入力電圧に比例した電圧に同期し、相似な
波形を発生させ、この電圧とCT4で検出したトランス
Tの1次巻線電流の比例値とをコンパレータCL4で比
較する。コンパレータ出力と同期発振回路12からの信号
でPWM回路はスイッチ素子Q1の駆動信号を発生す
る。この信号にしたがって駆動回路はQ1を駆動する。
第1の実施例と同じようにパレータやPWM回路のハイ
レベル、ローレベルの符号は任意に選定して、変圧器C
T4からの電圧が正弦波発生回路からの電圧と一致した
時点で、スイッチング素子Q1をオフさせれば良い。こ
のようにスイッチング素子Q1を動かすことで、入力電
流を正弦波とし、入力電力を一定にする。以下、第3の
実施例と同様にして負荷の放電灯5にはほぼ一定電力が
伝達される。To explain the operation, a voltage proportional to the AC input voltage is detected by the transformer T4, and the synchronous oscillation circuit 12 and the sine wave generating circuit 13 using a phase locked loop PLL or the like are proportional to the AC input voltage. In synchronization with the applied voltage, a similar waveform is generated, and this voltage is compared with the proportional value of the primary winding current of the transformer T detected by CT4 by the comparator CL4. The PWM circuit generates a drive signal for the switch element Q1 by the output of the comparator and the signal from the synchronous oscillation circuit 12. The drive circuit drives Q1 according to this signal.
Similar to the first embodiment, the high level and low level codes of the parer and the PWM circuit are arbitrarily selected, and the transformer C
When the voltage from T4 matches the voltage from the sine wave generation circuit, the switching element Q1 may be turned off. By moving the switching element Q1 in this way, the input current is made a sine wave and the input power is made constant. Hereinafter, similar to the third embodiment, almost constant power is transmitted to the discharge lamp 5 of the load.
【0028】[0028]
【第6の実施例】図7は第6の実施例である。放電灯の
点灯直前は、270V程度の比較的高い電圧が必要であ
るが、点灯直後の電圧は10V前後と非常に低くなる。
このため、コンバータ出力に接続されている容量の大き
なコンデンサC1に溜まっていたエネルギーは、放電灯
5の点灯と同時に急激に放出される。このため過大な電
流がインバータ回路4の中のスイッチング素子に流れる
ため、出力電流を流すための電流容量以上の素子を使用
するなどの対策が必要になる。そこで、図に示すように
コンバータ出力に接続された大きな容量のコンデンサC
1の後に抵抗と小さな容量のコンデンサC4を接続しこ
の小容量のコンデンサC4の両端にインバータ回路4を
接続することで、放電灯5の点灯直後の過大な電流が流
れるのを抵抗R7で制限し、放電灯5の点灯後はリレー
RLの接点rlで抵抗R7を短絡するようにしたものであ
る。なお、リレーRLの代わりにサイリスタやトライア
ック、トランジスタなどを使用しても良い。[Sixth Embodiment] FIG. 7 shows a sixth embodiment. Immediately before lighting the discharge lamp, a relatively high voltage of about 270 V is required, but the voltage immediately after lighting is as low as around 10 V.
Therefore, the energy accumulated in the large-capacity capacitor C1 connected to the converter output is rapidly released at the same time when the discharge lamp 5 is turned on. Therefore, an excessive current flows through the switching element in the inverter circuit 4, so that it is necessary to take measures such as using an element having a current capacity or more for passing the output current. Therefore, as shown in the figure, a large capacity capacitor C connected to the converter output is used.
By connecting a resistor and a small-capacity capacitor C4 after 1, and connecting the inverter circuit 4 to both ends of this small-capacity capacitor C4, the resistor R7 limits the flow of an excessive current immediately after the discharge lamp 5 is turned on. After the lighting of the discharge lamp 5, the resistor R7 is short-circuited at the contact rl of the relay RL. A thyristor, a triac, a transistor or the like may be used instead of the relay RL.
【0029】[0029]
【第7の実施例】図8は第7の実施例を示す。以上の説
明では昇降圧コンバータ回路3を絶縁形で説明してきた
が、チョークコイルLを用いた非絶縁の反転チョッパ回
路でも同じ効果が得られる。図8に反転チョッパ形によ
る回路を示す。この非絶縁形の場合には入力側と出力側
とが直流的に接続されている点については注意しなけれ
ばならないが、変圧器を利用した絶縁形の実施例と比較
して電力伝達効率は高くなる利点がある。[Seventh Embodiment] FIG. 8 shows a seventh embodiment. In the above description, the buck-boost converter circuit 3 has been described as an insulating type, but the same effect can be obtained with a non-insulating inverting chopper circuit using the choke coil L. FIG. 8 shows a circuit of the inverted chopper type. In the case of this non-insulated type, it must be noted that the input side and output side are connected in direct current, but the power transfer efficiency is higher than that of the insulated type embodiment using the transformer. There is an advantage of becoming higher.
【0030】[0030]
【入力電圧変動への対策】以上説明してきた実施例では
入力電力を一定に制御するため、入力電圧が大幅に変わ
る場合、例えば85Vから264 Vrms まで変わるワールド
ワイド仕様のような場合、入力電圧につれて入力電流も
大きく変わる。このため入力側の損失が変わり、出力に
伝達される電力も変わることになる。これを避けるた
め、入力電力の平均値にしたがって、制御に補正を行う
ことで出力に伝達される電力を一定にすることができ
る。入力電圧が上昇するにつれて入力電流が減少するの
で、損失も低減していく。図3に示す実施例の場合、入
力電圧の平均値が上昇すると、上昇の割合以上にパルス
幅が狭くなるようにすればよい。簡単な方法として抵抗
R21とR22の抵抗値の比率を変えることで実現できる。
抵抗値がR21≫R22の場合には、コンデンサC21には平
均値が現れ、抵抗R21とR22の抵抗値を近付けると、ピ
ーク充電に近づくため入力電圧が上昇するほど検出値が
増加する。しかし、入力電圧の最低と最大での損失差の
出力電力に対する割合は2〜4%程度のため大きな補正
は必要無く、抵抗R21とR22を回路の設計条件で若干調
整すれば良い。なお、抵抗R21とR22の抵抗値を調整す
るとコンデンサC21の電圧が上がるので、R22に影響を
与えない程度の抵抗で分圧し、反比例回路に送る。図
4、図5の実施例も同じである。図6の実施例では、新
たに入力電圧の平均値検出回路を設け、CT4による電
流検出回路に入力電圧の平均値を適当に加えてやると、
入力の平均電圧が上昇すると検出電流が見掛上大きくな
り、パルス幅を狭めるようになる。この結果、入力電圧
の平均値が上昇し、1次側の損失が減少しても、出力に
伝達される電力量は一定に保たれる。なお、入力電圧が
あまり変動しない場合は補正の必要はない。[Measures against Input Voltage Fluctuation] In the embodiment described above, since the input power is controlled to be constant, when the input voltage changes drastically, for example, in the case of the world wide specification that changes from 85V to 264 Vrms, the input voltage is changed according to the input voltage. The input current also changes greatly. Therefore, the loss on the input side changes and the power transmitted to the output also changes. To avoid this, the power transmitted to the output can be made constant by correcting the control according to the average value of the input power. Since the input current decreases as the input voltage increases, the loss also decreases. In the case of the embodiment shown in FIG. 3, when the average value of the input voltage rises, the pulse width may be made narrower than the rate of increase. As a simple method, it can be realized by changing the ratio of the resistance values of the resistors R21 and R22.
When the resistance value is R21 >> R22, an average value appears in the capacitor C21, and when the resistance values of the resistors R21 and R22 are brought close to each other, the detected value increases as the input voltage increases because the peak charge approaches. However, since the ratio of the loss difference between the minimum and maximum of the input voltage to the output power is about 2 to 4%, no large correction is necessary, and the resistors R21 and R22 may be slightly adjusted according to the circuit design conditions. Since the voltage of the capacitor C21 rises when the resistance values of the resistors R21 and R22 are adjusted, the voltage is divided by a resistor that does not affect R22 and sent to the inverse proportional circuit. The embodiment of FIGS. 4 and 5 is also the same. In the embodiment of FIG. 6, if an average value detection circuit for input voltage is newly provided and the average value of input voltage is appropriately added to the current detection circuit by CT4,
When the average voltage of the input rises, the detected current apparently becomes large and the pulse width becomes narrow. As a result, even if the average value of the input voltage rises and the loss on the primary side decreases, the amount of electric power transmitted to the output is kept constant. If the input voltage does not fluctuate much, no correction is necessary.
【0031】[0031]
【発明の効果】以上説明してきたように、この発明によ
れば、高輝度放電灯の電子安定器の構成を、昇降圧チョ
ッパー回路を電流リッセトモード・固定時比率で動作さ
せることで、入力電流を正弦波とするとともにすると共
に、出力に定電力を供給し、後段のブリッジインバータ
を低周波で動作させることで、負荷である放電灯に安定
した定電力を供給するようにしたため、従来の電子安定
器と比べ同程度の部品点数で、入力電流を正弦波状とし
高調波を大幅に低減できる。As described above, according to the present invention, the electronic ballast of the high-intensity discharge lamp is configured so that the buck-boost chopper circuit operates in the current reset mode / fixed time ratio to obtain the input current. Is a sinusoidal wave, and a constant power is supplied to the output, and the bridge inverter in the subsequent stage is operated at a low frequency to supply a stable constant power to the discharge lamp that is the load. Compared to a ballast, the number of components is about the same, and the input current can be made sinusoidal to significantly reduce harmonics.
【図1】本発明にかかる放電灯用電子点灯装置の第1の
実施例を示す。FIG. 1 shows a first embodiment of an electronic lighting device for a discharge lamp according to the present invention.
【図2】図1に示す実施例の動作を説明するための電流
波形図である。FIG. 2 is a current waveform diagram for explaining the operation of the embodiment shown in FIG.
【図3】本発明にかかる放電灯用電子点灯装置の第2の
実施例を示す。FIG. 3 shows a second embodiment of the electronic lighting device for a discharge lamp according to the present invention.
【図4】本発明にかかる放電灯用電子点灯装置の第3の
実施例を示す。FIG. 4 shows a third embodiment of the electronic lighting device for a discharge lamp according to the present invention.
【図5】本発明にかかる放電灯用電子点灯装置の第4の
実施例を示す。FIG. 5 shows a fourth embodiment of the electronic lighting device for a discharge lamp according to the present invention.
【図6】本発明にかかる放電灯用電子点灯装置の第5の
実施例を示す。FIG. 6 shows a fifth embodiment of the electronic lighting device for a discharge lamp according to the present invention.
【図7】本発明にかかる放電灯用電子点灯装置の第6の
実施例を示す。FIG. 7 shows a sixth embodiment of the electronic lighting device for a discharge lamp according to the present invention.
【図8】本発明にかかる放電灯用電子点灯装置の第7の
実施例を示す。FIG. 8 shows a seventh embodiment of the electronic lighting device for a discharge lamp according to the present invention.
【図9】放電灯の電流等の波形図である。FIG. 9 is a waveform diagram of a discharge lamp current or the like.
【図10】従来の放電灯用電子点灯装置の一例である。FIG. 10 is an example of a conventional electronic lighting device for a discharge lamp.
1…高周波用フィルタ 2…整流回路 3…昇降圧形
コンバータ回路 4…インバータ回路 5…放電灯 6…演算制御回路
7…駆動回路 8…反比例回路 9…二乗回路 10…電圧制御発振器
11…単安定回路 12…同期発振回路 13…正弦波発生回路 15…
放電灯点灯確認回路 16…ブリッジ・倍電圧切り替え整流回路 CL4…コンパレータ CT,CT4…変流器
Er1…基準電圧 L…昇降圧用インダクタンス OA1…増幅器 MP
…乗算器 RL…リレー1 ... High frequency filter 2 ... Rectifier circuit 3 ... Buck-boost converter circuit 4 ... Inverter circuit 5 ... Discharge lamp 6 ... Arithmetic control circuit 7 ... Drive circuit 8 ... Inverse proportional circuit 9 ... Square circuit 10 ... Voltage controlled oscillator 11 ... Monostable Circuit 12 ... Synchronous oscillation circuit 13 ... Sine wave generation circuit 15 ...
Discharge lamp lighting confirmation circuit 16 ... Bridge / double voltage switching rectifier circuit CL4 ... Comparator CT, CT4 ... Current transformer
Er1 ... Reference voltage L ... Buck-boost inductance OA1 ... Amplifier MP
… Multiplier RL… Relay
Claims (9)
と、 この一対の入力端子に接続され脈流に変換する整流回路
と、 この整流回路の脈流出力に接続される昇降圧形コンバー
タ回路であって、この脈流の周波数に比較して十分高い
周波数でスイッチングするスイッチング素子と、昇降圧
用インダクタンス手段と、整流回路とからなり、前記ス
イッチ素子のオン期間に前記昇降圧用インダクタンス手
段に溜まったエネルギーをすべてオフ期間に出力側へ放
出する昇降圧形コンバータ回路と、 この昇降圧形コンバータ回路の出力を一定電力に保つよ
うに制御する演算制御回路と、 前記昇降圧形コンバータ回路の出力に接続されて一定周
波数の交番電圧に変換するインバータ回路と、 このインバータ回路の出力に接続され、放電灯に電力供
給する一対の出力端子とからなる放電灯用電子点灯装
置。1. A pair of input terminals connected to a commercial AC power source, a rectifying circuit connected to the pair of input terminals for converting into a pulsating current, and a step-up / down converter connected to the pulsating current output of the rectifying circuit. A circuit, which is composed of a switching element that switches at a frequency sufficiently higher than the frequency of this pulsating flow, a step-up / step-down inductance means, and a rectifying circuit, and is accumulated in the step-up / step-down inductance means during the ON period of the switch element. The buck-boost converter circuit that releases all the stored energy to the output side during the off period, the operation control circuit that controls the output of the buck-boost converter circuit to keep constant power, and the output of the buck-boost converter circuit. Connected to the inverter circuit that converts to an alternating voltage with a constant frequency, and connected to the output of this inverter circuit to supply power to the discharge lamp. That it consists of a pair of output terminals discharge lamp electronic ballast device.
形コンバータ回路のスイッチング素子を、固定周波数で
動作させると共に、前記商用交流電圧の少なくとも1サ
イクルの期間は固定時比率で動作させ、前記昇降圧形コ
ンバータ回路の出力電流の平均値と出力電圧値の積が一
定になるように前記スイッチング素子の時比率制御を行
うことを特徴とする請求項1に記載の放電灯用電子点灯
装置。2. With respect to the arithmetic control circuit, the switching element of the step-up / down converter circuit is operated at a fixed frequency, and is operated at a fixed time ratio for at least one cycle of the commercial AC voltage. The electronic lighting device for a discharge lamp according to claim 1, wherein the duty ratio control of the switching element is performed so that the product of the average value of the output current and the output voltage value of the pressure converter circuit becomes constant.
形コンバータ回路のスイッチング素子を固定周波数で動
作させると共に、前記商用交流電圧の少なくとも1サイ
クルの期間は固定時比率で動作させ、前記昇降圧形コン
バータ回路の入力電圧の平均値に反比例するように、前
記スイッチング素子の時比率制御を行うことを特徴とす
る請求項1に記載の放電灯用電子点灯装置。3. In the operation control circuit, the switching element of the step-up / step-down converter circuit is operated at a fixed frequency, and is operated at a fixed time ratio for at least one cycle of the commercial AC voltage. The electronic lighting device for a discharge lamp according to claim 1, wherein the duty ratio control of the switching element is performed so as to be inversely proportional to the average value of the input voltage of the type converter circuit.
形コンバータ回路のスイッチング素子を固定オン時間で
動作させ、前記商用交流電圧の少なくとも1サイクルの
期間は固定時比率で動作させ、前記昇降圧形コンバータ
回路の入力電圧の平均値の2乗に比例させて前記スイッ
チ素子の動作周期を制御することを特徴とする請求項1
に記載の放電灯用電子点灯装置。4. In the operation control circuit, the switching element of the step-up / step-down converter circuit is operated at a fixed ON time, and is operated at a fixed time ratio for at least one cycle of the commercial AC voltage. 2. The operation cycle of the switch element is controlled in proportion to the square of the average value of the input voltage of the converter circuit.
An electronic lighting device for a discharge lamp according to.
形コンバータ回路のスイッチング素子を固定周波数で動
作させ、前記昇降圧形コンバータ回路の入力電圧波形と
相似で入力電圧の平均値の変動に対して安定な電圧を電
流基準信号とし、前記スイッチング素子の電流が電流基
準信号に達したとき前記スイッチング素子をオフさせる
ことを特徴とする請求項1に記載の放電灯用電子点灯装
置。5. In the arithmetic control circuit, the switching element of the step-up / down type converter circuit is operated at a fixed frequency, and the input voltage waveform of the step-up / down type converter circuit is similar to the fluctuation of the average value of the input voltage. The electronic lighting device for a discharge lamp according to claim 1, wherein a stable voltage is used as a current reference signal, and the switching element is turned off when the current of the switching element reaches the current reference signal.
に抵抗器と第1のコンデンサとの直列回路を接続し、前
記第1のコンデンサの出力にブリッジインバータ回路を
接続し、該ブリッジインバータ回路の出力には第2のコ
ンデンサと負荷を接続し、前記ブリッジ回路には、電流
が流れたことを検出する手段を設け、この検出手段の信
号により前記抵抗器を短絡することを特徴とする請求項
1から5のいずれかに記載の放電灯用電子点灯装置。6. A series circuit of a resistor and a first capacitor is connected between the output terminals of the step-up / down converter circuit, and a bridge inverter circuit is connected to the output of the first capacitor. A second capacitor and a load are connected to the output of the bridge circuit, means for detecting that a current has flown is provided in the bridge circuit, and the resistor is short-circuited by the signal of the detecting means. Item 6. An electronic lighting device for a discharge lamp according to any one of items 1 to 5.
の平均値の変動に対して、平均値が上昇するに従い前記
スイッチング素子の導通幅を狭めるような補正手段を設
けることを特徴とする請求項1または請求項3から6の
いずれかに記載の放電灯用電子点灯装置。7. The step-up / down converter circuit is provided with a correction means for reducing the conduction width of the switching element as the average value rises with respect to fluctuations in the average value of the input voltage. The electronic lighting device for a discharge lamp according to claim 1 or claim 3.
あることを特徴とする請求項1から7のいずれかに記載
の放電灯用電子点灯装置。8. The electronic lighting device for a discharge lamp according to claim 1, wherein the step-up / down converter circuit is a non-insulated type.
ることを特徴とする請求項1から7のいずれかに記載の
放電灯用電子点灯装置。9. The electronic lighting device for a discharge lamp according to claim 1, wherein the step-up / down converter circuit is an insulating type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25893094A JP3630733B2 (en) | 1994-09-28 | 1994-09-28 | Electronic lighting device for discharge lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25893094A JP3630733B2 (en) | 1994-09-28 | 1994-09-28 | Electronic lighting device for discharge lamp |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0896973A true JPH0896973A (en) | 1996-04-12 |
JP3630733B2 JP3630733B2 (en) | 2005-03-23 |
Family
ID=17327022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25893094A Expired - Lifetime JP3630733B2 (en) | 1994-09-28 | 1994-09-28 | Electronic lighting device for discharge lamp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3630733B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012151968A (en) * | 2011-01-18 | 2012-08-09 | Daikin Ind Ltd | Power conversion device |
-
1994
- 1994-09-28 JP JP25893094A patent/JP3630733B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012151968A (en) * | 2011-01-18 | 2012-08-09 | Daikin Ind Ltd | Power conversion device |
Also Published As
Publication number | Publication date |
---|---|
JP3630733B2 (en) | 2005-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI292517B (en) | An electronic ballast system having emergency lighting provisions | |
JP3795863B2 (en) | Single-stage PFC + ballast control circuit / general-purpose power converter | |
JPH08336235A (en) | Power factor correction circuit | |
WO1998048506A1 (en) | Neutral-point inverter | |
JP6483914B2 (en) | Power supply | |
US20020057062A1 (en) | Discharge lamp lighting apparatus and lamp apparatus | |
CN211240163U (en) | Stage lamp photoelectronic ballast | |
JP3630733B2 (en) | Electronic lighting device for discharge lamp | |
JP3874291B2 (en) | Power supply | |
JP5069573B2 (en) | High pressure discharge lamp lighting device, lighting fixture | |
JPH10271831A (en) | Power supply unit | |
JP4649728B2 (en) | Power supply device and discharge lamp lighting device | |
JP3740220B2 (en) | Fluorescent lamp lighting device | |
JPH07263166A (en) | Electronic lighting device for discharge lamp and its control method | |
JP3614011B2 (en) | Inverter device | |
JP3304534B2 (en) | Discharge lamp lighting device | |
JP3676873B2 (en) | Switching power supply | |
JP3951336B2 (en) | Discharge lamp lighting device and lighting device | |
JPH10271846A (en) | Power device | |
JPH10271845A (en) | Power device | |
JP2000312479A (en) | Power supply equipment and electric discharge lamp lighting equipment | |
JP3412354B2 (en) | Power supply | |
JP5580605B2 (en) | High pressure discharge lamp lighting device | |
JP3235295B2 (en) | Power supply | |
JP2000188872A (en) | Inverter device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040330 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041215 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081224 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091224 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091224 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101224 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101224 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111224 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111224 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121224 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121224 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121224 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121224 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121224 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131224 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |