JPH0896960A - El element - Google Patents
El elementInfo
- Publication number
- JPH0896960A JPH0896960A JP6254392A JP25439294A JPH0896960A JP H0896960 A JPH0896960 A JP H0896960A JP 6254392 A JP6254392 A JP 6254392A JP 25439294 A JP25439294 A JP 25439294A JP H0896960 A JPH0896960 A JP H0896960A
- Authority
- JP
- Japan
- Prior art keywords
- optical filter
- layer
- electrode
- light emitting
- emitting layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば計器類の自発光
型のセグメント表示やマトリクス表示、或いは各種情報
端末機器のディスプレイなどに利用されるEL素子(エ
レクトロルミネッセンス素子、Electroluminescence )
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an EL element (electroluminescence element, electroluminescence) used for, for example, self-luminous segment display or matrix display of instruments, or display of various information terminal devices.
Regarding
【0002】[0002]
【従来の技術】EL素子は数種の色があり、フルカラー
の三原色となる赤、緑、青色の各色を発色されるEL素
子が求められているが、そのうち赤色は、従来より、赤
橙色の発光を呈する硫化亜鉛(ZnS) にマンガン(Mn)を添
加したZnS:Mn発光層を用いて、赤色フィルタを組み合わ
せて純色の赤色が得られるようにしている。このような
構成のEL素子として従来例えば、特開平1-315978号公
報に記載されているように、特定の波長を透過または遮
断する光学フィルタを用いて、これを介してEL素子の
発光として特定色を得るという手段が取り入れられてい
る。2. Description of the Related Art There are several types of EL elements, and there is a demand for EL elements that emit red, green, and blue, which are the three primary colors of full color. A ZnS: Mn light-emitting layer in which manganese (Mn) is added to zinc sulfide (ZnS) that emits light is used and a red filter is combined to obtain a pure red color. Conventionally, as an EL element having such a configuration, for example, as described in Japanese Patent Laid-Open No. 1-315978, an optical filter that transmits or blocks a specific wavelength is used, and as a result, the light emission of the EL element is specified through the optical filter. The means of getting color is incorporated.
【0003】光学フィルタを電極上に設ける場合(図
3)、光学フィルタが電極に影響を与え、やはり自己修
復不可能型の破壊が生じ、問題があることが判明してい
る。When the optical filter is provided on the electrode (FIG. 3), it is known that the optical filter affects the electrode, and the self-repair type destruction also occurs, which is a problem.
【0004】表裏の電極に挟まれた誘電体薄膜のある一
点で絶縁破壊が起こったとき、破壊が隣接点に伝播して
次第に広範囲に破壊領域が拡大していく(自己修復不可
能型、あるいは伝播モードという)場合と、破壊がその
一点のみに留まる(点破壊、あるいは自己修復モードと
いう)場合との差異がある。特に自己修復不可能型はEL
素子に致命的であり、これらのモードは、電極の材質や
厚さにも依存していて種々の材料が試用されているが、
破壊のはっきりした原因はまだ解明されておらず、実用
的に安定な素子を提供するに至っていない。When a dielectric breakdown occurs at a certain point of the dielectric thin film sandwiched between the front and back electrodes, the breakdown propagates to an adjacent point and the breakdown region gradually expands (self-repair type or There is a difference between the case of the propagation mode) and the case of the breakdown remaining at only one point (called the point destruction or the self-healing mode). Especially for non-self-repair type EL
It is fatal to the element, and these modes depend on the material and thickness of the electrode, and various materials have been tried,
The definite cause of the destruction has not been clarified yet, and it has not been possible to provide a practically stable device.
【0005】それで光学フィルタの形成位置として、例
えば実公平5-21278 号公報の様に、酸化インジウム(In
2O3)電極58の上に直接色素入りカラーフィルタをスク
リーン印刷により形成したEL素子500が提案されてい
る(図5)。この第2電極58上に直接光学フィルタ5
9を形成した構造では、独立した色を選択して取り出す
ことができるが、エージング及び連続発光試験を行った
結果、EL素子の絶縁破壊の率が極めて高い状態であるこ
とが判明している。Therefore, as the formation position of the optical filter, for example, as shown in Japanese Utility Model Publication No. 5-21278, indium oxide (In
An EL element 500 in which a color filter containing a dye is directly formed on the 2 O 3 ) electrode 58 by screen printing has been proposed (FIG. 5). The optical filter 5 is directly provided on the second electrode 58.
In the structure in which No. 9 is formed, independent colors can be selected and taken out, but as a result of aging and continuous light emission tests, it has been found that the rate of dielectric breakdown of the EL element is extremely high.
【0006】このため、本発明者らは、図4に示すよう
に光学フィルタを第2電極に直接接触しないように第3
絶縁層を設けた構造を提案している(特願平5-259368
号、および特願平6-87666 号)。これらの発明の構成で
絶縁破壊はかなり抑制されるようになった。Therefore, as shown in FIG. 4, the present inventors have made it possible to prevent the optical filter from contacting the second electrode directly with the third electrode.
We have proposed a structure with an insulating layer (Japanese Patent Application No. 5-259368).
And Japanese Patent Application No. 6-87666). With the configurations of these inventions, the dielectric breakdown is considerably suppressed.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、色純度
を上げようとして第三絶縁層上に設けたフィルタ厚さを
厚くすると、絶縁破壊の面積が増え、大きい面積の破壊
点、すなわち自己修復不可能な破壊も生じるという問題
が発生することが判明した。つまり、色純度を良くしよ
うとして光学フィルタを厚くすると、このフィルタが直
接第2電極に接触していなくても、発光層に、絶縁破壊
によって発光しなくなる領域の発生が多くなり、品質等
の観点から実用上問題があることが明らかになった。However, if the thickness of the filter provided on the third insulating layer is increased in order to increase the color purity, the area of dielectric breakdown increases, and the breakdown point of a large area, that is, self-repair is impossible. It has been found that there is a problem that it will also be destroyed. That is, if the thickness of the optical filter is increased in order to improve the color purity, there are more regions in the light emitting layer where light emission does not occur due to dielectric breakdown even if the filter is not in direct contact with the second electrode. It became clear that there was a problem in practice.
【0008】従って本発明の目的は、光学フィルタを必
要とするEL素子で、フィルタ機能の質を低下させず
に、絶縁破壊を防止し、高輝度、高信頼性を有した、安
定かつ実用的なEL素子を提供することである。Accordingly, an object of the present invention is to provide an EL element requiring an optical filter, which is capable of preventing dielectric breakdown without deteriorating the quality of the filter function, and having high brightness and high reliability, which is stable and practical. It is to provide a simple EL element.
【0009】[0009]
【課題を解決するための手段】上記の課題を解決するた
め本発明の構成は、絶縁性の支持基板上に第1電極、第
1絶縁層、発光層、第2絶縁層及び第2電極が順次積層
され、少なくとも該発光層、第2絶縁層及び第2電極が
光学的に透明なものにて構成されたEL素子において、
前記第2電極の上に第3絶縁層が積層され、前記第3絶
縁層の上に前記発光層の光を選択する光学フィルタ層を
0.5 μm 以上、2μm 以下の膜厚で形成し、光取り出し
側の組み合わせガラスにも前記発光層の光を選択する同
じ光学フィルタ層を形成することである。In order to solve the above problems, the structure of the present invention is such that a first electrode, a first insulating layer, a light emitting layer, a second insulating layer and a second electrode are provided on an insulating support substrate. An EL device in which at least the light emitting layer, the second insulating layer, and the second electrode are sequentially laminated, and are configured to be optically transparent,
A third insulating layer is laminated on the second electrode, and an optical filter layer for selecting light of the light emitting layer is formed on the third insulating layer.
The thickness is 0.5 μm or more and 2 μm or less, and the same optical filter layer that selects the light of the light emitting layer is also formed on the combined glass on the light extraction side.
【0010】また関連発明の構成は、絶縁性の支持基板
上に第1電極、第1絶縁層、発光層、第2絶縁層及び第
2電極が順次積層され、少なくとも該発光層、第2絶縁
層及び第2電極が光学的に透明なものにて構成された単
体EL素子を組み合わせた多色のEL素子において、前
記第2電極の上に第3絶縁層が積層され、下層に長波長
発光色の発光層をもつ第一EL素子、上層に第一EL素
子の発光層の発光波長よりも短波長の発光層を有する第
二EL素子を有し、第一EL素子と第二EL素子のそれ
ぞれの第3絶縁層上に形成された光学フィルタが、共に
第一EL素子用であり、該光学フィルタの膜厚がそれぞ
れ0.5 μm 以上、2μm 以下の膜厚で形成されているこ
とを特徴とする。According to the structure of the related invention, a first electrode, a first insulating layer, a light emitting layer, a second insulating layer and a second electrode are sequentially laminated on an insulating support substrate, and at least the light emitting layer and the second insulating layer are provided. In a multicolor EL element in which a single EL element composed of a layer and a second electrode which are optically transparent is combined, a third insulating layer is laminated on the second electrode, and long-wavelength light emission is formed on the lower layer. A first EL element having a color light emitting layer, and a second EL element having an upper layer having a light emitting layer having a shorter wavelength than the light emitting wavelength of the light emitting layer of the first EL element, The optical filters formed on the respective third insulating layers are both for the first EL element, and the optical filters are formed to have a film thickness of 0.5 μm or more and 2 μm or less, respectively. To do.
【0011】本発明はまた、請求項1に記載の発光層ま
たは請求項2に記載の第一EL素子の発光層が赤橙色発
光層であって、光学フィルタが赤色フィルタであること
を特徴とする。The present invention is also characterized in that the light emitting layer according to claim 1 or the light emitting layer of the first EL element according to claim 2 is a red-orange light emitting layer and the optical filter is a red filter. To do.
【0012】また別の発明の構成は、請求項1または2
に記載の第3絶縁層が、前記第2絶縁層からみた膜厚に
おいて、前記第2電極の膜厚よりも大きな膜厚を有し、
かつ前記第3絶縁層で前記第2電極の領域を完全に被覆
して構成されていることである。[0012] Another aspect of the invention is defined in claim 1 or 2.
The third insulating layer according to [4] has a film thickness larger than that of the second electrode in the film thickness viewed from the second insulating layer,
In addition, the region of the second electrode is completely covered with the third insulating layer.
【0013】[0013]
【作用】光学フィルタが厚すぎると発光層に自己修復不
可能型の破壊が生じやすくなる原因は、フィルタ厚さと
いう要因からは、先願の特願平6-87666 号と同じく膜応
力の影響があると推察されるが、はっきりした原因は不
明である。しかし現実に光学フィルタの膜厚の影響が第
2電極以下の層に及び易く、厚すぎるフィルタは点破壊
全点数に対して面積規模の大きい破壊の割合が大きくな
るので、光学フィルタを2μm 以下の薄さで形成する。
光学フィルタの膜厚が 0.5μm 以下となると、実質、光
学フィルタとして機能しなくなるため、 0.5μm 以上は
確保する。素子に構成したフィルタ厚さでは色純度が不
足する場合に、いわば蓋となる組み合わせガラスの側
に、同じ光学フィルタの層を形成する。[Function] When the optical filter is too thick, the reason why the self-repair type destruction in the light emitting layer is likely to occur is that, due to the factor of the filter thickness, the influence of the film stress is the same as in Japanese Patent Application No. 6-87666 of the previous application. It is suspected that there are some, but the exact cause is unknown. However, in reality, the influence of the film thickness of the optical filter easily extends to the layers below the second electrode, and if the filter is too thick, the ratio of large area destruction to the total number of point destruction is large. Form with thinness.
When the film thickness of the optical filter is 0.5 μm or less, it does not substantially function as an optical filter, so 0.5 μm or more is secured. When the color purity is insufficient with the filter thickness formed in the element, the same optical filter layer is formed on the side of the combined glass, which is, so to speak, a lid.
【0014】多色EL素子の場合、第3絶縁層側を向か
い合わせにして組み合わせて構成するが、従来、片側の
EL素子にのみ光学フィルタを設けていたものを、両側
のEL素子に、下側にくるEL素子(第一EL素子)の
発光色に対する同じ光学フィルタを設ける。上記のいず
れの構造のEL素子においても、第2電極の上に構成さ
れた第3絶縁層は第2電極を保護し、第3絶縁層上に形
成した光学フィルタからの影響を抑制する。従って、第
3絶縁層が完全に第2電極を被覆していると、光学フィ
ルタの発光層に対する直接の影響が抑制される。In the case of a multicolor EL element, the third insulating layer side is opposed to each other and the combination is made. However, in the conventional case, an optical filter is provided only on one side of the EL element, and the EL element on both sides is connected to the lower side. The same optical filter for the emission color of the EL element (first EL element) coming on the side is provided. In any of the EL devices having the above structures, the third insulating layer formed on the second electrode protects the second electrode and suppresses the influence of the optical filter formed on the third insulating layer. Therefore, when the third insulating layer completely covers the second electrode, the direct influence of the optical filter on the light emitting layer is suppressed.
【0015】[0015]
【発明の効果】光学フィルタの厚さを厚くしないこと
で、発光層に対する絶縁破壊の影響が少なくなり、表示
品質が低下しない。また、組み合わせガラスに同じ光学
フィルタを形成することで、素子に直接形成する光学フ
ィルタの厚さを補う。多色EL素子でも、薄い光学フィ
ルタを二箇所に分散させて形成する構成となるので、色
純度を低下させることなく、絶縁破壊を抑制し表示品質
を低下させない。By not increasing the thickness of the optical filter, the influence of dielectric breakdown on the light emitting layer is reduced and the display quality is not deteriorated. Further, by forming the same optical filter on the combination glass, the thickness of the optical filter formed directly on the element is supplemented. Even in a multi-color EL element, since thin optical filters are formed by being dispersed in two places, the color purity is not lowered, the dielectric breakdown is suppressed, and the display quality is not lowered.
【0016】[0016]
【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1(a) は、EL素子100の模式的な構成断
面図で、図1(a) は、従来構造と同じ構造(A部分)の
EL素子100の第2電極6の上に第3絶縁層7が、第
2電極6をすっかり覆うように形成され、さらにその上
に光学フィルタ8が薄く形成されている。この光学フィ
ルタ8は、厚さが2μm を越えないでほぼ2μm厚さに
成膜されている。これは光学フィルタとしては、なるべ
く厚い方がフィルタとしては効果が大きいためである。
しかしこの厚さが0.5 μm 以下であると、光学フィルタ
としての効果がなくなり実用性に欠ける。それで、色純
度の不足を補うことが必要な場合に、さらに、組み合わ
せガラス9の裏面に、同じ光学フィルタ8’を形成す
る。EXAMPLES The present invention will be described below based on specific examples. FIG. 1 (a) is a schematic cross-sectional view of the EL element 100, and FIG. 1 (a) shows the third insulating layer on the second electrode 6 of the EL element 100 having the same structure (A portion) as the conventional structure. The layer 7 is formed so as to completely cover the second electrode 6, and the optical filter 8 is thinly formed thereon. The optical filter 8 is formed to have a thickness of about 2 μm without exceeding 2 μm. This is because the thicker the optical filter, the greater the effect as a filter.
However, if this thickness is 0.5 μm or less, the effect as an optical filter is lost, and it is not practical. Therefore, when it is necessary to make up for the lack of color purity, the same optical filter 8 ′ is further formed on the back surface of the combined glass 9.
【0017】光学フィルタの膜厚が2μm 以下である場
合に、発光層に対する破壊の様子が従来よりも著しく減
少することを以下に示す。図2は、光学フィルタ膜厚に
対して、全点破壊数に対する点破壊発生率の割合を光学
フィルタ膜厚で見たものである。横軸に光学フィルタの
膜厚をとり、縦軸に全点破壊数に対する肉眼で確認可能
な点破壊率をパーセントで示してある。この図2から明
らかなように、光学フィルタ膜厚が2μm を越えると、
規模が大きい破壊発生率が20%を越え、素子上にかなり
目立ってくる。したがって光学フィルタ膜厚は2μm 以
下が有効である。なお、膜厚が0.5 μm 以下では、大規
模破壊の発生率は全く0となるが、色を特定するための
光学フィルタとしての効果が薄くなるにつれて弱くな
り、実質効果がなくなる。It will be shown below that when the thickness of the optical filter is 2 μm or less, the state of destruction of the light emitting layer is significantly reduced as compared with the conventional case. FIG. 2 shows the ratio of the point breakage occurrence rate to the total number of point breakages in terms of the optical filter film thickness with respect to the optical filter film thickness. The abscissa indicates the film thickness of the optical filter, and the ordinate indicates the percentage of point destruction that can be visually confirmed with respect to the total number of point destruction. As is clear from FIG. 2, when the optical filter film thickness exceeds 2 μm,
The large-scale destruction occurrence rate exceeds 20%, and it is noticeable on the device. Therefore, it is effective that the optical filter film thickness is 2 μm or less. When the film thickness is 0.5 μm or less, the occurrence rate of large-scale destruction becomes zero, but as the effect as an optical filter for specifying a color becomes weaker, it becomes weaker, and the actual effect disappears.
【0018】EL素子100の第3絶縁層7は、第2絶
縁層5と第2電極6とでできた凹凸を埋め込んでしま
い、表面がほぼ平坦化し、この上に形成される光学フィ
ルタもやはり平坦に形成され、膜厚がほぼ一定したもの
になる。そして第2電極と光学フィルタとが直接に接触
しない構成となるので、発光層4に対する影響が抑制さ
れる。The third insulating layer 7 of the EL element 100 fills up the unevenness formed by the second insulating layer 5 and the second electrode 6, so that the surface is almost flattened, and the optical filter formed thereon is also the same. It is formed flat and has a substantially constant film thickness. Since the second electrode and the optical filter are not in direct contact with each other, the influence on the light emitting layer 4 is suppressed.
【0019】図1(b) に示すように、EL素子(第一
EL素子)、(第二EL素子)を二つ組み合わせて、
多色EL素子200として構成する場合に、両EL素子
、に設ける光学フィルタ14(例えば赤色フィル
タ)を、下側のEL素子の発光色に対する光学フィル
タとする。なお、二つのEL素子の間は、透明で屈折率
のほぼ等しいシリコーンオイルなどを充填することが多
い。それぞれのEL素子、に対して光学フィルタ1
4を形成する工程は全く同一でよい。As shown in FIG. 1 (b), by combining two EL elements (first EL element) and (second EL element),
When configured as the multicolor EL element 200, the optical filter 14 (for example, a red filter) provided on both EL elements is an optical filter for the emission color of the lower EL element. A space between the two EL elements is often filled with a transparent silicone oil having a substantially equal refractive index. Optical filter 1 for each EL element
The steps of forming 4 may be exactly the same.
【0020】この多色EL素子200の場合も、光学フ
ィルタ14の厚さが2倍になったことに等しい。従来構
成で同じ効果とするには、光学フィルタの厚さを4μm
とする必要があり、そのような構成では第一EL素子
の発光層に負担がかかってしまい、破壊が生じることが
避けられなかった。従って本発明の如く、光学フィルタ
の厚さを2μm 以下で構成したものを二つのEL素子
、に設けることで、発光層の点破壊を抑制し、表示
品質を保つ効果を発揮できる。即ちそれぞれのEL素子
、に対しては発光層に自己回復不可能型の破壊を生
じさせることなく、表示品質の維持が見込める。In the case of this multicolor EL element 200, this is equivalent to doubling the thickness of the optical filter 14. To obtain the same effect with the conventional configuration, the thickness of the optical filter should be 4 μm.
In such a structure, it is inevitable that the light emitting layer of the first EL element is overloaded and is destroyed. Therefore, as in the present invention, by providing the two EL elements with the optical filter having a thickness of 2 μm or less, the point breakage of the light emitting layer can be suppressed and the effect of maintaining the display quality can be exhibited. That is, for each EL element, the display quality can be expected to be maintained without causing self-recoverable type destruction in the light emitting layer.
【0021】光学フィルタ8、8’や14の膜厚は、こ
の光学フィルタが有機材料であることから、スピンコー
タを用いて第3絶縁層7の表面に薄膜を形成しており、
材料の粘度やスピンコータの回転速度、維持時間等で制
御され、任意の厚さが形成できる。従って目標の厚さと
して、2μm を越えないで2μm 近くの厚さにするとい
うことは容易である。また第3絶縁膜7が、第2電極6
を完全に埋め込んで構成されていることから、第2電極
に直接接触しないで光学フィルタが形成でき、かつ第3
絶縁膜7の表面が平坦であり、フィルタ8、8’や14
の膜厚もほぼ全体に渡って一定とすることができる。As for the film thickness of the optical filters 8, 8'and 14, a thin film is formed on the surface of the third insulating layer 7 using a spin coater because the optical filter is an organic material.
An arbitrary thickness can be formed by controlling the viscosity of the material, the rotation speed of the spin coater, the maintenance time, and the like. Therefore, it is easy to make the target thickness close to 2 μm without exceeding 2 μm. In addition, the third insulating film 7 forms the second electrode 6
The optical filter can be formed without directly contacting the second electrode and the third electrode can be formed.
The surface of the insulating film 7 is flat, and the filters 8, 8'and 14
The film thickness of can be constant over almost the entire area.
【図1】本発明を適用したEL素子の模式的な構成断面
図。FIG. 1 is a schematic configuration cross-sectional view of an EL element to which the present invention is applied.
【図2】EL素子の発光層における全点破壊数に対する
大規模な(肉眼で確認可能な)点破壊発生率と光学フィ
ルタ膜厚の依存性を示す説明図。FIG. 2 is an explanatory diagram showing the dependence of a large-scale (visually observable) point breakdown occurrence rate and the optical filter film thickness on the total number of point breakdowns in the light emitting layer of the EL element.
【図3】光学フィルタを第2電極上に直接構成した、従
来構成のEL素子の模式的構成断面図。FIG. 3 is a schematic configuration cross-sectional view of an EL element having a conventional configuration in which an optical filter is directly configured on a second electrode.
【図4】第3絶縁層を第2電極上に設けた、先願のEL
素子の模式的構成断面図。FIG. 4 is an EL device of the prior application in which a third insulating layer is provided on the second electrode.
FIG. 3 is a schematic configuration cross-sectional view of an element.
【図5】第2電極上のみに光学フィルタを設けた、従来
構成のEL素子の模式的構成断面図。FIG. 5 is a schematic configuration cross-sectional view of an EL element having a conventional configuration in which an optical filter is provided only on a second electrode.
100 EL素子 200 多色EL素子 300、400、500 EL素子(従来構成) 1、11 ガラス基板 4、14 発光層 100 EL element 200 Multicolor EL element 300, 400, 500 EL element (conventional structure) 1, 11 Glass substrate 4, 14 Light emitting layer
Claims (4)
層、発光層、第2絶縁層及び第2電極が順次積層され、
少なくとも該発光層、第2絶縁層及び第2電極が光学的
に透明なものにて構成されたEL素子において、 前記第2電極の上に第3絶縁層が積層され、 前記第3絶縁層の上に前記発光層の光を選択する光学フ
ィルタ層を0.5 μm 以上、2μm 以下の膜厚で形成し、 光取り出し側の組み合わせガラスにも前記発光層の光を
選択する同じ光学フィルタ層を形成することを特徴とす
るEL素子。1. A first electrode, a first insulating layer, a light emitting layer, a second insulating layer and a second electrode are sequentially stacked on an insulating support substrate,
In an EL element in which at least the light emitting layer, the second insulating layer and the second electrode are optically transparent, a third insulating layer is laminated on the second electrode, An optical filter layer for selecting the light of the light emitting layer is formed thereon with a film thickness of 0.5 μm or more and 2 μm or less, and the same optical filter layer for selecting the light of the light emitting layer is formed on the combined glass on the light extraction side. An EL device characterized by the above.
層、発光層、第2絶縁層及び第2電極が順次積層され、
少なくとも該発光層、第2絶縁層及び第2電極が光学的
に透明なものにて構成された単体EL素子を組み合わせ
た多色のEL素子において、 前記第2電極の上に第3絶縁層が積層され、 下層に長波長発光色の発光層をもつ第一EL素子、上層
に第一EL素子の発光層の発光波長よりも短波長の発光
層を有する第二EL素子を有し、 第一EL素子と第二EL素子のそれぞれの第3絶縁層上
に形成された光学フィルタが、共に第一EL素子用であ
り、該光学フィルタの膜厚がそれぞれ0.5 μm以上、2
μm 以下の膜厚で形成されていることを特徴とするEL
素子。2. A first electrode, a first insulating layer, a light emitting layer, a second insulating layer and a second electrode are sequentially laminated on an insulating support substrate,
In a multicolor EL element in which a single EL element in which at least the light emitting layer, the second insulating layer, and the second electrode are optically transparent is combined, a third insulating layer is provided on the second electrode. A first EL element that is laminated and has a lower layer having a long-wavelength emission color light emitting layer, and an upper layer that has a second EL element having a light emission layer having a wavelength shorter than the emission wavelength of the light emission layer of the first EL element; The optical filters formed on the third insulating layers of the EL element and the second EL element are for the first EL element, and the film thickness of the optical filter is 0.5 μm or more, and 2
EL characterized by being formed with a film thickness of less than μm
element.
記載の第一EL素子の発光層が赤橙色発光層であって、
光学フィルタが赤色フィルタであることを特徴とするE
L素子。3. The light emitting layer according to claim 1 or the light emitting layer of the first EL element according to claim 2, wherein the light emitting layer is a red-orange light emitting layer,
The optical filter is a red filter E
L element.
前記第2絶縁層からみた膜厚において、前記第2電極の
膜厚よりも大きな膜厚を有し、かつ前記第3絶縁層で前
記第2電極の領域を完全に被覆して構成されていること
を特徴とするEL素子。4. The third insulating layer according to claim 1 or 2,
The second insulating layer has a thickness larger than that of the second electrode, and the third insulating layer completely covers the region of the second electrode. An EL device characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25439294A JP3941125B2 (en) | 1994-09-22 | 1994-09-22 | EL element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25439294A JP3941125B2 (en) | 1994-09-22 | 1994-09-22 | EL element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0896960A true JPH0896960A (en) | 1996-04-12 |
JP3941125B2 JP3941125B2 (en) | 2007-07-04 |
Family
ID=17264346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25439294A Expired - Fee Related JP3941125B2 (en) | 1994-09-22 | 1994-09-22 | EL element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3941125B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5912649A (en) * | 1996-02-13 | 1999-06-15 | Denso Corporation | Electro-luminescent display apparatus |
US5958610A (en) * | 1996-02-22 | 1999-09-28 | Denso Corporation | El element having a color filter formed on an upper electrode |
-
1994
- 1994-09-22 JP JP25439294A patent/JP3941125B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5912649A (en) * | 1996-02-13 | 1999-06-15 | Denso Corporation | Electro-luminescent display apparatus |
US5958610A (en) * | 1996-02-22 | 1999-09-28 | Denso Corporation | El element having a color filter formed on an upper electrode |
Also Published As
Publication number | Publication date |
---|---|
JP3941125B2 (en) | 2007-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6542867B2 (en) | Display device | |
US20180047940A1 (en) | Electroluminescent device and manufacturing method | |
JP2005293946A (en) | Organic el display device | |
US5156924A (en) | Multi-color electroluminescent panel | |
US20090072730A1 (en) | Organic electro-luminescent display device | |
US4945009A (en) | Electroluminescence device | |
KR20050031991A (en) | Organic el panel | |
KR100567305B1 (en) | Color electro luminescence display device | |
JPH06160850A (en) | Liquid crystal display device | |
KR20070078599A (en) | Organic light emitting display providing transparent cathode | |
US20070126012A1 (en) | Light-emitting element and display device | |
KR20060100305A (en) | Electro luminescence display device | |
JP4502661B2 (en) | Color light emitting display device | |
JPS63148597A (en) | Thin film el device | |
JPH0896960A (en) | El element | |
JP2001237074A (en) | Organic electroluminescent light source | |
JPH07201466A (en) | Multicolor thin film electroluminescence element | |
JPH04359B2 (en) | ||
JP2008287926A (en) | Organic el image display device and liquid crystal image display device | |
JPH0594878A (en) | Multicolored el panel | |
JPS63299092A (en) | Thin film electroluminescent panel | |
JPH1055889A (en) | Thin film el panel | |
JPH09274991A (en) | Multi-color light emission electroluminescence device | |
JP3761146B2 (en) | Color EL panel and manufacturing method thereof | |
JPH0963766A (en) | Thin film electroluminescent panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060425 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070313 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070326 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |