JPH089574B2 - Method for producing ω-hydroxy fatty acid ester - Google Patents
Method for producing ω-hydroxy fatty acid esterInfo
- Publication number
- JPH089574B2 JPH089574B2 JP63084164A JP8416488A JPH089574B2 JP H089574 B2 JPH089574 B2 JP H089574B2 JP 63084164 A JP63084164 A JP 63084164A JP 8416488 A JP8416488 A JP 8416488A JP H089574 B2 JPH089574 B2 JP H089574B2
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- fatty acid
- hydroxy fatty
- producing
- coome
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、医薬品の原料もしくは香料等として利用さ
れる環状ラクトンを合成するための中間体として有用な
ω−ヒドロキシ脂肪酸エステルの製造方法に関する。TECHNICAL FIELD The present invention relates to a method for producing an ω-hydroxy fatty acid ester useful as an intermediate for synthesizing a cyclic lactone used as a raw material for drugs, a fragrance or the like.
従来技術と問題点 二酸モノエステルからω−ヒドロキシ脂肪酸エステル
を製造する方法としては、従来、ジボランを還元剤とし
て用いて二酸モノエステルを直接ω−ヒドロキシ脂肪酸
エステルに還元する方法〔ジヤーナル オブ ケミカル
エデユケイシヨン(Journal of Chemical Educatio
n)54、12、p778〜779(1977)〕が知られている。Conventional Techniques and Problems Conventional methods for producing ω-hydroxy fatty acid esters from diacid monoesters have heretofore been the methods of directly reducing diacid monoesters to ω-hydroxy fatty acid esters using diborane as a reducing agent [Journal of Chemicals]. Journal of Chemical Educatio
n) 54 , 12, p778-779 (1977)] is known.
一方、ω−ヒドロキシ脂肪酸を製造する方法として
は、ω−ヒドロキシ−アルキル−γ−ブチロラクトンも
しくはω−アシロキシ−アルキル−γ−ブチロラクトン
を、水添分解触媒の存在下に水素ガスを供給して接触反
応させる方法(特公昭613776号)もしくは13−オキサ−
ビシクロ〔10,4,0〕−ヘキサデセン〔1(12)〕をラク
トンに転化し、該ラクトンをウオルフ−キシナ−法又は
フアン−ミンロン法によりラクトン環を開環する方法
(特公昭61-21474号)、及びコバルト触媒存在下で飽和
脂肪族ジカルボン酸を、同数の炭素数を有する飽和脂肪
族グリコールと共に水素と接触させる方法(特公昭47-4
4204号)等が提案されている。On the other hand, as a method for producing ω-hydroxy fatty acid, ω-hydroxy-alkyl-γ-butyrolactone or ω-acyloxy-alkyl-γ-butyrolactone is subjected to catalytic reaction by supplying hydrogen gas in the presence of a hydrogenolysis catalyst. Method (Japanese Patent Publication No. 613776) or 13-oxa
A method in which bicyclo [10,4,0] -hexadecene [1 (12)] is converted into a lactone and the lactone ring is opened by the Wolff-xina method or the Juan-Minron method (Japanese Patent Publication No. 61-21474). ), And a saturated aliphatic dicarboxylic acid in the presence of a cobalt catalyst together with a saturated aliphatic glycol having the same number of carbon atoms with hydrogen (Japanese Patent Publication No. 47-4).
No. 4204) has been proposed.
しかし、上記ジボランを用いて還元して二酸モノエス
テルを製造する方法は、ジボランが非常に高価であり取
扱いに危険をともなう上、しかも反応選択性が低くて目
的エステルの収率が低いため、工業規模の生産において
は経済的でない。ジカルボン酸を接触水素化を行う方法
では、不要な脂肪族グリコールを共存させねばならず、
経済的でない上、分離操作が煩雑となる。また、上記の
ω−ヒドロキシ脂肪酸を製造する方法は、いずれも高価
で複雑な化合物を出発原料として用いるため、製造コス
トが高くなるという問題がある。However, the method for producing a diacid monoester by reduction using diborane, diborane is very expensive and dangerous to handle, and furthermore, the reaction selectivity is low and the yield of the target ester is low, Not economical for industrial scale production. In the method of catalytic hydrogenation of dicarboxylic acid, unnecessary aliphatic glycol must coexist,
It is not economical and the separation operation becomes complicated. Further, all of the above-mentioned methods for producing ω-hydroxy fatty acid use expensive and complicated compounds as starting materials, and thus have a problem of high production cost.
発明が解決しようとする課題 本発明は、比較的に安価に入手し得る二酸モノエステ
ルからω−ヒドロキシ脂肪酸エステルを高収率で有利に
製造するための製造方法を提供することを課題とする。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to provide a production method for advantageously producing a ω-hydroxy fatty acid ester in a high yield from a diacid monoester that can be obtained relatively inexpensively. .
以下本発明を詳しく説明する。 The present invention will be described in detail below.
発明の構成 本発明の特徴は、コバルト触媒の存在下、一般式 HOCO(CH2)nCOOR (I) 〔式中Rはアルキル基を、nは自然数を表わす。〕 で表わされる二酸モノエステルを水素化還元して一般式 HOCH2(CH2)nCOOR (II) 〔式中Rとnは上記と同じ意味を表わす。〕 で示されるω−ヒドロキシ脂肪酸エステルを得ることに
ある。The structure of the present invention is characterized by the general formula HOCO (CH 2 ) n COOR (I) in the presence of a cobalt catalyst, wherein R represents an alkyl group and n represents a natural number. ] The diacid monoester represented by the formula: is hydrogenated and reduced to give the general formula HOCH 2 (CH 2 ) n COOR (II) [wherein R and n have the same meanings as described above]. ] It exists in obtaining the (omega) -hydroxy fatty acid ester shown by these.
課題を解決するための手段 本発明において、出発原料として用いる前記一般式
(I)で表わされる二酸モノエステルは、アルカン二酸
をアルコールでエステル化し、該エステルを、例えば水
酸化バリウムを用いてバリウムのモノ塩となし、次いで
該バリウム塩を酸で置換することにより容易に得ること
ができる。Means for Solving the Problems In the present invention, the diacid monoester represented by the general formula (I) used as a starting material is obtained by esterifying an alkanedioic acid with an alcohol and using the ester, for example, barium hydroxide. It can be easily obtained by forming a monosalt of barium and then substituting the barium salt with an acid.
この場合、上記エステル化のためのアルコールとし
て、炭素数1〜4の低級アルコールを用いると得られる
エステル化物の分離、精製が容易であるので好ましい。In this case, it is preferable to use a lower alcohol having 1 to 4 carbon atoms as the alcohol for the esterification because the obtained esterified product can be easily separated and purified.
なお、二酸モノエステルとしては、医薬品の原料或は
香料に利用されるラクトンを得るための中間体を目的と
する場合には、炭素数9〜18のアルカン二酸モノエステ
ルが好ましい。The diacid monoester is preferably an alkanedioic acid monoester having 9 to 18 carbon atoms when it is intended as an intermediate for obtaining a lactone used as a raw material for medicines or as a fragrance.
本発明は前記一般式(I)で表わされる二酸モノエス
テルをコバルト触媒を用いて水素化還元するものであ
り、用いることのできるコバルト触媒としては、塩化コ
バルト、硝酸コバルト、硫酸コバルト、水酸化コバル
ト、炭酸コバルト、酸化コバルト等のコバルト塩、還元
コバルト、コバルト−ケイソウ土、コバルト−活性炭、
コバルト−アルミナ、ラネーコバルト、漆原コバルト等
の還元性コバルト固体触媒、コバルトオクタカルボニ
ル、カリウムペンタンシアノコバルテート等のコバルト
錯体等を例示することができる。The present invention hydrogenates and reduces the diacid monoester represented by the general formula (I) using a cobalt catalyst. Examples of usable cobalt catalysts include cobalt chloride, cobalt nitrate, cobalt sulfate, and hydroxide. Cobalt, cobalt carbonate, cobalt salts such as cobalt oxide, reduced cobalt, cobalt-diatomaceous earth, cobalt-activated carbon,
Examples thereof include reducing cobalt solid catalysts such as cobalt-alumina, Raney cobalt, and Urushibara cobalt, and cobalt complexes such as cobalt octacarbonyl and potassium pentane cyanocobaltate.
本発明を実施する場合には、水素圧1〜200気圧、温
度20〜250℃の条件で行うことが好ましい。When carrying out the present invention, it is preferable to carry out under the conditions of hydrogen pressure of 1 to 200 atm and temperature of 20 to 250 ° C.
なお、上記水素化還元を水素圧1気圧以下、温度20℃
以下で行うと、還元反応が十分に進まず、収率が低下す
るので好ましくない。In addition, the hydrogenation reduction is performed at a hydrogen pressure of 1 atm or less and a temperature of 20 ° C.
The following is not preferable because the reduction reaction does not proceed sufficiently and the yield decreases.
また、反応温度及び水素圧は、高い方が反応速度が上
昇して収率が向上するが、反応温度が250℃を越えると
出発原料及び生成物の分解が起つて収率が低下するので
好ましくなく、一方、水素圧を200気圧より高くしても
反応速度の一層の向上は期待できず、かつこれ以上の水
素圧は、経済上及び安全上の面からも好ましくない。Further, the higher reaction temperature and hydrogen pressure increase the reaction rate and improve the yield, but when the reaction temperature exceeds 250 ° C., the starting materials and products are decomposed and the yield decreases, which is preferable. On the other hand, even if the hydrogen pressure is higher than 200 atm, further improvement of the reaction rate cannot be expected, and a hydrogen pressure higher than this is not preferable from the viewpoint of economy and safety.
また、この還元反応は、反応に関与しない溶媒、例え
ば水、ベンゼン、トルエン、シクロヘキサン、メタノー
ル、エタノール、酢酸エチル、ジオキサン等の存在下で
行つてもよい。Further, this reduction reaction may be carried out in the presence of a solvent that does not participate in the reaction, such as water, benzene, toluene, cyclohexane, methanol, ethanol, ethyl acetate, dioxane and the like.
かくして、本発明を適用することにより、二酸モノエ
ステルからω−ヒドロキシ脂肪酸エステルを高選択率か
つ高収率で製造することができる。Thus, by applying the present invention, the ω-hydroxy fatty acid ester can be produced from the diacid monoester with high selectivity and high yield.
なお、生成したω−ヒドロキシ脂肪酸エステルの一部
は、そのオリゴマーとして反応生成物に含有されること
があり、この場合には苛性ソーダ、苛性カリ等のアルカ
リを加え通常のケン化条件で加水分解し、ω−ヒドロキ
シ脂肪酸として単離精製してもよい。Incidentally, a part of the produced ω-hydroxy fatty acid ester may be contained in the reaction product as its oligomer, and in this case, alkali such as caustic soda and caustic potash is added and hydrolyzed under normal saponification conditions, It may be isolated and purified as ω-hydroxy fatty acid.
このようにして得られたω−ヒドロキシ脂肪酸エステ
ルまたはω−ヒドロキシ脂肪酸は、公知の方法により重
合して線状ポリエステルとなし、これを解重合触媒の存
在下に加熱解重合することにより、環状ラクトンとする
ことができる。The ω-hydroxy fatty acid ester or ω-hydroxy fatty acid thus obtained is polymerized by a known method to give a linear polyester, which is heated and depolymerized in the presence of a depolymerization catalyst to give a cyclic lactone. Can be
以下実施例により本発明を具体的に説明する。 The present invention will be specifically described below with reference to examples.
実施例1 HOCO(CH2)13COOMe→HOCH2(CH2)13COOMe 10mlのステンレス製オートクレーブに還元コバルト
(25mg、0.42mg-atom)、トリデカン−1,13−ジカルボ
ン酸モノメチルエステル(200mg、0.70mmol)及びトル
エン(2ml)を入れ、30気圧の水素圧下、175℃で14時間
加熱攪拌した。反応混合物中の15−ヒドロキシペンタデ
カン酸メチルの分析は、次のケン化反応に付することに
より行つた。Example 1 HOCO (CH 2 ) 13 COOMe → HOCH 2 (CH 2 ) 13 COOMe 10 ml of stainless steel autoclave reduced cobalt (25 mg, 0.42 mg-atom), tridecane-1,13-dicarboxylic acid monomethyl ester (200 mg, 0.70) mmol) and toluene (2 ml) were added, and the mixture was heated with stirring at 175 ° C. for 14 hours under a hydrogen pressure of 30 atm. The analysis of methyl 15-hydroxypentadecanoate in the reaction mixture was carried out by subjecting it to the next saponification reaction.
反応混合物を濃縮し、水酸化ナトリウム(300mg)、
水(2ml)及びメタノール(10ml)を加えて1時間加熱
還流させた後、濃縮し、希塩酸で酸性にした。酢酸エチ
ルで抽出後、無水硫酸ナトリウムで乾燥し、溶媒を留去
した。The reaction mixture was concentrated, sodium hydroxide (300 mg),
Water (2 ml) and methanol (10 ml) were added, the mixture was heated under reflux for 1 hr, concentrated, and acidified with dilute hydrochloric acid. After extraction with ethyl acetate, the extract was dried over anhydrous sodium sulfate and the solvent was distilled off.
粗生成物のGLC分析の結果、15−ヒドロキシペンタデ
カン酸(124mg、69%)及びトリデカン−1,13−ジカル
ボン酸(13mg、20%)を含有していることが確認され、
15−ヒドロキシペンタデカン酸メチルの選択率は86%で
あつた。GLC analysis of the crude product confirmed that it contained 15-hydroxypentadecanoic acid (124 mg, 69%) and tridecane-1,13-dicarboxylic acid (13 mg, 20%),
The selectivity of methyl 15-hydroxypentadecanoate was 86%.
実施例2 HOCO(CH2)13COOMe→HOCH2(CH2)13COOMe 10mlのステンレス製オートクレーブに還元コバルト
(50mg、0.84mg-atom)、トリデカン−1,13−ジカルボ
ン酸モノメチルエステル(200mg、0.70mmol)及びシク
ロヘキサン(2ml)を入れ、30気圧の水素圧下、175℃で
14時間加熱攪拌した。実施例1と同様の分析を行つた結
果、トリデカン−1,13−ジカルボン酸モノメチルエステ
ルの転化率は87%であり、15−ヒドロキシペンタデカン
酸メチルの選択率は77%であつた。Example 2 HOCO (CH 2 ) 13 COOMe → HOCH 2 (CH 2 ) 13 COOMe 10 ml of a stainless steel autoclave with reduced cobalt (50 mg, 0.84 mg-atom), tridecane-1,13-dicarboxylic acid monomethyl ester (200 mg, 0.70). mmol) and cyclohexane (2 ml), and under a hydrogen pressure of 30 atm at 175 ° C.
The mixture was heated and stirred for 14 hours. As a result of performing the same analysis as in Example 1, the conversion rate of tridecane-1,13-dicarboxylic acid monomethyl ester was 87%, and the selectivity rate of methyl 15-hydroxypentadecanoate was 77%.
実施例3 HOCO(CH2)13COOMe→HOCH2(CH2)13COOMe 10mlのステンレス製オートクレーブに還元コバルト
(100mg、1.70mg-atom)、トリデカン−1,13−ジカルボ
ン酸モノメチルエステル(200mg、0.70mmol)及びジオ
キサン(2ml)を入れ、30気圧の水素圧下、175℃で5時
間加熱攪拌した。実施例1と同様の分析を行つた結果、
トリデカン−1,13−ジカルボン酸モノメチルエステルの
転化率は87%であり、15−ヒドロキシペンタデカン酸メ
チルの選択率は72%であつた。Example 3 HOCO (CH 2 ) 13 COOMe → HOCH 2 (CH 2 ) 13 COOMe In a 10 ml stainless autoclave, reduced cobalt (100 mg, 1.70 mg-atom) and tridecane-1,13-dicarboxylic acid monomethyl ester (200 mg, 0.70) were added. mmol) and dioxane (2 ml) were added, and the mixture was heated with stirring at 175 ° C. for 5 hours under a hydrogen pressure of 30 atm. As a result of performing the same analysis as in Example 1,
The conversion of tridecane-1,13-dicarboxylic acid monomethyl ester was 87% and the selectivity of methyl 15-hydroxypentadecanoate was 72%.
実施例4 HOCO(CH2)13COOMe→HOCH2(CH2)13COOMe 10mlのステンレス製オートクレーブに還元コバルト
(25mg、0.42mg-atom)、トリデカン−1,13−ジカルボ
ン酸モノメチルエステル(200mg、0.70mmol)及び水(1
ml)を入れ、30気圧の水素圧下、175℃で14時間加熱攪
拌した。実施例1と同様の分析を行つた結果、トリデカ
ン−1,13−ジカルボン酸モノメチルエステルの転化率は
45%であり、15−ヒドロキシペンタデカン酸メチルの選
択率は82%であつた。Example 4 HOCO (CH 2 ) 13 COOMe → HOCH 2 (CH 2 ) 13 COOMe 10 ml of stainless steel autoclave reduced cobalt (25 mg, 0.42 mg-atom), tridecane-1,13-dicarboxylic acid monomethyl ester (200 mg, 0.70) mmol) and water (1
ml) was added, and the mixture was heated and stirred at 175 ° C. for 14 hours under a hydrogen pressure of 30 atm. As a result of performing the same analysis as in Example 1, the conversion rate of tridecane-1,13-dicarboxylic acid monomethyl ester was found to be
45%, and the selectivity of methyl 15-hydroxypentadecanoate was 82%.
実施例5 HOCO(CH2)13COOMe→HOCH2(CH2)13COOMe 10mlのステンレス製オートクレーブに還元コバルト
(100mg、1.70mg-atom)、及びトリデカン−1,13−ジカ
ルボン酸モノメチルエステル(200mg、0.70mmol)を入
れ、30気圧の水素圧下、175℃で5時間加熱攪拌した。
実施例1と同様の分析を行つた結果トリデカン−1,13−
ジカルボン酸モノメチルエステルの転化率は51%であ
り、15−ヒドロキシペンタデカン酸メチルの選択率は78
%であつた。Example 5 HOCO (CH 2 ) 13 COOMe → HOCH 2 (CH 2 ) 13 COOMe In a 10 ml stainless autoclave, reduced cobalt (100 mg, 1.70 mg-atom) and tridecane-1,13-dicarboxylic acid monomethyl ester (200 mg, 0.70 mmol) was added, and the mixture was heated with stirring at 175 ° C. for 5 hours under a hydrogen pressure of 30 atm.
As a result of performing the same analysis as in Example 1, tridecane-1,13-
The conversion rate of dicarboxylic acid monomethyl ester is 51% and the selectivity of methyl 15-hydroxypentadecanoate is 78%.
It was in%.
実施例6 HOCO(CH2)11COOMe→HOCH2(CH2)11COOMe 10mlのステンレス製オートクレーブに還元コバルト
(25mg、0.42mg-atom)、ウンデカン−1,11−ジカルボ
ン酸モノメチルエステル(200mg、0.77mmol)及びトル
エン(2ml)を入れ、30気圧の水素圧下、175℃で16時間
加熱攪拌した。実施例1と同様の分析を行つた結果ウン
デカン−1,11−ジカルボン酸モノメチルエステルの転化
率は24%であり、13−ヒドロキシトリデカン酸メチルの
選択率は96%であつた。Example 6 HOCO (CH 2 ) 11 COOMe → HOCH 2 (CH 2 ) 11 COOMe In a stainless steel autoclave of 10 ml, reduced cobalt (25 mg, 0.42 mg-atom), undecane-1,11-dicarboxylic acid monomethyl ester (200 mg, 0.77). mmol) and toluene (2 ml) were added, and the mixture was heated with stirring at 175 ° C. for 16 hours under a hydrogen pressure of 30 atm. As a result of performing the same analysis as in Example 1, the conversion of undecane-1,11-dicarboxylic acid monomethyl ester was 24% and the selectivity of methyl 13-hydroxytridecanoate was 96%.
実施例7 HOCO(CH2)14COOMe→HOCH2(CH2)14COOMe 10mlのステンレス製オートクレーブに還元コバルト
(25mg、0.42mg-atom)、テトラデカン−1,14−ジカル
ボン酸モノメチルエステル(200mg、0.67mmol)及びト
ルエン(2ml)を入れ、30気圧の水素圧下、175℃で16時
間加熱攪拌した。実施例1と同様の分析を行つた結果テ
トラデカン−1,14−ジカルボン酸モノメチルエステルの
転化率は22%であり、16−ヒドロキシヘキサデカン酸メ
チルの選択率は95%であつた。Example 7 HOCO (CH 2 ) 14 COOMe → HOCH 2 (CH 2 ) 14 COOMe 10 ml of a stainless steel autoclave was prepared with reduced cobalt (25 mg, 0.42 mg-atom), tetradecane-1,14-dicarboxylic acid monomethyl ester (200 mg, 0.67). mmol) and toluene (2 ml) were added, and the mixture was heated with stirring at 175 ° C. for 16 hours under a hydrogen pressure of 30 atm. As a result of performing the same analysis as in Example 1, the conversion of tetradecane-1,14-dicarboxylic acid monomethyl ester was 22%, and the selectivity of methyl 16-hydroxyhexadecanoate was 95%.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 27/232 X 27/25 X 31/20 X C07C 67/31 // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B01J 27/232 X 27/25 X 31/20 X C07C 67/31 // C07B 61/00 300
Claims (2)
徴とする、ω−ヒドロキシ脂肪酸エステルを製造する方
法。1. A diacid monoester represented by the general formula HOCO (CH 2 ) n COOR [wherein R represents an alkyl group and n represents a natural number] in the presence of a cobalt catalyst. A method for producing an ω-hydroxy fatty acid ester, which is characterized.
(1)記載の方法。2. The method according to claim 1, wherein n in the general formula is 7 to 16.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63084164A JPH089574B2 (en) | 1988-04-07 | 1988-04-07 | Method for producing ω-hydroxy fatty acid ester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63084164A JPH089574B2 (en) | 1988-04-07 | 1988-04-07 | Method for producing ω-hydroxy fatty acid ester |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01258646A JPH01258646A (en) | 1989-10-16 |
JPH089574B2 true JPH089574B2 (en) | 1996-01-31 |
Family
ID=13822855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63084164A Expired - Fee Related JPH089574B2 (en) | 1988-04-07 | 1988-04-07 | Method for producing ω-hydroxy fatty acid ester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH089574B2 (en) |
-
1988
- 1988-04-07 JP JP63084164A patent/JPH089574B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01258646A (en) | 1989-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3285948A (en) | Halides of ruthenium and osmium in conjunction with cobalt and iodine in the production of ethanol from methanol | |
KR100510000B1 (en) | Method for Producing 1,6-Hexanediol | |
KR101223949B1 (en) | Process for the purification of 1,4-butanediol | |
EP0553358B1 (en) | Process for producing 3-dpa-lactone | |
AU619463B2 (en) | Process for the hydrogenation of bis-phenols | |
US2748160A (en) | Process for preparing 2, 5-diacetoxysty-rene and intermediates therefor | |
JP3850637B2 (en) | Production method of macrocyclic lactone | |
JPH089574B2 (en) | Method for producing ω-hydroxy fatty acid ester | |
JP2543395B2 (en) | Method for producing ω-hydroxy fatty acid | |
US4475004A (en) | Preparation of alkanediols | |
JP2551464B2 (en) | Method for producing ω-hydroxy fatty acid | |
KR890003787B1 (en) | Process for the preparation of cyclohexanone carboxylic acids xyic acids | |
EP0262948B1 (en) | Process for producing omega-hydroxy fatty acids | |
JP3489594B2 (en) | Method for producing hydroxypivalic acid ester | |
US4465847A (en) | Method for the production of butyrolactones | |
JP2001181271A (en) | Method for producing alpha-monoglyceride ketal | |
JP3357147B2 (en) | Method for producing 5-phenylpentanoic acid | |
JPS5837289B2 (en) | Esterno Centax Isokabunkaihouhou | |
JP3254746B2 (en) | Terminal acetylene compound and method for producing the same | |
US3349106A (en) | Solvent for obtaining very high yields of aldehydic products from soybean oil | |
JP2582612B2 (en) | Method for producing .OMEGA.-hydroxy fatty acid ester | |
JP3098825B2 (en) | Method for producing dihydrofuranone derivative | |
CA1051036A (en) | Process for the production of butanediol | |
JPH10204022A (en) | Production of 3-cyclohexylpropionic acid | |
JP3805435B2 (en) | Process for producing 6-methyl-3-hepten-2-one |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |