Nothing Special   »   [go: up one dir, main page]

JPH0889801A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH0889801A
JPH0889801A JP6223537A JP22353794A JPH0889801A JP H0889801 A JPH0889801 A JP H0889801A JP 6223537 A JP6223537 A JP 6223537A JP 22353794 A JP22353794 A JP 22353794A JP H0889801 A JPH0889801 A JP H0889801A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
nox
powder
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6223537A
Other languages
Japanese (ja)
Inventor
Takahiro Hayashi
高弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6223537A priority Critical patent/JPH0889801A/en
Publication of JPH0889801A publication Critical patent/JPH0889801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To provide a catalyst for purification of an exhaust gas exhibiting a high NOx absorption rate without using an NOx absorbing material such as barium. CONSTITUTION: A catalyst for purification of an exhaust gas consists of a carrier consisting of Mn-Zr double oxides and a catalyst precious metal incorporated in the carrier. The Mn-Zr double oxides have lattice defects based on oxygen defects and as diffusion of oxygen into the lattice defects is smoothly performed, it is estimated that not only oxygen but also NOx are diffused and adsorbed and as the result, a high NOx absorption rate is exhibited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排気ガス浄化用触媒に関
し、詳しくはリーン側の排気ガスであっても窒素酸化物
(NOx)を効率よく浄化できる触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst, and more particularly to a catalyst capable of efficiently purifying nitrogen oxides (NOx) even in lean exhaust gas.

【0002】[0002]

【従来の技術】従来より、自動車の排気ガス浄化用触媒
として、CO及びHCの酸化とNOxの還元とを同時に
行って排気ガスを浄化する三元触媒が用いられている。
このような触媒としては、例えばコージェライトなどの
耐熱性担体にγ−アルミナからなる担持層を形成し、そ
の担持層にPt,Pd,Rhなどの触媒貴金属を担持さ
せたものが広く知られている。
2. Description of the Related Art Conventionally, a three-way catalyst for purifying exhaust gas by simultaneously oxidizing CO and HC and reducing NOx has been used as a catalyst for purifying exhaust gas of an automobile.
As such a catalyst, for example, a catalyst in which a supporting layer made of γ-alumina is formed on a heat resistant carrier such as cordierite and a catalytic precious metal such as Pt, Pd, Rh is supported on the supporting layer is widely known. There is.

【0003】ところで、このような排気ガス浄化用触媒
の浄化性能は、エンジンの空燃比(A/F)によって大
きく異なる。すなわち、空燃比の大きい、つまり燃料濃
度が希薄なリーン側では排気ガス中の酸素量が多くな
り、COやHCを浄化する酸化反応が活発である反面N
Oxを浄化する還元反応が不活発になる。逆に空燃比の
小さい、つまり燃料濃度が濃いリッチ側では排気ガス中
の酸素量が少なくなり、酸化反応は不活発となるが還元
反応は活発になる。
By the way, the purification performance of such an exhaust gas purification catalyst greatly differs depending on the air-fuel ratio (A / F) of the engine. That is, on the lean side where the air-fuel ratio is large, that is, where the fuel concentration is lean, the amount of oxygen in the exhaust gas is large, and the oxidation reaction for purifying CO and HC is active, but N
The reduction reaction for purifying Ox becomes inactive. On the contrary, on the rich side where the air-fuel ratio is small, that is, where the fuel concentration is high, the amount of oxygen in the exhaust gas is small, and the oxidation reaction becomes inactive but the reduction reaction becomes active.

【0004】一方、自動車の走行において、市街地走行
の場合には加速・減速が頻繁に行われ、空燃比はストイ
キ(理論空燃比)近傍からリッチ状態までの範囲内で頻
繁に変化する。このような走行における低燃費化の要請
に応えるには、なるべく酸素過剰の混合気を供給するリ
ーン側での運転が必要となる。したがってリーン側にお
いてもNOxを十分に浄化できる触媒の開発が望まれて
いる。
On the other hand, when driving an automobile, acceleration and deceleration are frequently performed in urban areas, and the air-fuel ratio frequently changes within the range from near stoichiometric (theoretical air-fuel ratio) to the rich state. In order to meet the demand for low fuel consumption in such traveling, it is necessary to operate on the lean side to supply an air-fuel mixture with excess oxygen as much as possible. Therefore, it is desired to develop a catalyst that can sufficiently purify NOx even on the lean side.

【0005】そこで本願出願人は、先にアルカリ土類金
属とPtをアルミナなどの多孔質担体に担持した排気ガ
ス浄化用触媒を提案している(特開平5−317652
号)。この触媒によれば、NOxはアルカリ土類金属に
吸着し、それがHCなどの還元性ガスと反応して浄化さ
れるため、リーン側においてもNOxの浄化性能に優れ
ている。
Therefore, the applicant of the present application has previously proposed an exhaust gas purifying catalyst in which an alkaline earth metal and Pt are carried on a porous carrier such as alumina (Japanese Patent Laid-Open No. 5-317652).
issue). According to this catalyst, NOx is adsorbed on the alkaline earth metal and is reacted with a reducing gas such as HC to be purified, so that the lean side is also excellent in NOx purification performance.

【0006】特開平5−317652号に開示された触
媒では、例えばバリウムが単独酸化物として担体に担持
され、それがNOxと反応して硝酸バリウム(Ba(N
32 )を生成することでNOxを吸収するものと考
えられている。
In the catalyst disclosed in Japanese Unexamined Patent Publication No. 5-317652, for example, barium is supported on a carrier as a single oxide, which reacts with NOx to produce barium nitrate (Ba (N
It is believed to absorb NOx by producing O 3 ) 2 ).

【0007】[0007]

【発明が解決しようとする課題】ところが排気ガス中に
は、燃料中に含まれる硫黄(S)が燃焼して生成したS
Oxが含まれ、それが酸素過剰雰囲気中で触媒金属によ
り酸化されてSO3 となる。そしてそれがやはり排気ガ
ス中に含まれる水蒸気により容易に硫酸となり、これら
がバリウムと反応して亜硫酸バリウムや硫酸バリウムが
生成し、これによりバリウムが被毒劣化することが明ら
かとなった。また、アルミナなどの多孔質担体はSOx
を吸収しやすいという性質があることから、上記硫黄被
毒が促進されるという問題がある。
However, in the exhaust gas, sulfur (S) contained in the fuel is burned to generate S.
Ox is contained, and it is oxidized to SO 3 by the catalytic metal in the oxygen excess atmosphere. It was also clarified that sulfuric acid is easily converted to sulfuric acid by the water vapor contained in the exhaust gas, which reacts with barium to generate barium sulfite or barium sulfate, which causes the barium to be poisoned and deteriorated. In addition, the porous carrier such as alumina is SOx.
Since sulfur is easily absorbed, there is a problem that the sulfur poisoning is promoted.

【0008】そして、このようにバリウムが亜硫酸塩や
硫酸塩となると、もはやNOxを吸着することができな
くなり、その結果上記触媒では、耐久後のNOxの浄化
性能が低下するという不具合があった。そこでバリウム
を始めとするアルカリ土類金属やアルカリ金属などのN
Ox吸収材は用いず、アルミナ担体にMn又はZrと触
媒貴金属とを担持した排気ガス浄化用触媒が検討されて
いるが、バリウムなどのNOx吸収材に比べてNOx吸
収量が少ないという問題があった。
When barium becomes a sulfite or a sulfate as described above, NOx can no longer be adsorbed, and as a result, the catalyst has a problem that the NOx purification performance after durability is deteriorated. Therefore, N such as alkaline earth metal and alkali metal such as barium
An exhaust gas purifying catalyst in which Mn or Zr and a catalytic noble metal are supported on an alumina carrier without using an Ox absorbent has been studied, but there is a problem that the amount of NOx absorbed is smaller than that of a NOx absorbent such as barium. It was

【0009】本発明はこのような事情に鑑みてなされた
ものであり、バリウムなどのNOx吸収材を用いずに高
いNOx吸収率を示す排気ガス浄化用触媒を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an exhaust gas purifying catalyst showing a high NOx absorption rate without using a NOx absorbent such as barium.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の排気ガス浄化用触媒は、Mn−Zr複合酸化物から
なる担体と、担体中に含まれた触媒貴金属と、からなる
ことを特徴とする。
The exhaust gas purifying catalyst of the present invention for solving the above-mentioned problems is characterized by comprising a carrier composed of Mn-Zr composite oxide and a catalytic noble metal contained in the carrier. And

【0011】[0011]

【作用】本発明の排気ガス浄化用触媒では、担体がMn
−Zr複合酸化物からなる。このMn−Zr複合酸化物
は酸素欠陥による格子欠陥を有し、比表面積が大きく酸
素の吸収・放出が円滑に行われるという特性をもつ。し
たがってセリウム酸化物と同等以上に酸素ストレージ能
に優れ、ストイキ近傍における酸素濃度のばらつきが吸
収されるので、触媒貴金属による安定した浄化性能が得
られる。
In the exhaust gas purifying catalyst of the present invention, the carrier is Mn.
-It consists of a Zr compound oxide. This Mn-Zr composite oxide has lattice defects due to oxygen defects, has a large specific surface area, and has characteristics that oxygen can be absorbed and released smoothly. Therefore, it has an oxygen storage capacity equal to or higher than that of cerium oxide and absorbs variations in oxygen concentration in the vicinity of stoichiometry, so that stable purification performance with a catalytic noble metal can be obtained.

【0012】そしてMn−Zr複合酸化物の格子欠陥内
への酸素の拡散が円滑に行われるので、酸素と同時にN
Oxが拡散して吸着するものと推察され、高いNOx吸
収率を示す。例えば排気ガス中のNOは、リーン雰囲気
で触媒貴金属の触媒作用により酸化されてNO2 とな
り、酸素とともに格子欠陥内へ拡散して吸収されるもの
と考えられる。これによりリーン雰囲気側でもNOxの
排出が抑制される。
Oxygen diffuses smoothly into the lattice defects of the Mn-Zr composite oxide, so that N simultaneously with oxygen.
It is assumed that Ox diffuses and is adsorbed, and exhibits a high NOx absorption rate. For example, it is considered that NO in the exhaust gas is oxidized in the lean atmosphere by the catalytic action of the catalytic noble metal to become NO 2 and diffused and absorbed into the lattice defects together with oxygen. As a result, NOx emission is suppressed even on the lean atmosphere side.

【0013】そして、Mn−Zr複合酸化物に吸収され
たNOxは、ストイキ又はリッチ雰囲気で酸素とともに
Mn−Zr複合酸化物から離れ、触媒貴金属の触媒作用
により排気ガス中の還元性物質で還元されるものと考え
られる。以上の作用により、本発明の排気ガス浄化用触
媒は高いNOx浄化性能を示す。
The NOx absorbed in the Mn-Zr composite oxide is separated from the Mn-Zr composite oxide together with oxygen in a stoichiometric or rich atmosphere, and reduced by the reducing substance in the exhaust gas by the catalytic action of the catalytic noble metal. It is considered to be one. Due to the above actions, the exhaust gas purifying catalyst of the present invention exhibits high NOx purifying performance.

【0014】[0014]

【実施例】 〔発明の具体例〕担体を構成するMn−Zr複合酸化物
中のMn/Zr比は、モル比で1/1近傍の比率とする
のが望ましい。例えば1/9や9/1など偏った比率と
すると、NOx吸収率が低下する傾向がある。なおMn
−Zr複合酸化物の比表面積は100以上とするのが望
ましい。
[Examples of the invention] The Mn / Zr ratio in the Mn-Zr composite oxide constituting the carrier is preferably a molar ratio close to 1/1. For example, if the ratio is biased such as 1/9 or 9/1, the NOx absorption rate tends to decrease. Note that Mn
The specific surface area of the —Zr composite oxide is preferably 100 or more.

【0015】この担体の形状は、Mn−Zr複合酸化物
自体からペレット担体などの担体基材を形成してもよい
し、コージェライトなどの耐熱性基材にMn−Zr複合
酸化物のコート層を形成して担体とすることもできる。
またMn−Zr複合酸化物にアルミナなどを混合して担
体としてもよい。またMn−Zr複合酸化物を形成する
には、共沈法や金属アルコキシドを用いたゾル・ゲル法
などの公知の方法が利用できる。
With respect to the shape of the carrier, a carrier substrate such as a pellet carrier may be formed from the Mn-Zr complex oxide itself, or a heat-resistant substrate such as cordierite may be coated with the Mn-Zr complex oxide. Can also be formed into a carrier.
Alternatively, the Mn-Zr composite oxide may be mixed with alumina or the like to form a carrier. To form the Mn-Zr composite oxide, known methods such as coprecipitation method and sol-gel method using metal alkoxide can be used.

【0016】触媒貴金属としては、白金(Pt)、パラ
ジウム(Pd)、ロジウム(Rh)の少なくとも一種が
用いられる。白金又はパラジウムの含有量は、担体10
0gに対して0.1〜20.0gの範囲が望ましく、
0.3〜10.0gの範囲が特に好ましい。含有量が
0.1gより少ないと初期及び耐久後のNOx浄化性能
が低下し、20.0gを超えて含有しても効果が飽和
し、過剰に含有された触媒貴金属の有効利用が図れな
い。
At least one of platinum (Pt), palladium (Pd) and rhodium (Rh) is used as the catalytic noble metal. The content of platinum or palladium is 10
The range of 0.1 to 20.0 g is desirable with respect to 0 g,
A range of 0.3-10.0 g is particularly preferred. If the content is less than 0.1 g, the NOx purification performance at the initial stage and after endurance will be deteriorated, and if the content exceeds 20.0 g, the effect will be saturated and the catalyst noble metal contained in excess will not be effectively utilized.

【0017】ロジウムの含有量は、担体100gに対し
て0.001〜1.0gの範囲が望ましく、0.05〜
0.5gの範囲が特に好ましい。含有量が0.001g
より少ないと初期及び耐久後のNOx浄化性能が低下
し、1.0gを超えると白金あるいはパラジウムの効果
が逆に低下する。ロジウムの含有量は白金あるいはパラ
ジウムの含有量と相対的に決定されるのが望ましく、白
金あるいはパラジウムの含有量の合計量の1/3以下、
さらに好ましくは1/5以下とするのがよい。 〔実施例〕以下、実施例により具体的に説明する。 (実施例1)硝酸マンガン水溶液(濃度0.25〜1mo
l/L )とオキシ硝酸ジルコニウム水溶液(濃度0.25
〜1mol/L )を体積比で1対1に混合した混合溶液に、
攪拌しながら濃度10%のアンモニア水を0.5mlず
つ徐々に滴下した。
The content of rhodium is preferably in the range of 0.001 to 1.0 g, and 0.05 to 100 g per 100 g of the carrier.
A range of 0.5 g is particularly preferred. Content is 0.001g
If it is less, the NOx purification performance at the initial stage and after durability will deteriorate, and if it exceeds 1.0 g, the effect of platinum or palladium will conversely decrease. The content of rhodium is preferably determined relative to the content of platinum or palladium, and is 1/3 or less of the total content of platinum or palladium,
More preferably, it should be 1/5 or less. [Examples] Hereinafter, specific examples will be described. (Example 1) Manganese nitrate aqueous solution (concentration: 0.25 to 1 mo)
l / L) and zirconium oxynitrate aqueous solution (concentration 0.25
˜1 mol / L) in a volume ratio of 1: 1 mixed solution,
While stirring, 0.5 ml of 10% concentration aqueous ammonia was gradually added dropwise.

【0018】析出した沈澱物を濾過し、蒸留水で数回洗
浄した後乾燥させ、450℃で6時間焼成してMn−Z
r複合酸化物粉末を調製した。このMn−Zr複合酸化
物粉末は、X線回折分析の結果、MnO2 中にZrが固
溶していることが確認された。次に、所定濃度のジニト
ロジアンミン白金水溶液中に所定量のMn−Zr複合酸
化物粉末を浸漬して攪拌し、蒸発乾固後250℃で1時
間焼成して、Ptを担持させた。そして得られた粉末を
常法によりペレット化し、Ptを2.0g/L担持した
実施例1の排気ガス浄化用触媒を調製した。 (実施例2)硝酸マンガン水溶液とオキシ硝酸ジルコニ
ウム水溶液の混合比を体積比で1対9とした混合溶液を
用いてMn−Zr複合酸化物粉末を調製したこと以外は
実施例1と同様にして、Ptを2.0g/L担持した実
施例2の排気ガス浄化用触媒を調製した。このMn−Z
r複合酸化物粉末は、X線回折分析の結果、MnO2
にZrが固溶していることが確認された。 (実施例3)硝酸マンガン水溶液とオキシ硝酸ジルコニ
ウム水溶液の混合比を体積比で9対1とした混合溶液を
用いてMn−Zr複合酸化物粉末を調製したこと以外は
実施例1と同様にして、Ptを2.0g/L担持した実
施例3の排気ガス浄化用触媒を調製した。このMn−Z
r複合酸化物粉末は、X線回折分析の結果、MnO2
にZrが固溶していることが確認された。 (実施例4)所定濃度のジニトロジアンミン白金水溶液
中に所定量のγ−アルミナ粉末を浸漬して攪拌し、蒸発
乾固後250℃で1時間焼成して、Pt担持アルミナ粉
末を調製した。
The deposited precipitate was filtered, washed with distilled water several times, dried, and calcined at 450 ° C. for 6 hours to obtain Mn-Z.
An r complex oxide powder was prepared. As a result of X-ray diffraction analysis, it was confirmed that Zr was solid-solved in MnO 2 of the Mn-Zr composite oxide powder. Next, a predetermined amount of Mn-Zr composite oxide powder was dipped in a dinitrodiammine platinum aqueous solution with a predetermined concentration, stirred, evaporated to dryness, and then baked at 250 ° C for 1 hour to support Pt. Then, the obtained powder was pelletized by an ordinary method to prepare an exhaust gas purifying catalyst of Example 1 carrying Pt at 2.0 g / L. (Example 2) In the same manner as in Example 1 except that a Mn-Zr composite oxide powder was prepared using a mixed solution in which the mixing ratio of the manganese nitrate aqueous solution and the zirconium oxynitrate aqueous solution was 1: 9 by volume. , Pt was carried at 2.0 g / L to prepare an exhaust gas purifying catalyst of Example 2. This Mn-Z
As a result of X-ray diffraction analysis, it was confirmed that Zr was solid-solved in MnO 2 in the r composite oxide powder. (Example 3) In the same manner as in Example 1 except that a Mn-Zr composite oxide powder was prepared using a mixed solution in which the mixing ratio of the manganese nitrate aqueous solution and the zirconium oxynitrate aqueous solution was 9: 1 by volume. , Pt was carried at 2.0 g / L to prepare an exhaust gas purifying catalyst of Example 3. This Mn-Z
As a result of X-ray diffraction analysis, it was confirmed that Zr was solid-solved in MnO 2 in the r composite oxide powder. (Example 4) A Pt-supported alumina powder was prepared by immersing a predetermined amount of γ-alumina powder in an aqueous solution of dinitrodiammine platinum having a predetermined concentration, stirring, evaporating to dryness, and baking at 250 ° C for 1 hour.

【0019】そして実施例1で調製したMn−Zr複合
酸化物粉末10gとPt担持アルミナ粉末10gを物理
的に混合し、得られた粉末を常法でペレット化してPt
を2.0g/L担持した実施例4の排気ガス浄化用触媒
を調製した。 (実施例5)所定濃度のオキシ硝酸ジルコニウム水溶液
に二酸化マンガン粉末を浸漬して攪拌し、蒸発乾固後4
50℃で3時間焼成してMn−Zr複合酸化物粉末を調
製したこと以外は実施例1と同様にして、Ptを2.0
g/L担持した実施例5の排気ガス浄化用触媒を調製し
た。このMn−Zr複合酸化物粉末は、X線回折分析の
結果、MnO2 中にZrが固溶していることが確認され
た。 (実施例6)所定濃度の硝酸マンガン水溶液に二酸化ジ
ルコニウム粉末を浸漬して攪拌し、蒸発乾固後450℃
で3時間焼成してMn−Zr複合酸化物粉末を調製した
こと以外は実施例1と同様にして、Ptを2.0g/L
担持した実施例6の排気ガス浄化用触媒を調製した。こ
のMn−Zr複合酸化物粉末は、X線回折分析の結果、
ZrO2 中にMnが固溶していることが確認された。 (比較例1)所定濃度のジニトロジアンミン白金水溶液
中に所定量の二酸化マンガン粉末を浸漬して攪拌し、蒸
発乾固後250℃で1時間焼成して、Pt担持MnO2
粉末を調製した。
Then, 10 g of the Mn-Zr composite oxide powder prepared in Example 1 and 10 g of Pt-supported alumina powder were physically mixed, and the obtained powder was pelletized by a conventional method.
An exhaust gas purifying catalyst of Example 4 carrying 2.0 g / L of was prepared. (Example 5) Manganese dioxide powder was immersed in an aqueous zirconium oxynitrate solution having a predetermined concentration, stirred, evaporated to dryness, and then dried.
Pt was 2.0% in the same manner as in Example 1 except that the Mn-Zr composite oxide powder was prepared by firing at 50 ° C for 3 hours.
An exhaust gas purifying catalyst of Example 5 carrying g / L was prepared. As a result of X-ray diffraction analysis, it was confirmed that Zr was solid-solved in MnO 2 of the Mn-Zr composite oxide powder. (Example 6) Zirconium dioxide powder was immersed in an aqueous solution of manganese nitrate having a predetermined concentration, stirred, evaporated to dryness, and then 450 ° C.
The Pt content was 2.0 g / L in the same manner as in Example 1 except that the Mn-Zr composite oxide powder was prepared by firing for 3 hours.
The supported exhaust gas-purifying catalyst of Example 6 was prepared. As a result of X-ray diffraction analysis, the Mn-Zr composite oxide powder was
It was confirmed that Mn was in solid solution in ZrO 2 . (Comparative Example 1) A predetermined amount of manganese dioxide powder was immersed in an aqueous dinitrodiammine platinum solution having a predetermined concentration, stirred, evaporated to dryness, and then baked at 250 ° C for 1 hour to obtain Pt-supported MnO 2.
A powder was prepared.

【0020】得られたPt担持MnO2 粉末を常法でペ
レット化して、Ptを2.0g/L担持した比較例1の
排気ガス浄化用触媒を調製した。 (比較例2)所定濃度のジニトロジアンミン白金水溶液
中に所定量の二酸化ジルコニウム粉末を浸漬して攪拌
し、蒸発乾固後250℃で1時間焼成して、Pt担持Z
rO2粉末を調製した。
The Pt-supported MnO 2 powder thus obtained was pelletized by a conventional method to prepare an exhaust gas purifying catalyst of Comparative Example 1 carrying Pt at 2.0 g / L. (Comparative Example 2) A predetermined amount of zirconium dioxide powder was immersed in an aqueous dinitrodiammine platinum solution having a predetermined concentration, stirred, evaporated to dryness, and then baked at 250 ° C for 1 hour to obtain Pt-supported Z.
An rO 2 powder was prepared.

【0021】得られたPt担持ZrO2 粉末を常法でペ
レット化して、Ptを2.0g/L担持した比較例2の
排気ガス浄化用触媒を調製した。 (比較例3)二酸化マンガン粉末と二酸化ジルコニウム
粉末をモル比で1対1となるように混合し、混合粉末を
調製した。そして所定濃度のジニトロジアンミン白金水
溶液中に所定量の混合粉末を浸漬して攪拌し、蒸発乾固
後250℃で1時間焼成して、Pt担持混合粉末を調製
した。
The Pt-supported ZrO 2 powder thus obtained was pelletized by a conventional method to prepare an exhaust gas purifying catalyst of Comparative Example 2 in which Pt was supported at 2.0 g / L. (Comparative Example 3) Manganese dioxide powder and zirconium dioxide powder were mixed at a molar ratio of 1: 1 to prepare a mixed powder. Then, a predetermined amount of the mixed powder was immersed in an aqueous dinitrodiammine platinum solution having a predetermined concentration, stirred, evaporated to dryness, and then baked at 250 ° C. for 1 hour to prepare a Pt-supported mixed powder.

【0022】得られたPt担持混合粉末を常法でペレッ
ト化して、Ptを2.0g/L担持した比較例3の排気
ガス浄化用触媒を調製した。 (比較例4)所定濃度の硝酸マンガン水溶液にγ−アル
ミナ粉末を浸漬して攪拌し、蒸発乾固後250℃で1時
間焼成した。次いで所定濃度のジニトロジアンミン白金
水溶液中に浸漬して攪拌し、蒸発乾固後650℃で2時
間焼成して、Mn−Pt担持アルミナ粉末を調製した。
The resulting Pt-supported mixed powder was pelletized by a conventional method to prepare an exhaust gas purifying catalyst of Comparative Example 3 in which Pt was supported at 2.0 g / L. (Comparative Example 4) γ-alumina powder was immersed in an aqueous solution of manganese nitrate having a predetermined concentration, stirred, evaporated to dryness, and then baked at 250 ° C for 1 hour. Then, it was immersed in an aqueous dinitrodiammine platinum solution of a predetermined concentration, stirred, evaporated to dryness, and then baked at 650 ° C. for 2 hours to prepare an Mn—Pt-supported alumina powder.

【0023】得られたMn−Pt担持アルミナ粉末を常
法でペレット化して、Mnを0.3mol/L、Ptを
2.0g/L担持した比較例4の排気ガス浄化用触媒を
調製した。 (比較例5)所定濃度の硝酸ジルコニウム水溶液にγ−
アルミナ粉末を浸漬して攪拌し、蒸発乾固後250℃で
1時間焼成した。次いで所定濃度のジニトロジアンミン
白金水溶液中に浸漬して攪拌し、蒸発乾固後650℃で
2時間焼成して、Zr−Pt担持アルミナ粉末を調製し
た。
The obtained Mn-Pt-supported alumina powder was pelletized by a conventional method to prepare an exhaust gas purifying catalyst of Comparative Example 4 in which Mn was 0.3 mol / L and Pt was 2.0 g / L. (Comparative Example 5) γ-in a zirconium nitrate aqueous solution having a predetermined concentration
The alumina powder was dipped, stirred, evaporated to dryness, and then baked at 250 ° C. for 1 hour. Then, it was immersed in a dinitrodiammine platinum aqueous solution of a predetermined concentration, stirred, evaporated to dryness and then baked at 650 ° C. for 2 hours to prepare a Zr—Pt-supported alumina powder.

【0024】得られたZr−Pt担持アルミナ粉末を常
法でペレット化して、Zrを0.3mol/L、Ptを
2.0g/L担持した比較例5の排気ガス浄化用触媒を
調製した。 (比較例6)所定濃度の硝酸マンガン水溶液にγ−アル
ミナ粉末を浸漬して攪拌し、蒸発乾固後250℃で1時
間焼成した。次に所定濃度の硝酸ジルコニウム水溶液に
浸漬して攪拌し、蒸発乾固後250℃で1時間焼成し
た。さらに所定濃度のジニトロジアンミン白金水溶液中
に浸漬して攪拌し、蒸発乾固後650℃で2時間焼成し
て、Mn−Zr−Pt担持アルミナ粉末を調製した。
The obtained Zr-Pt-supported alumina powder was pelletized by a conventional method to prepare an exhaust gas purifying catalyst of Comparative Example 5 carrying Zr of 0.3 mol / L and Pt of 2.0 g / L. (Comparative Example 6) γ-alumina powder was immersed in an aqueous solution of manganese nitrate having a predetermined concentration, stirred, evaporated to dryness, and then baked at 250 ° C for 1 hour. Next, it was immersed in an aqueous zirconium nitrate solution having a predetermined concentration, stirred, evaporated to dryness, and then baked at 250 ° C. for 1 hour. Further, it was immersed in an aqueous dinitrodiammine platinum solution having a predetermined concentration, stirred, evaporated to dryness and then baked at 650 ° C. for 2 hours to prepare an Mn—Zr—Pt-supported alumina powder.

【0025】得られたMn−Zr−Pt担持アルミナ粉
末を常法でペレット化して、Mnを0.3mol/L、
Zrを0.3mol/L、Ptを2.0g/L担持した
比較例6の排気ガス浄化用触媒を調製した。なお、X線
回折の結果、MnとZrは複合酸化物を形成せずそれぞ
れ単独酸化物として存在していた。 (比較例7)所定濃度のジニトロジアンミン白金水溶液
中に所定量のγ−アルミナ粉末を浸漬して攪拌し、蒸発
乾固後250℃で1時間焼成して、Pt担持アルミナ粉
末を調製した。
The obtained Mn-Zr-Pt-supported alumina powder was pelletized by a conventional method to obtain Mn of 0.3 mol / L,
An exhaust gas purifying catalyst of Comparative Example 6 supporting Zr of 0.3 mol / L and Pt of 2.0 g / L was prepared. As a result of X-ray diffraction, Mn and Zr did not form a composite oxide and were present as individual oxides. (Comparative Example 7) A Pt-supported alumina powder was prepared by immersing a predetermined amount of γ-alumina powder in an aqueous solution of dinitrodiammine platinum having a predetermined concentration, stirring the mixture, evaporating it to dryness, and then firing at 250 ° C for 1 hour.

【0026】得られたPt担持アルミナ粉末を所定濃度
の酢酸バリウム水溶液中に浸漬して攪拌し、蒸発乾固後
500℃で1時間焼成した。得られた粉末を常法でペレ
ット化して、Ptを2.0g/L、Baを0.3mol
/L担持した比較例7の排気ガス浄化用触媒を調製し
た。 (比較例8)セリアを0.25mol%とランタンを
0.13mol%含むγ−アルミナ担体にPtを2g/
L担持した触媒を比較例8の排気ガス浄化用触媒とし
た。 (NOx吸収率の評価)リーン雰囲気でNOを800p
pm含む排気ガスを、入りガス温度300℃でそれぞれ
の触媒に2分間流し、全NOx量に対する吸収されたN
Ox量の割合を求めてNOx吸収率とした。それぞれの
結果を表1に示す。
The Pt-supported alumina powder thus obtained was immersed in an aqueous barium acetate solution having a predetermined concentration, stirred, evaporated to dryness, and calcined at 500 ° C. for 1 hour. The obtained powder was pelletized by a conventional method, and Pt was 2.0 g / L and Ba was 0.3 mol.
An exhaust gas purifying catalyst of Comparative Example 7 carrying / L was prepared. (Comparative Example 8) 2 g of Pt was added to a γ-alumina carrier containing 0.25 mol% of ceria and 0.13 mol% of lanthanum.
The L-supported catalyst was used as the exhaust gas purifying catalyst of Comparative Example 8. (Evaluation of NOx absorption rate) 800p NO in a lean atmosphere
Exhaust gas containing pm was caused to flow through each catalyst for 2 minutes at an inlet gas temperature of 300 ° C., and absorbed N with respect to the total amount of NOx.
The ratio of the amount of Ox was calculated and used as the NOx absorption rate. The respective results are shown in Table 1.

【0027】[0027]

【表1】 (NOx浄化性能)実施例1と比較例8の排気ガス浄化
用触媒を用いて、それぞれの浄化率を種々の温度の排気
ガスについて測定し、結果を図1に示す。NOx浄化率
はフルサイズ触媒をベンチで評価したNOx温度特性、
A/F特性に従って測定した。 また実施例1の触媒に
ついて、A/Fを変化させた場合の浄化率を測定し、結
果を図2に示す。
[Table 1] (NOx Purifying Performance) Using the exhaust gas purifying catalysts of Example 1 and Comparative Example 8, the respective purifying rates were measured for exhaust gases at various temperatures, and the results are shown in FIG. The NOx purification rate is the NOx temperature characteristic of a full size catalyst evaluated on a bench.
It was measured according to the A / F characteristics. Further, the purification rate when the A / F was changed was measured for the catalyst of Example 1, and the results are shown in FIG.

【0028】図1より、実施例1の触媒は従来用いられ
ている比較例8の触媒に比べて低温における活性が20
%程度向上し、A/Fウインドウ幅が0.1程度拡大し
ていることが明らかである。また図2より実施例1の触
媒のHC、CO−NOxクロス浄化率はA/F=14.
9近傍に位置し、従来の触媒のA/F=14.7近傍か
らリーン側へ移動していることが明らかである。
From FIG. 1, the catalyst of Example 1 has an activity of 20 at a low temperature as compared with the catalyst of Comparative Example 8 which has been conventionally used.
%, And the A / F window width is expanded by about 0.1. Further, from FIG. 2, the HC / CO-NOx cross purification rate of the catalyst of Example 1 was A / F = 14.
It is located near 9 and it is clear that the catalyst moves from the vicinity of A / F = 14.7 of the conventional catalyst to the lean side.

【0029】[0029]

【発明の効果】すなわち本発明の排気ガス浄化用触媒に
よれば、ウインドウ幅が拡大し低温活性が向上している
が、これはMn−Zr複合酸化物からなる担体がNOx
吸収材並みのNOx吸収能を有していることに起因する
ことが明らかであり、NOx吸収材を用いなくとも高い
NOx浄化性能をもつ排気ガス浄化用触媒であることが
明らかである。
In other words, according to the exhaust gas purifying catalyst of the present invention, the window width is expanded and the low temperature activity is improved. This is because the carrier made of Mn-Zr composite oxide is NOx.
It is clear that this is due to the fact that it has a NOx absorption capacity similar to that of an absorber, and it is clear that it is an exhaust gas purification catalyst that has high NOx purification performance without using a NOx absorber.

【図面の簡単な説明】[Brief description of drawings]

【図1】温度とNOx浄化率の関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between temperature and NOx purification rate.

【図2】A/Fと浄化率の関係を示すグラフである。FIG. 2 is a graph showing the relationship between A / F and purification rate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 104 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B01D 53/36 104 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Mn−Zr複合酸化物からなる担体と、 該担体中に含まれた触媒貴金属と、からなることを特徴
とする排気ガス浄化用触媒。
1. An exhaust gas purifying catalyst comprising a carrier made of a Mn-Zr composite oxide and a catalytic noble metal contained in the carrier.
JP6223537A 1994-09-19 1994-09-19 Catalyst for purification of exhaust gas Pending JPH0889801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6223537A JPH0889801A (en) 1994-09-19 1994-09-19 Catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6223537A JPH0889801A (en) 1994-09-19 1994-09-19 Catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH0889801A true JPH0889801A (en) 1996-04-09

Family

ID=16799717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6223537A Pending JPH0889801A (en) 1994-09-19 1994-09-19 Catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH0889801A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209594A (en) * 2004-01-26 2005-08-04 Futaba Corp Self light emitting element and its manufacturing method
JP2012512020A (en) * 2008-12-17 2012-05-31 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Purified structure containing a catalyst system supported by reduced state zircon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209594A (en) * 2004-01-26 2005-08-04 Futaba Corp Self light emitting element and its manufacturing method
JP2012512020A (en) * 2008-12-17 2012-05-31 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Purified structure containing a catalyst system supported by reduced state zircon

Similar Documents

Publication Publication Date Title
JP3363564B2 (en) Exhaust gas purification catalyst
JP3741303B2 (en) Exhaust gas purification catalyst
JP4098835B2 (en) Exhaust gas purification catalyst
JP3291086B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3494147B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JPH05261287A (en) Method for purifying exhaust gas and catalyst therefor
JP3409894B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3544400B2 (en) Exhaust gas purification catalyst
JPH09215922A (en) Catalyst for purifying exhaust gas
JP3216858B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2001079402A (en) Exhaust gas cleaning catalyst and its production
JP3704701B2 (en) Exhaust gas purification catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
JPH09201531A (en) Catalyst for purification of exhaust gas and method for purification of exhaust gas
JPH07171399A (en) Production of exhaust gas purifying catalyst
JPH07155601A (en) Exhaust gas purifying catalyst
JP3446915B2 (en) Exhaust gas purification catalyst
JPH07108172A (en) Exhaust gas purifying catalyst and production therefor
JP3555694B2 (en) Exhaust gas purification device
JP3378096B2 (en) Exhaust gas purification catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3622893B2 (en) NOx absorbent and exhaust gas purification catalyst using the same
JP3551346B2 (en) Exhaust gas purification equipment
JP2002331240A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning apparatus
JPH07132226A (en) Catalyst for purifying exhaust gas