Nothing Special   »   [go: up one dir, main page]

JPH0879174A - Optical communication equipment - Google Patents

Optical communication equipment

Info

Publication number
JPH0879174A
JPH0879174A JP6234512A JP23451294A JPH0879174A JP H0879174 A JPH0879174 A JP H0879174A JP 6234512 A JP6234512 A JP 6234512A JP 23451294 A JP23451294 A JP 23451294A JP H0879174 A JPH0879174 A JP H0879174A
Authority
JP
Japan
Prior art keywords
optical
laser signal
phase
laser
signal light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6234512A
Other languages
Japanese (ja)
Other versions
JP2893507B2 (en
Inventor
Tomohiro Araki
智宏 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Original Assignee
National Space Development Agency of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan filed Critical National Space Development Agency of Japan
Priority to JP6234512A priority Critical patent/JP2893507B2/en
Publication of JPH0879174A publication Critical patent/JPH0879174A/en
Application granted granted Critical
Publication of JP2893507B2 publication Critical patent/JP2893507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE: To greatly increase the transmission output and reduce the weight of an optical communication equipment by optically amplifying each branch laser signal light subjected to phase control up to an output level necessary for transmission by the use of an optical amplifier and transmitting the amplifier signal light through a small-sized telescope. CONSTITUTION: The laser signal light emitted from a main oscillation laser part 1 is branched off into many laser signal beams by a branching device 2 and led to the phase controllers 4-1 to 4-9 via the optical fibers 3-1 to 3-9 respectively to undergo the phase control. Then the laser signal beams which are controlled by the controllers 4-1 to 4-9 are led to the optical amplifiers 5-1 to 5-9 and optically amplified up to the necessary output levels respectively. These amplified signal beams are led to the small-sized telescopes 6-1 to 6-9 and sent to the opposite party side of communication. In regard of these phase control operations performed by the phase controllers 4, the phase difference caused by the optical path length difference is corrected so that the reduction of light quantity due to the mutual interference of light beams that is caused by the phase difference of optical antennas can be minimized in a remote place.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、人工衛星等の宇宙機
相互間の連携通信に用いられるレーザ光による光通信装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication device using laser light used for cooperative communication between spacecraft such as artificial satellites.

【0002】[0002]

【従来の技術】人工衛星を始め、宇宙ステーション等の
各種宇宙機においては、相互に連携をとることが運用面
において重要であり、したがって通信面においてもそれ
らの宇宙機相互間の連携通信が要求されている。従来、
このような宇宙機相互間の連携通信は、電波を用いて行
われている。ところが地球観測衛星や宇宙ステーション
等の如く宇宙における活動が増加するに伴い、宇宙機相
互間で伝送すべき情報量も飛躍的に増大し、データ信号
速度が1〜10Gbps 程度必要とされている。しかし従来
の電波による通信方式では、混信を防止するための周波
数割当の問題や、アンテナ口径あるいは送信出力の限界
等から実用的には既に限界状態に達している。このため
レーザ光を用いた光通信方式が注目され、特に大気の影
響を受けない宇宙空間では宇宙機相互間の光通信方式は
有望視されている。ところで、宇宙機相互間の連携通信
に、このレーザ光による光通信方式を用いる場合、レー
ザ光のビーム幅は10-12 〜10-13 deg 程度と非常に狭
く、しかもレーザビームは数万kmという遠距離の通信相
手と送受信を行うためにμrad オーダの高精度なビーム
制御を必要とする。
2. Description of the Related Art In various spacecraft such as artificial satellites and space stations, it is important to cooperate with each other in terms of operation. Therefore, in terms of communication as well, cooperative communication between these spacecraft is required. Has been done. Conventionally,
Such cooperative communication between spacecraft is performed using radio waves. However, as the activities in space such as earth observation satellites and space stations increase, the amount of information to be transmitted between spacecraft also increases dramatically, and the data signal rate is required to be about 1 to 10 Gbps. However, the conventional radio-wave communication system has already reached a practical limit due to the problem of frequency allocation for preventing interference, the antenna aperture, the transmission output limit, and the like. Therefore, an optical communication system using laser light has been attracting attention, and an optical communication system between spacecrafts is regarded as promising especially in outer space that is not affected by the atmosphere. By the way, when this optical communication system using laser light is used for coordinated communication between spacecraft, the beam width of the laser light is very narrow at about 10 -12 to 10 -13 deg, and the laser beam is tens of thousands km. High-precision beam control on the order of μrad is required to transmit and receive with long-distance communication partners.

【0003】かかる高精度のビーム制御を容易に行える
ようにするため、人工衛星相互間の連携通信における送
受信は、図4に示すような反射型の単一の大口径望遠鏡
を用いて行われようとしている。図4において、101 は
接眼レンズで、主鏡102 の中心部に形成されている貫通
孔102aの近傍に配置されている。103 は接眼レンズ101
からのレーザ光を主鏡102 に向けて反射するための副鏡
である。このように構成されている望遠鏡においては、
主発振レーザからのレーザ信号光は接眼レンズ101 を通
して副鏡103 及び主鏡102 で、それぞれ反射され、通信
の相手方へ送出される。一方、通信の相手方からのレー
ザ信号光は、主鏡102 及び副鏡103 で反射され、接眼レ
ンズ101 を通して、レーザ信号光検出器で検出されるよ
うになっている。なお、送信するレーザ信号光と相手方
からのレーザ信号光とは僅かに波長が異なり、波長分離
特性を有するビームスプリッタで分離することが出来る
ようになっている。
In order to facilitate such highly accurate beam control, transmission / reception in cooperative communication between artificial satellites may be performed using a single reflection-type large-aperture telescope as shown in FIG. I am trying. In FIG. 4, reference numeral 101 denotes an eyepiece lens, which is arranged in the vicinity of a through hole 102a formed in the central portion of the primary mirror 102. 103 is the eyepiece 101
It is a secondary mirror for reflecting the laser light from the laser beam toward the primary mirror 102. In a telescope configured in this way,
The laser signal light from the main oscillation laser is reflected by the secondary mirror 103 and the primary mirror 102 through the eyepiece lens 101 and is sent to the other party of communication. On the other hand, laser signal light from the other party of communication is reflected by the main mirror 102 and the sub mirror 103, and is detected by the laser signal light detector through the eyepiece lens 101. The laser signal light to be transmitted and the laser signal light from the other party have slightly different wavelengths and can be separated by a beam splitter having a wavelength separation characteristic.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記単一の
大口径望遠鏡には、極めて高い製作精度が要求され、そ
の製作技術の難度は極めて高いものである。また宇宙環
境下での熱変形の防止、人工衛星の打ち上げ時の振動な
どに耐えるための工夫を施しつつ、宇宙機に必須な軽量
化を行わなければならないという問題点がある。
By the way, the single large-aperture telescope requires extremely high manufacturing precision, and the manufacturing technique thereof is extremely difficult. In addition, there is a problem in that the spacecraft must be made lighter in weight while taking measures to prevent thermal deformation in a space environment and to withstand vibrations at the time of launching an artificial satellite.

【0005】この大口径望遠鏡の技術的な困難性を回避
する一つの方法として、図5に示すような複数の小型望
遠鏡を束ねて形成する光フェーズドアレイアンテナ状構
成の望遠鏡が考えられる。すなわち、単一の主発振レー
ザ部201 と、該主発振レーザ部201 より出射されたレー
ザ信号光を複数のレーザ信号光に分岐するための分岐器
202 と、分岐された各分岐レーザ信号光の位相を制御す
るための位相制御器203 と、位相制御された各分岐レー
ザ信号光を出射するための複数の小型望遠鏡204 とで光
送信部を構成し、複数の小型望遠鏡204 から出射される
レーザ信号光の出力ビームを合成して送信ビームとする
ように構成するものである。
As one method for avoiding the technical difficulty of the large-aperture telescope, a telescope having an optical phased array antenna-like structure formed by bundling a plurality of small telescopes as shown in FIG. 5 can be considered. That is, a single main oscillation laser section 201 and a branching device for branching the laser signal light emitted from the main oscillation laser section 201 into a plurality of laser signal lights.
202, a phase controller 203 for controlling the phase of each branched laser signal light, and a plurality of small telescopes 204 for emitting each phase-controlled branched laser signal light constitute an optical transmitter. Then, the output beams of the laser signal lights emitted from the plurality of small telescopes 204 are combined into a transmission beam.

【0006】しかしながら、このように光送信部を構成
した場合、光分岐時に生じる損失、途中の伝搬に必要な
単一モードの光ファイバが余り大きな入力に耐えられな
いこと、単一の主発振レーザ部の出力の限界、また高出
力レーザを変調することの技術的困難さから、送信出力
を大幅に向上させることは困難である。
However, when the optical transmitter is constructed in this way, the loss that occurs at the time of optical branching, the fact that the single-mode optical fiber required for intermediate propagation cannot withstand a very large input, and the single main oscillation laser is used. It is difficult to significantly increase the transmission output due to the limitation of the output of the part and the technical difficulty of modulating a high-power laser.

【0007】本発明は、従来の、あるいは上記考えられ
る光通信装置における上記問題点を解決するためになさ
れたもので、大出力が得られ且つ軽量化された光通信装
置を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems in the conventional or possible optical communication apparatus, and an object thereof is to provide an optical communication apparatus which has a large output and is lightweight. And

【0008】[0008]

【課題を解決するための手段及び作用】上記問題点を解
決するため、本発明は、人工衛星などの宇宙機に搭載さ
れ、該宇宙機相互間の連携通信を行うためのレーザ光に
よる光通信装置において、単一の主発振レーザ部と、該
主発振レーザ部より出射されたレーザ信号光を複数のレ
ーザ信号光に分岐するための分岐器と、分岐された各分
岐レーザ信号光の位相を制御するための位相制御器と、
位相制御された各分岐レーザ信号光を増幅するための光
増幅器と、増幅された各分岐レーザ信号光を出射するた
めの複数の小型望遠鏡とを備え、各小型望遠鏡から出射
された各レーザ信号光の出力ビームを合成して送信ビー
ムとするように構成するものである。
In order to solve the above problems, the present invention is mounted on spacecraft such as artificial satellites, and optical communication by laser light for performing cooperative communication between the spacecrafts. In the device, a single main oscillation laser section, a branching device for branching the laser signal light emitted from the main oscillation laser section into a plurality of laser signal lights, and a phase of each branched laser signal light A phase controller for controlling,
An optical amplifier for amplifying each phase-controlled branch laser signal light, and a plurality of small telescopes for emitting each amplified branch laser signal light, each laser signal light emitted from each small telescope The output beams of the above are combined to form a transmission beam.

【0009】このように構成した光通信装置において
は、位相制御された各分岐レーザ信号光は光増幅器によ
り送信に必要な出力まで光増幅される。したがって、大
なる出力の単一の主発振レーザ部を用いなくても、更に
は分岐器による損失に拘わらず、送信出力の大幅の増大
と軽量化を図ることができる。
In the optical communication device thus configured, each phase-controlled branched laser signal light is optically amplified by the optical amplifier to an output required for transmission. Therefore, without using a single main oscillation laser section with a large output, it is possible to further increase the transmission output and reduce the weight, regardless of the loss due to the branching device.

【0010】[0010]

【実施例】次に、実施例について説明する。図1は、本
発明に係る光通信装置の一実施例を示す概略図である。
図1において、1は変調部を含む単一の主発振レーザ
部、2は該主発振レーザ部1から出射されたレーザ信号
光を複数の信号光に分岐するための分岐器で、単一の光
ファイバの端部に複数本の光ファイバの各端部を融着さ
せたもので構成されている(8本程度に分岐するものは
スターカプラー等と呼ばれ、市販されている)。3−1
〜3−9は光ファイバで一端は前記分岐器2の出力端に
接続され、他端にはそれぞれ位相制御器4−1〜4−9
が接続されている。位相制御器としては、例えば図2に
示すように、LiNbO3 結晶からなる光導波路11に電極1
2,13を設け、電極12,13間に数Vの電圧を印加して結
晶の屈折率を制御し、等価的に光路長を変化させ、位相
を制御するように構成したものなどを用いることができ
る。5−1〜5−9は前記位相制御器4−1〜4−9の
出力端に接続された光増幅器で、エルビウム添加光ファ
イバ増幅器や半導体光増幅器などが用いられる。6−1
〜6−9は前記光増幅器の出力端に接続され、増幅され
た各レーザ信号光を送出するための小型望遠鏡で、例え
ば図3に示すような、凹レンズ21と凸レンズ22とからな
る最も基本的なガリレオ型屈折望遠鏡で十分である。
EXAMPLES Next, examples will be described. FIG. 1 is a schematic diagram showing an embodiment of an optical communication device according to the present invention.
In FIG. 1, 1 is a single main-oscillation laser section including a modulation section, and 2 is a splitter for splitting the laser signal light emitted from the main-oscillation laser section 1 into a plurality of signal lights. It is configured by fusing each end of a plurality of optical fibers to the end of the optical fiber (a branching into about 8 is called a star coupler or the like and is commercially available). 3-1
3-9 are optical fibers, one end of which is connected to the output end of the branching device 2 and the other ends of which are phase controllers 4-1 to 4-9, respectively.
Is connected. As a phase controller, for example, as shown in FIG. 2, an electrode 1 is provided on an optical waveguide 11 made of LiNbO 3 crystal.
2 and 13 are provided, a voltage of several volts is applied between the electrodes 12 and 13, the refractive index of the crystal is controlled, the optical path length is equivalently changed, and the phase is controlled. You can Optical amplifiers 5-1 to 5-9 are connected to the output terminals of the phase controllers 4-1 to 4-9, and an erbium-doped optical fiber amplifier or a semiconductor optical amplifier is used. 6-1
Numerals 6-9 are small telescopes connected to the output terminals of the optical amplifiers for transmitting the amplified laser signal lights, and are the most basic ones composed of a concave lens 21 and a convex lens 22 as shown in FIG. A simple Galilean refractor is sufficient.

【0011】次に、このように構成した宇宙用光通信装
置における動作について説明する。主発振レーザ部1か
ら出射されたレーザ信号光は、分岐器2において多数の
レーザ信号光に分岐され、それぞれ光ファイバ3−1〜
3−9を介して位相制御器4−1〜4−9に導かれ、位
相の制御が行われる。この段階では分岐された各レーザ
信号光は、通信に必要な出力を有する信号光とはなって
いない。位相制御器4−1〜4−9で制御された各レー
ザ信号光は光増幅器5−1〜5−9に導かれ、必要な出
力の信号光となるように光増幅される。光増幅器5−1
〜5−9で所定の出力に光増幅された各レーザ信号光
は、それぞれ小型の望遠鏡6−1〜6−9に導かれ、通
信の相手方へ向けて送出される。なお位相制御器4を用
いて行う位相制御は、遠方において、光アンテナ毎の位
相差による光ビーム相互の干渉による光量の減少を最小
限にするために、光路長の差などによる位相差を補正す
ることを目的とするものであり、製作/組立後の微調整
で、遠方に到達する光量が最大になるように位相差を除
去する制御を行う。
Next, the operation of the optical communication device for space thus constructed will be described. The laser signal light emitted from the main oscillation laser unit 1 is branched into a large number of laser signal lights in the branching device 2, and each of the optical fibers 3-1 to 3-1.
It is guided to the phase controllers 4-1 to 4-9 via 3-9 and the phase is controlled. At this stage, the branched laser signal lights are not the signal lights having outputs required for communication. The respective laser signal lights controlled by the phase controllers 4-1 to 4-9 are guided to the optical amplifiers 5-1 to 5-9 and optically amplified so as to become the necessary signal lights of output. Optical amplifier 5-1
Each of the laser signal lights optically amplified to a predetermined output at 5-9 is guided to a small telescope 6-1 to 6-9, and is sent to the other party of communication. Note that the phase control performed using the phase controller 4 corrects the phase difference due to the difference in the optical path length, etc., in order to minimize the decrease in the light amount due to the mutual interference of the light beams due to the phase difference between the optical antennas at a distance. The purpose is to make a fine adjustment after manufacturing / assembling, and perform control to remove the phase difference so that the amount of light reaching a distance is maximized.

【0012】[0012]

【発明の効果】以上実施例に基づいて説明したように、
本発明によれば、位相制御された各分岐レーザ信号光を
光増幅器により送信に必要な出力まで光増幅されて小型
の各望遠鏡から送出されるように構成したので、大なる
出力の単一の主発振レーザ部を用いなくても、更には分
岐器による損失に拘わらず、送信出力の大幅な増大と軽
量化を図ることができる。
As described above on the basis of the embodiments,
According to the present invention, each phase-controlled branched laser signal light is optically amplified to an output required for transmission by an optical amplifier and is sent out from each small telescope, so that a single optical signal having a large output is used. Even without using the main oscillation laser section, the transmission output can be greatly increased and the weight can be reduced regardless of the loss due to the branching device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光通信装置の実施例を示す概略図
である。
FIG. 1 is a schematic diagram showing an embodiment of an optical communication device according to the present invention.

【図2】図1に示した実施例における位相制御器の構成
例を示す概略図である。
FIG. 2 is a schematic diagram showing a configuration example of a phase controller in the embodiment shown in FIG.

【図3】図1に示した実施例における小型望遠鏡の構成
例を示す概略図である。
FIG. 3 is a schematic diagram showing a configuration example of a compact telescope in the embodiment shown in FIG.

【図4】従来の人工衛星相互間の連携通信に用いられて
いる大口径望遠鏡の構成を示す図である。
FIG. 4 is a diagram showing a configuration of a large-aperture telescope used for conventional cooperative communication between artificial satellites.

【図5】従来考えられていた光フェーズドアレイアンテ
ナ状構成の小型望遠鏡を用いた光通信装置の構成を示す
概略図である。
FIG. 5 is a schematic diagram showing a configuration of an optical communication device using a small telescope having a configuration of an optical phased array antenna which has been conventionally considered.

【符号の説明】[Explanation of symbols]

1 主発振レーザ部 2 分岐器 3−1〜3−9 光ファイバ 4−1〜4−9 位相制御器 5−1〜5−9 光増幅器 6−1〜6−9 小型望遠鏡 DESCRIPTION OF SYMBOLS 1 Main oscillation laser section 2 Branching device 3-1 to 3-9 Optical fiber 4-1 to 4-9 Phase controller 5-1 to 5-9 Optical amplifier 6-1 to 6-9 Small telescope

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 人工衛星などの宇宙機に搭載され、該宇
宙機相互間の連携通信を行うためのレーザ光による光通
信装置において、単一の主発振レーザ部と、該主発振レ
ーザ部より出射されたレーザ信号光を複数のレーザ信号
光に分岐するための分岐器と、分岐された各分岐レーザ
信号光の位相を制御するための位相制御器と、位相制御
された各分岐レーザ信号光を増幅するための光増幅器
と、増幅された各分岐レーザ信号光を出射するための複
数の小型望遠鏡とを備え、各小型望遠鏡から出射された
各レーザ信号光の出力ビームを合成して送信ビームとす
るように構成したことを特徴とする光通信装置。
1. A single main oscillation laser unit and a main oscillation laser unit in an optical communication device mounted on a spacecraft such as an artificial satellite and using laser light for performing cooperative communication between the spacecrafts. A branching device for branching the emitted laser signal light into a plurality of laser signal lights, a phase controller for controlling the phase of each branched branch laser signal light, and each phase-controlled branch laser signal light Equipped with a plurality of small telescopes for emitting the respective branched laser signal light amplified, to combine the output beam of each laser signal light emitted from each small telescope transmission beam An optical communication device characterized by being configured as follows.
JP6234512A 1994-09-05 1994-09-05 Optical communication device Expired - Fee Related JP2893507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6234512A JP2893507B2 (en) 1994-09-05 1994-09-05 Optical communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6234512A JP2893507B2 (en) 1994-09-05 1994-09-05 Optical communication device

Publications (2)

Publication Number Publication Date
JPH0879174A true JPH0879174A (en) 1996-03-22
JP2893507B2 JP2893507B2 (en) 1999-05-24

Family

ID=16972191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6234512A Expired - Fee Related JP2893507B2 (en) 1994-09-05 1994-09-05 Optical communication device

Country Status (1)

Country Link
JP (1) JP2893507B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321536A (en) * 1999-05-14 2000-11-24 Canon Inc Optical device for optical communication
JP2011507319A (en) * 2007-11-30 2011-03-03 レイセオン カンパニー Method and apparatus for maintaining a coherent composite beam during any steering
US7936996B2 (en) 2005-08-24 2011-05-03 National Institute Of Information And Communications Technology Automatic adjusting system of frequency shift keying modulator
US7957653B2 (en) 2005-09-20 2011-06-07 National Institute Of Information And Communications Technology Phase control optical FSK modulator
JP2017003688A (en) * 2015-06-08 2017-01-05 日本放送協会 Light beam control element and stereoscopic display device
JPWO2021260832A1 (en) * 2020-06-24 2021-12-30

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06500453A (en) * 1991-06-04 1994-01-13 アージェンス スパティアール ヨーロピアンヌ optical communication terminal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06500453A (en) * 1991-06-04 1994-01-13 アージェンス スパティアール ヨーロピアンヌ optical communication terminal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321536A (en) * 1999-05-14 2000-11-24 Canon Inc Optical device for optical communication
US7936996B2 (en) 2005-08-24 2011-05-03 National Institute Of Information And Communications Technology Automatic adjusting system of frequency shift keying modulator
US7957653B2 (en) 2005-09-20 2011-06-07 National Institute Of Information And Communications Technology Phase control optical FSK modulator
JP2011507319A (en) * 2007-11-30 2011-03-03 レイセオン カンパニー Method and apparatus for maintaining a coherent composite beam during any steering
JP2017003688A (en) * 2015-06-08 2017-01-05 日本放送協会 Light beam control element and stereoscopic display device
JPWO2021260832A1 (en) * 2020-06-24 2021-12-30
WO2021260832A1 (en) * 2020-06-24 2021-12-30 日本電信電話株式会社 Communication device and optical communication system
US12206458B2 (en) 2020-06-24 2025-01-21 Nippon Telegraph And Telephone Corporation Communication apparatus and optical communication system

Also Published As

Publication number Publication date
JP2893507B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
US4886334A (en) Optical amplifying repeater
US5574807A (en) Coupler used to fabricate add-drop devices, dispersion compensators, amplifiers, oscillators, superluminescent devices, and communications systems
US5694408A (en) Fiber optic laser system and associated lasing method
Weyrauch et al. Fiber coupling with adaptive optics for free-space optical communication
US6529314B1 (en) Method and apparatus using four wave mixing for optical wavelength conversion
US6297897B1 (en) Method and arrangement for optical information transmission via satellites
CA2278071C (en) High average power fiber laser system with phase front control
US5751242A (en) Transmit-receive fiber-optic manifold for phase array antennas
US20020027691A1 (en) Wireless optical communications without electronics
EP1152553A2 (en) Ground to space to ground trunking system
US6229835B1 (en) Compact solid-state laser and transmitter using the same
JPH10303819A (en) Laser transmission system and its operation method
US6452720B1 (en) Light source apparatus, optical amplifier and optical communication system
JP2893507B2 (en) Optical communication device
EP0921613B1 (en) Compact solid-state laser and transmitter using the same
US6748176B1 (en) Optical dropping apparatus and optical add/drop multiplexer
US4949056A (en) Unconventional adaptive optics
US6856456B2 (en) Device and system for the optical transmission of data between satellites
EP3595196A1 (en) Laser device for optical communication, optical communication system and use of these
KR20010099960A (en) Coupling system between an optical fibre and an optical device
US6172802B1 (en) Bidirectional optical amplification system
JP2017528769A (en) Optical signal modulation apparatus and system
Borraccini et al. 12 Tb/s/λ Real Time Mode Division Multiplexing Free Space Optical Communication with Commercial 400G Open and Disaggregated Transponders
Szajowski et al. High power optical amplifier enable 1550 nm terrestrial free-space optical data-link operating@ 10 Gb/s
JPH02241073A (en) Redundancy system of light source for pumping

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees