Nothing Special   »   [go: up one dir, main page]

JPH0854605A - Driving method for anti-ferroelectric liquid crystal display - Google Patents

Driving method for anti-ferroelectric liquid crystal display

Info

Publication number
JPH0854605A
JPH0854605A JP19150394A JP19150394A JPH0854605A JP H0854605 A JPH0854605 A JP H0854605A JP 19150394 A JP19150394 A JP 19150394A JP 19150394 A JP19150394 A JP 19150394A JP H0854605 A JPH0854605 A JP H0854605A
Authority
JP
Japan
Prior art keywords
liquid crystal
period
voltage
display
selection period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19150394A
Other languages
Japanese (ja)
Inventor
Masaya Kondo
近藤  真哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP19150394A priority Critical patent/JPH0854605A/en
Publication of JPH0854605A publication Critical patent/JPH0854605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To attain an excellent display with less fluctuation at the time of non- selection, to attain a gradation display without changing a voltage level of an applied voltage and to attain the gradation display even using an inexpensive IC by changing a pulse width of a voltage waveform applied for a selection period of a drive voltage waveform, that is, adjusting the period when the voltage of a threshold value voltage or above of a liquid crystal is applied. CONSTITUTION:The drive waveform consists of four phases of selection period, the first half of the phases, that is, a first phase and a second phase, is used for a reset period, and the second half of the phases, that is, a third phase and a fourth phase, is used for a selection period. The voltage of OV is applied for the reset period of a scan electrode waveform, 30V is applied for the selection period and 6V is applied for the non-selection period. Further, the voltage of OV is applied for first three phases of a signal electrode waveform, 30V is applied for the final fourth phase when an ON display is performed, and OV are applied for the four phases also when an OFF display is performed. Thus, synthesis voltage waveforms of which pulse widths of a voltage value applied for the selection period are different from each other in the cases of the ON display and the OFF display, and a transmission light quantity is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反強誘電性液晶を液晶
層とする、マトリックス状の画素を有する液晶表示パネ
ルや液晶光シャッターアレイ等の反強誘電性液晶ディス
プレイの駆動法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of driving an antiferroelectric liquid crystal display such as a liquid crystal display panel having a matrix of pixels having an antiferroelectric liquid crystal as a liquid crystal layer or a liquid crystal optical shutter array. is there.

【0002】[0002]

【従来の技術】反強誘電性液晶を用いた液晶パネルは、
日本電装(株)及び昭和シェル石油(株)らの特開平2
ー173724号公報で広視野角を有すること、高速応
答が可能なこと、マルチプレックス特性が良好なこと等
が報告されて以来、精力的に研究がなされている。
2. Description of the Related Art A liquid crystal panel using an antiferroelectric liquid crystal is
JP-A-2 of Nippon Denso Co., Ltd. and Showa Shell Sekiyu Co., Ltd.
-173724 has been vigorously studied since it was reported that it has a wide viewing angle, that it can respond at high speed, and that it has good multiplex characteristics.

【0003】図6は反強誘電性液晶をディスプレイとし
て用いる場合の液晶セルの構成図である。クロスニコル
に合わせた偏光板61の間に、どちらかの偏光板の偏光
軸と無電界時に於ける分子の長軸方向が平行になるよう
に液晶セル62を置き、電圧無印加時に黒が、電圧印加
時には白が表示できるようにしている。このようなセル
構成において液晶セルに電圧を印加したとき、それに対
する透過率変化をグラフにプロットすると図7のような
ヒステリシスカーブを描くことが出来る。従来の駆動方
法においては、信号電極側の選択期間内にに印加される
電圧値の大きさによって、第1の安定状態を選択し黒表
示を行うかもしくは第2、第3の安定状態を選択し白表
示を行うかを決めていた。例えば、黒表示を行う場合に
は印加する電圧値を図7の電圧値V1からV3の間に設
定し、白表示を行う場合には反強誘電性液晶の閾値電圧
である|V2|以上もしくは|V4|以上に設定してい
た。また階調表示を行う場合も、この選択期間に印加さ
れる電圧値の大きさによって透過光量の制御を行ってき
た。
FIG. 6 is a block diagram of a liquid crystal cell when an antiferroelectric liquid crystal is used as a display. A liquid crystal cell 62 is placed between the polarizing plates 61 aligned with crossed Nicols so that the polarization axis of either one of the polarizing plates is parallel to the long axis direction of the molecule when no electric field is applied. White is displayed when a voltage is applied. When a voltage is applied to the liquid crystal cell in such a cell structure, a change in transmittance with respect to the voltage is plotted in a graph, and a hysteresis curve as shown in FIG. 7 can be drawn. In the conventional driving method, the first stable state is selected and black display is performed or the second and third stable states are selected depending on the magnitude of the voltage value applied during the selection period on the signal electrode side. I had decided whether to display white. For example, when performing black display, the applied voltage value is set between the voltage values V1 to V3 in FIG. 7, and when performing white display, the threshold voltage of the antiferroelectric liquid crystal | V2 | It has been set to | V4 | or higher. Also, when performing gradation display, the amount of transmitted light has been controlled by the magnitude of the voltage value applied during this selection period.

【0004】図2に従来の駆動波形とそれに対応する透
過光量の図を示す。このように信号電極側の選択期間内
に印加する電圧値を変化させる、つまりパルスの波高値
を変化させて透過光量の制御を行った場合には、非選択
期間にも選択期間に印加しているパルス幅と同じ長さの
パルスが印加されるために、透過光量の揺らぎが大きく
なり、表示品質を損ねていた。また階調表示を行うため
には、電圧値の異なるパルスを印加しなければならず、
駆動用のICの出力レベルを増やさなければならないた
めにICのコストが高くなる等の問題点があった。
FIG. 2 shows a conventional drive waveform and a corresponding amount of transmitted light. In this way, when the voltage value applied during the selection period on the signal electrode side is changed, that is, the peak value of the pulse is changed to control the amount of transmitted light, the voltage is applied during the selection period even during the non-selection period. Since the pulse having the same length as the existing pulse width is applied, the fluctuation of the transmitted light amount becomes large and the display quality is impaired. Further, in order to perform gradation display, it is necessary to apply pulses with different voltage values,
Since the output level of the driving IC has to be increased, there has been a problem that the cost of the IC increases.

【0005】[0005]

【発明が解決しようとする課題】本発明では非選択期間
時に揺らぎの少ない良好な表示品質を保ち、また印加パ
ルスの電圧値のレベル数を増やすことなく、階調表示が
容易にできる反強誘電性液晶ディスプレイの駆動方法を
提供することを目的としている。
SUMMARY OF THE INVENTION According to the present invention, an antiferroelectric device which can maintain good display quality with little fluctuation during the non-selection period and can easily perform gradation display without increasing the number of voltage levels of applied pulses. It is intended to provide a driving method for a liquid crystal display.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明では、反強誘電性液晶セルに印加する電圧値が
反強誘電性液晶の閾値電圧以上となる期間の長さによっ
て、反強誘電性液晶ディスプレイの透過量を制御してい
る。また、この期間の長さを変える手段の一つとして、
選択期間内の信号電極側に印加されるパルスのパルス幅
を変化させることを行っている。
In order to achieve the above object, according to the present invention, the anti-ferroelectric liquid crystal cell has an anti-ferroelectric liquid crystal cell with an anti-ferroelectric liquid crystal cell having a threshold voltage or more. It controls the transmission of the ferroelectric liquid crystal display. Also, as one of the means to change the length of this period,
The pulse width of the pulse applied to the signal electrode side during the selection period is changed.

【0007】反強誘電性液晶にパルスを印加し第2また
は第3の安定状態にスイッチングさせ、その後印加電圧
の値を0Vとしたときに前記第2または第3の安定状態
から第1の安定状態へ戻る時間を詳細に測定を行った結
果、図8のように前記印加パルスの閾値電圧を越える期
間の長さ(パルス幅)を減少させると、第2または第3
の安定状態から第1の安定状態へ戻る応答時間が短くな
ることが明らかになった。この現象を利用することによ
り選択期間に印加されるパルスの閾値電圧を越える期間
の長さを制御すれば、その後の非選択期間での液晶分子
の状態を制御することが出来る、すなわち透過光量の制
御を行うことが可能となる。また、反強誘電性液晶セル
に印加する電圧値が反強誘電性液晶の閾値電圧以上とな
る期間が充分に短ければ、液晶のスイッチングは起き
ず、非選択期間内のパルスによって液晶分子が応答して
しまうことを防ぎ、表示の揺らぎ等表示品質を損なうこ
とがなく、良好な表示を実現できる。ここで図8に示し
たパルス幅と応答時間の関係は使用する反強誘電性液晶
材料によって、グラフの傾きが異なるため、目的とする
階調表示に応じて液晶材料を選択することが必要であ
る。
When a pulse is applied to the antiferroelectric liquid crystal to switch it to the second or third stable state and then the value of the applied voltage is set to 0V, the second or third stable state is changed to the first stable state. As a result of detailed measurement of the time to return to the state, if the length of the period (pulse width) exceeding the threshold voltage of the applied pulse is reduced as shown in FIG.
It was revealed that the response time for returning from the stable state to the first stable state was shortened. By using this phenomenon, it is possible to control the state of liquid crystal molecules in the subsequent non-selection period by controlling the length of the period exceeding the threshold voltage of the pulse applied in the selection period. It becomes possible to control. Also, if the period when the voltage value applied to the antiferroelectric liquid crystal cell is equal to or higher than the threshold voltage of the antiferroelectric liquid crystal is sufficiently short, liquid crystal switching does not occur, and liquid crystal molecules respond to the pulse within the non-selection period. It is possible to realize good display without preventing the display quality from being impaired and not impairing the display quality such as display fluctuation. Here, the relationship between the pulse width and the response time shown in FIG. 8 has a different slope of the graph depending on the antiferroelectric liquid crystal material used, so it is necessary to select the liquid crystal material according to the target grayscale display. is there.

【0008】[0008]

【作用】液晶画素ごとに選択期間内で閾値電圧以上の電
圧が印加される期間を任意に変えれば、液晶の応答時間
が異なることから、階調表示が実現でき、かつ非選択期
間内に印加される電圧が応答時間内であれば、液晶のス
イッチングにはなんら影響を与えず、良好な表示を行う
ことができる。また印加電圧の電圧値のレベルを変化さ
せずに階調表示を行うことが出来るため、入力レベル数
の少ない汎用性の高いICを用いても階調表示を行うこ
とが可能となる。
The gray scale display can be realized because the response time of the liquid crystal is different by arbitrarily changing the period in which the voltage equal to or higher than the threshold voltage is applied within the selection period for each liquid crystal pixel, and the application is performed within the non-selection period. If the applied voltage is within the response time, good display can be performed without any influence on the liquid crystal switching. Further, since gradation display can be performed without changing the level of the voltage value of the applied voltage, it is possible to perform gradation display even by using a highly versatile IC with a small number of input levels.

【0009】一般に反強誘電性液晶のスイッチングを行
うためにはスイッチングを行う直前の状態(第1の安定
状態か、第2もしくは第3の安定状態)によって閾値電
圧が異なってしまう。このために実駆動で表示を行う場
合には選択期間での書き込み状態が選択期間直前の表示
状態に影響されてしまう。そこで、選択期間の直前に常
に表示状態が一定となるようなリセットパルスを印加す
ることにより、常に閾値電圧が一定に保たれ、表示情報
を書き込む前の画素の表示状態に依存することなく新た
な表示を行うことができ、表示の信頼性が高められる。
またこのリセットパルスを選択期間内にもうけるのでは
なく、選択期間直前にリセット期間としてもうけること
により、選択期間内のパルス数を増すことがないため
に、書き込み時間全体に影響を与えることがない。
Generally, in order to perform switching of the antiferroelectric liquid crystal, the threshold voltage varies depending on the state immediately before switching (first stable state, second stable state or third stable state). Therefore, when the display is performed by actual driving, the writing state in the selection period is affected by the display state immediately before the selection period. Therefore, immediately before the selection period, by applying a reset pulse so that the display state is always constant, the threshold voltage is always kept constant, and a new display voltage does not depend on the display state of the pixel before the display information is written. The display can be performed, and the reliability of the display is improved.
Further, since the reset pulse is not provided in the selection period but as the reset period immediately before the selection period, the number of pulses in the selection period is not increased, so that the entire writing time is not affected.

【0010】[0010]

【実施例】以下本発明の実施例を図面に基づいて詳細に
説明する。図9は本実施例に用いた液晶パネルのセル構
成図である。本実施例で用いた液晶パネルは約2μの厚
さの反強誘電性液晶層96を持つ一対のガラス基板93
a、93bから構成されている。ガラス基板の対抗面に
は電極94a、94bが形成されており、その上に高分
子配向膜95a、95bが塗布され、ラビング処理がな
されている。さらに一方のガラス基板の外側に偏光板の
偏光軸とラビング軸とが平行になるように第1の偏光板
91aが設置されており、他方のガラス基板の外側には
第1の偏光板91aの偏光軸と90°異なるようにして
第2の偏光板91bが設置されている。また用いた液晶
材料の第1の安定状態から第2または第3の安定状態へ
スイッチングするための閾値電圧は約30Vであり、応
答速度は約90μsである。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 9 is a cell configuration diagram of the liquid crystal panel used in this example. The liquid crystal panel used in this embodiment has a pair of glass substrates 93 having an antiferroelectric liquid crystal layer 96 having a thickness of about 2μ.
a, 93b. Electrodes 94a and 94b are formed on the opposite surface of the glass substrate, and polymer alignment films 95a and 95b are applied thereon and subjected to rubbing treatment. Further, a first polarizing plate 91a is provided outside one glass substrate so that the polarization axis of the polarizing plate and the rubbing axis are parallel to each other, and the first polarizing plate 91a is provided outside the other glass substrate. The second polarizing plate 91b is installed so as to be different from the polarization axis by 90 °. The threshold voltage for switching the liquid crystal material used from the first stable state to the second or third stable state is about 30 V, and the response speed is about 90 μs.

【0011】<実施例1>図1は本発明の実施例の駆動
電圧波形とそれに応じた透過光量の変化を表した図であ
る。パルス幅は30μsに設定し、1フレームは2つの
走査期間から構成し、前後する走査期間における駆動波
形は0Vに対して対称となるようにした。それぞれの走
査期間は目的とする表示を行うための透過光量を決める
選択期間と、その透過光量を保持する非選択期間から構
成されている。さらに選択期間はリセット期間とセレク
ト期間から構成され、リセット期間では表示内容に関わ
らず液晶分子を第1の安定状態(黒表示)にスイッチン
グし、セレクト期間ではこの状態を保持するかまたは第
2または第3の安定状態(白表示)にスイッチングする
かを選択する。本発明の駆動波形においては、選択期間
が4位相からなり、選択期間の前半の第1位相、及び第
2位相目をリセット期間とし、後半の3位相及び第4位
相をセレクト期間として用いている。走査電極波形のリ
セット期間は0Vとし、セレクト期間に印加するパルス
の電圧値は30Vとし、非選択期間には6Vの電圧を印
加した。また信号電極波形はON表示を行う場合には前
半の3位相を0V、最後の4位相目を30V、またOF
F表示を行う場合には4位相共に0Vの電圧波形とし
た。よって、画素に印加される合成電圧波形は、ON表
示の場合とOFF表示の場合で選択期間に印加される電
圧値のパルス幅(斜線部)が異なり、透過光量を制御す
ることが出来、良好な表示が行えた。また、非選択期間
に印加されるパルスのパルス幅は30μsと、この液晶
材料の応答速度よりも十分短いために、このパルスによ
る分子のゆらぎをかなり低減することが出来た。
<Embodiment 1> FIG. 1 is a diagram showing a drive voltage waveform according to an embodiment of the present invention and a change in the amount of transmitted light in accordance therewith. The pulse width was set to 30 μs, one frame was composed of two scanning periods, and the driving waveforms in the preceding and following scanning periods were symmetrical with respect to 0V. Each scanning period is composed of a selection period for determining the amount of transmitted light for performing the desired display and a non-selection period for holding the amount of transmitted light. Further, the selection period is composed of a reset period and a select period. In the reset period, the liquid crystal molecules are switched to the first stable state (black display) regardless of the display contents, and in the select period, this state is maintained or the second or Select whether to switch to the third stable state (white display). In the drive waveform of the present invention, the selection period has four phases, the first phase and the second phase in the first half of the selection period are used as the reset period, and the third phase and the fourth phase in the latter half are used as the selection period. . The reset period of the scan electrode waveform was 0 V, the voltage value of the pulse applied during the select period was 30 V, and the voltage of 6 V was applied during the non-select period. When the signal electrode waveform is displayed as ON, the first 3 phases are 0 V, the last 4 phases are 30 V, and OF
When F display was performed, a voltage waveform of 0 V was used for all four phases. Therefore, in the combined voltage waveform applied to the pixel, the pulse width (hatched portion) of the voltage value applied in the selection period is different between the ON display and the OFF display, and the transmitted light amount can be controlled, which is excellent. It was possible to display. Further, since the pulse width of the pulse applied in the non-selection period is 30 μs, which is sufficiently shorter than the response speed of this liquid crystal material, the fluctuation of molecules due to this pulse could be considerably reduced.

【0012】<実施例2>実施例1と同じ液晶材料およ
びセル構造を用いた。図3、図4、および図5は実施例
2の駆動波形とそれに応じた透過光量の変化を表した図
である。ここで用いた駆動波形のパルス幅は20μsに
設定し、1フレームは2つの走査期間から構成した。ま
た、各走査期間は選択期間と非選択期間から構成し、選
択期間は8位相からなり、リセット期間とセレクト期間
から構成されている。リセット期間では表示内容に関わ
らず液晶分子を第1の安定状態(黒表示)にスイッチン
グし、セレクト期間ではこの状態での透過光量を保持す
るか、または目的とする表示の階調状態に応じた透過光
量を選択する。本発明の駆動波形においては選択期間の
前半4位相をリセット期間に用い、後半の4位相をセレ
クト期間として用いている。走査電極波形のリセット期
間の電圧値は0Vとし、セレクト期間の電圧値は30V
とし、非選択期間には6Vの電圧を印加した。また信号
電極波形における前半の4位相は0Vとし、後半の4位
相は目的とする表示の階調状態に応じて、それぞれの電
圧を印加する位相を変えた。本実施例においては透過光
量がそれぞれ異なる3つの階調表示を行った(レベル
1、レベル2、レベル3)。レベル1の階調表示を行う
場合の信号電極波形は8位相目の電圧値を25Vとし
(図3)、レベル2の階調表示を行う場合の信号電極波
形は7位相目と8位相目の電圧値を25Vとし(図
4)、レベル3の階調表示を行う場合の信号電極波形は
6、7、8位相目の電圧値を25Vとした。(図5)こ
の結果、画素に印加される合成電圧波形はそれぞれの階
調表示で異なり、選択期間のセレクト期間に印加される
パルス幅(斜線部分)を変えることができ、つまり閾値
電圧以上である期間が変化し、それぞれに必要な透過光
量を得ることが出来た。また非選択時に印加されるパル
スのパルス幅も最大で60μsでこの液晶材料の応答速
度よりも小さく、また電圧値も25Vでこの液晶材料の
閾値電圧よりも小さいために、このパルスによる分子の
ゆらぎもかなり低減することが出来た。
<Example 2> The same liquid crystal material and cell structure as in Example 1 were used. FIG. 3, FIG. 4, and FIG. 5 are diagrams showing drive waveforms of the second embodiment and changes in the amount of transmitted light corresponding to the drive waveforms. The pulse width of the drive waveform used here was set to 20 μs, and one frame was composed of two scanning periods. Each scanning period is composed of a selection period and a non-selection period, the selection period is composed of 8 phases, and is composed of a reset period and a selection period. In the reset period, the liquid crystal molecules are switched to the first stable state (black display) regardless of the display content, and in the select period, the amount of transmitted light in this state is maintained, or in accordance with the target display gradation state. Select the amount of transmitted light. In the drive waveform of the present invention, the first four phases of the selection period are used for the reset period and the last four phases are used for the selection period. The voltage value during the reset period of the scan electrode waveform is 0V, and the voltage value during the select period is 30V.
Then, a voltage of 6 V was applied during the non-selection period. The four phases of the first half of the signal electrode waveform were set to 0 V, and the phases of the latter half of the four phases were changed according to the target gradation state of the display. In this embodiment, three gradation display with different amounts of transmitted light were performed (level 1, level 2, level 3). The signal electrode waveform for level 1 gradation display has a voltage value of 25 V at the 8th phase (FIG. 3), and the signal electrode waveform for level 2 gradation display is at the 7th and 8th phases. The voltage value was set to 25 V (FIG. 4), and the voltage values at the sixth, seventh, and eighth phase of the signal electrode waveform when performing gradation display of level 3 were set to 25 V. (FIG. 5) As a result, the composite voltage waveform applied to the pixel is different for each gradation display, and the pulse width (hatched portion) applied during the select period of the selection period can be changed, that is, above the threshold voltage. Over a certain period of time, we were able to obtain the amount of transmitted light required for each. The pulse width of the pulse applied at the time of non-selection is 60 μs at the maximum, which is smaller than the response speed of this liquid crystal material, and the voltage value is 25 V, which is smaller than the threshold voltage of this liquid crystal material. Was able to be reduced considerably.

【0013】[0013]

【発明の効果】駆動電圧波形の選択期間に印加される電
圧波形のパルス幅を変える、つまり液晶の閾値電圧以上
の電圧が印加されている期間を調整することにより、非
選択時にゆらぎの少ない良好な表示を行うことが出来
る。また、印加電圧の電圧のレベルを変化させずに階調
表示を行うことが出来るため入力レベル数の少ない汎用
性の高い価格の安いICを用いても階調表示を行うこと
が可能である。
EFFECTS OF THE INVENTION By changing the pulse width of the voltage waveform applied during the selection period of the drive voltage waveform, that is, by adjusting the period during which a voltage equal to or higher than the threshold voltage of the liquid crystal is applied, there is little fluctuation during non-selection. Can be displayed. Further, since gradation display can be performed without changing the voltage level of the applied voltage, gradation display can be performed even by using a versatile and inexpensive IC having a small number of input levels.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1で用いた駆動波形とそれに対
応する透過光量を示した図である。
FIG. 1 is a diagram showing a drive waveform used in a first embodiment of the present invention and a corresponding amount of transmitted light.

【図2】従来の駆動波形とそれに対応する透過光量を示
した図である。
FIG. 2 is a diagram showing a conventional drive waveform and a corresponding amount of transmitted light.

【図3】本発明の実施例2で用いたレベル1の駆動波形
とそれに対応する透過光量を示した図である。
FIG. 3 is a diagram showing a level 1 drive waveform used in Example 2 of the present invention and a corresponding amount of transmitted light.

【図4】本発明の実施例2で用いたレベル2の駆動波形
とそれに対応する透過光量を示した図である。
FIG. 4 is a diagram showing a level 2 drive waveform used in Example 2 of the present invention and a corresponding amount of transmitted light.

【図5】本発明の実施例2で用いたレベル3の駆動波形
とそれに対応する透過光量を示した図である。
FIG. 5 is a diagram showing a level 3 drive waveform used in Example 2 of the present invention and a corresponding amount of transmitted light.

【図6】本発明の反強誘電性液晶セルと偏光板の構成図
である。
FIG. 6 is a configuration diagram of an antiferroelectric liquid crystal cell and a polarizing plate of the present invention.

【図7】本発明の反強誘電性液晶ディスプレイのヒステ
リシスカーブを表す図である。
FIG. 7 is a diagram showing a hysteresis curve of the antiferroelectric liquid crystal display of the present invention.

【図8】パルス幅と応答時間の関係を表した図である。FIG. 8 is a diagram showing the relationship between pulse width and response time.

【図9】本発明の反強誘電性液晶ディスプレイのセル構
成図である。
FIG. 9 is a cell configuration diagram of an antiferroelectric liquid crystal display of the present invention.

【符号の説明】[Explanation of symbols]

61a、61b 偏光板 62 液晶セル 91a、91b 偏光板 92a、92b シール材 93a、93b ガラス基板 94a、94b 高分子配向膜 95a、95b 電極 96 反強誘電性液晶 61a, 61b Polarizing plate 62 Liquid crystal cell 91a, 91b Polarizing plate 92a, 92b Sealing material 93a, 93b Glass substrate 94a, 94b Polymer alignment film 95a, 95b Electrode 96 Antiferroelectric liquid crystal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 対向面にそれぞれ複数の走査電極と信号
電極を有する一対の基板間に反強誘電性液晶を挟持し、
マトリックス状に液晶画素を有する反強誘電性液晶セル
において、前記反強誘電性液晶セルの透過光量は前記反
強誘電性液晶セルに印加する電圧が反強誘電性液晶の閾
値電圧以上となる期間の長さにより制御されることを特
徴とした反強誘電性液晶ディスプレイの駆動方法。
1. An antiferroelectric liquid crystal is sandwiched between a pair of substrates each having a plurality of scanning electrodes and signal electrodes on opposite surfaces,
In an antiferroelectric liquid crystal cell having liquid crystal pixels in a matrix, the amount of transmitted light of the antiferroelectric liquid crystal cell is a period during which a voltage applied to the antiferroelectric liquid crystal cell is equal to or higher than a threshold voltage of the antiferroelectric liquid crystal. A method for driving an anti-ferroelectric liquid crystal display, which is controlled by the length of the liquid crystal display.
【請求項2】 前記反強誘電性液晶セルに印加される駆
動電圧波形は2つ以上の走査期間からなり、前後する走
査期間の駆動電圧波形は0Vに対して対称であり、各走
査期間は少なくとも選択期間と非選択期間が存在し、反
強誘電性液晶セルに印加する電圧が反強誘電性液晶の閾
値電圧以上となる期間の長さを、前記選択期間内の信号
電極側に印加されるパルスのパルス幅により制御される
請求項1記載の反強誘電性液晶ディスプレイの駆動方
法。
2. The drive voltage waveform applied to the antiferroelectric liquid crystal cell is composed of two or more scanning periods, and the drive voltage waveforms in the preceding and following scanning periods are symmetrical with respect to 0 V, and each scanning period is There is at least a selection period and a non-selection period, and the length of the period in which the voltage applied to the antiferroelectric liquid crystal cell is equal to or higher than the threshold voltage of the antiferroelectric liquid crystal is applied to the signal electrode side within the selection period. The method for driving an antiferroelectric liquid crystal display according to claim 1, wherein the antiferroelectric liquid crystal display is controlled by the pulse width of the pulse.
【請求項3】 請求項2に記載の反強誘電性液晶ディス
プレイの駆動法において、走査期間内に少なくとも液晶
分子を黒状態、もしくは白状態にリセットするリセット
期間と、前記リセット期間の透過光量を維持するかもし
くは異なる透過光量にセットするかを決めるセレクト期
間を含んでいる反強誘電性液晶ディスプレイの駆動方
法。
3. The method for driving an antiferroelectric liquid crystal display according to claim 2, wherein a reset period in which at least liquid crystal molecules are reset to a black state or a white state within a scanning period, and a transmitted light amount in the reset period are set. A method of driving an anti-ferroelectric liquid crystal display including a select period for deciding whether to maintain or set to a different transmitted light amount.
JP19150394A 1994-08-15 1994-08-15 Driving method for anti-ferroelectric liquid crystal display Pending JPH0854605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19150394A JPH0854605A (en) 1994-08-15 1994-08-15 Driving method for anti-ferroelectric liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19150394A JPH0854605A (en) 1994-08-15 1994-08-15 Driving method for anti-ferroelectric liquid crystal display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001205929A Division JP2002099263A (en) 2001-07-06 2001-07-06 Method for driving anti-ferroelectric liquid crystal panel

Publications (1)

Publication Number Publication Date
JPH0854605A true JPH0854605A (en) 1996-02-27

Family

ID=16275741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19150394A Pending JPH0854605A (en) 1994-08-15 1994-08-15 Driving method for anti-ferroelectric liquid crystal display

Country Status (1)

Country Link
JP (1) JPH0854605A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008581A1 (en) * 1995-08-28 1997-03-06 Citizen Watch Co., Ltd. Liquid crystal display
JP2000020039A (en) * 1998-07-01 2000-01-21 Samsung Display Devices Co Ltd Method and device for driving liquid crystal display device
WO2000013057A1 (en) * 1998-08-28 2000-03-09 Citizen Watch Co., Ltd. Liquid crystal display and method of driving the same
US6163360A (en) * 1996-06-24 2000-12-19 Casio Computer Co., Ltd. Liquid crystal display apparatus
US6353049B1 (en) 1997-02-13 2002-03-05 Asahi Kasei Kabushiki Kaisha Elastic polyurethane fiber and process for producing the same
US6388650B1 (en) * 1996-09-27 2002-05-14 Universita Degli Studi Di Roma La Sapienza Low voltage control method for a ferroelectric liquid crystal matrix display panel
CN100349037C (en) * 2002-02-27 2007-11-14 夏普株式会社 Liquid crystal display device and its driving method
CN100394264C (en) * 2004-11-10 2008-06-11 精工爱普生株式会社 Image display device and method for driving liquid crystal panel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008581A1 (en) * 1995-08-28 1997-03-06 Citizen Watch Co., Ltd. Liquid crystal display
US6232942B1 (en) 1995-08-28 2001-05-15 Citizen Watch Co., Ltd. Liquid crystal display device
US6163360A (en) * 1996-06-24 2000-12-19 Casio Computer Co., Ltd. Liquid crystal display apparatus
US6388650B1 (en) * 1996-09-27 2002-05-14 Universita Degli Studi Di Roma La Sapienza Low voltage control method for a ferroelectric liquid crystal matrix display panel
US6353049B1 (en) 1997-02-13 2002-03-05 Asahi Kasei Kabushiki Kaisha Elastic polyurethane fiber and process for producing the same
JP2000020039A (en) * 1998-07-01 2000-01-21 Samsung Display Devices Co Ltd Method and device for driving liquid crystal display device
WO2000013057A1 (en) * 1998-08-28 2000-03-09 Citizen Watch Co., Ltd. Liquid crystal display and method of driving the same
CN100349037C (en) * 2002-02-27 2007-11-14 夏普株式会社 Liquid crystal display device and its driving method
US7508385B2 (en) 2002-02-27 2009-03-24 Sharp Kabushiki Kaisha Liquid crystal display device and driving method of the same
USRE43640E1 (en) 2002-02-27 2012-09-11 Sharp Kabushiki Kaisha Liquid crystal display device and driving method of the same
CN100394264C (en) * 2004-11-10 2008-06-11 精工爱普生株式会社 Image display device and method for driving liquid crystal panel

Similar Documents

Publication Publication Date Title
GB2324899A (en) Active matrix display
JP3603904B2 (en) Driving method and apparatus for antiferroelectric liquid crystal display element
KR100545751B1 (en) LCD display
JPH10282472A (en) Driving method of ferroelectric liquid crystal element and driving circuit therefor
JPH0854605A (en) Driving method for anti-ferroelectric liquid crystal display
WO1999046634A1 (en) Antiferroelectric liquid crystal display and method of driving
EP0238287B1 (en) Ferro-electric liquid crystal electro-optical device
US6329970B2 (en) Method of driving antiferroelectric liquid crystal display
US7817128B2 (en) Liquid crystal display device and driving circuit for liquid crystal panel with a memory effect
JPH07104245A (en) Method for driving active matrix substrate
EP0867855A1 (en) Gray scale driving method for a liquid crystal display in which temperature variation effects are compensated
JP3302752B2 (en) Driving method of antiferroelectric liquid crystal panel
JP2766947B2 (en) Display device
JP2002099263A (en) Method for driving anti-ferroelectric liquid crystal panel
JP3247518B2 (en) Antiferroelectric liquid crystal panel
JP3787846B2 (en) Antiferroelectric liquid crystal device
JP2001255509A (en) Smectic liquid crystal optical device
JPH06214215A (en) Driving method of antiferroelectric liquid crystal display
JP3155112B2 (en) Matrix driving method for flat display device
JPH11231286A (en) Driving method for antiferroelectric liquid crystal display element
JPH07311373A (en) Antiferroelectric liquid crystal element and its driving method
JP3205766B2 (en) Driving method of ferroelectric liquid crystal device
JP3557488B2 (en) Driving method of liquid crystal display element
JPS63259516A (en) Method for driving matrix type liquid crystal display body
JP3441143B2 (en) Driving method of antiferroelectric liquid crystal display

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040106

Free format text: JAPANESE INTERMEDIATE CODE: A02