JPH084606B2 - Artificial disc - Google Patents
Artificial discInfo
- Publication number
- JPH084606B2 JPH084606B2 JP2074524A JP7452490A JPH084606B2 JP H084606 B2 JPH084606 B2 JP H084606B2 JP 2074524 A JP2074524 A JP 2074524A JP 7452490 A JP7452490 A JP 7452490A JP H084606 B2 JPH084606 B2 JP H084606B2
- Authority
- JP
- Japan
- Prior art keywords
- intervertebral disc
- artificial intervertebral
- disc
- artificial
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Neurology (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、椎間板ヘルニア等の疾患や事故による脊
椎の損傷等を治療するために用いられる人工椎間板に関
するものである。Description: TECHNICAL FIELD The present invention relates to an artificial intervertebral disc used for treating diseases such as herniated intervertebral disc and damage to the spine due to an accident.
人体の脊椎は、第7図に示すように、縦一列に並ぶ硬
い椎体1と、上下に隣接する椎体1同士を連結する軟骨
質の椎間板2から形成されている。上記脊椎の疾患や損
傷がひどい場合には、切開手術によつて椎体1の全部な
いし一部と椎間板2を除去し、その部分に自家骨または
人工椎体を埋め込むという外科的な治療が行われてい
る。As shown in FIG. 7, the spine of the human body is composed of hard vertebral bodies 1 arranged in a row and a cartilage intervertebral disc 2 connecting vertically adjacent vertebral bodies 1. When the above-mentioned spine disease or damage is severe, surgical treatment is performed by removing all or part of the vertebral body 1 and the intervertebral disc 2 by incision surgery, and implanting autologous bone or artificial vertebral body in the portion. It is being appreciated.
このような人工椎体としては、従来から、第8図およ
び第9図に示すように、アルミナセラミツクスを略円板
状もしくは直方体状に成形したものが用いられている。
また、最近では、アパタイト結晶相を有する公知の生体
活性セラミツクス材料や、これに高密度ポリエチレンも
しくはメタクリレート系樹脂等を配合したもの等が用い
られている。As such an artificial vertebral body, conventionally, as shown in FIGS. 8 and 9, an alumina ceramic molded into a substantially disk shape or a rectangular parallelepiped shape is used.
In addition, recently, known bioactive ceramic materials having an apatite crystal phase, materials obtained by blending high density polyethylene or methacrylate resins, and the like have been used.
しかしながら、これらの人工椎体は、いずれも、椎間
板等を切除した場合にその隙間を埋めて荷重を支持する
スペーサーとして用いられているにすぎず、本来の椎間
板を挟む椎体のような柔軟性がない。したがつて、人体
の運動に追従しきれず、無理な荷重が治療部にかかつ
て、治療部あるいはその周辺部を再度損傷することが多
く、問題となつている。However, all of these artificial vertebral bodies are merely used as spacers that fill the gap and support the load when the intervertebral disc or the like is excised, and the flexibility like the vertebral body that sandwiches the original intervertebral disc is used. There is no. Therefore, it is difficult to follow the movement of the human body, and an excessive load often damages the treatment area or its peripheral portion again, which is a problem.
この発明は、このような事情に鑑みなされたもので、
人体の運動に充分に追従しうる柔軟な人工椎間板の提供
をその目的とする。The present invention has been made in view of such circumstances,
It is an object of the present invention to provide a flexible artificial intervertebral disc that can sufficiently follow the movement of the human body.
上記の目的を達成するため、この発明の人工椎間板
は、生体活性セラミツクス材料からなる2枚の略板状体
が、生体適合性ある高分子弾性材料からなる略板状体の
上面および下面に、それぞれ一体的に取り付けられてい
るという構成をとる。In order to achieve the above object, the artificial intervertebral disc of the present invention has two substantially plate-shaped bodies made of a bioactive ceramic material on the upper surface and the lower surface of the substantially plate-shaped body made of a biocompatible polymer elastic material. Each of them is integrally attached.
すなわち、この発明は、従来の人工椎体が硬いブロツ
ク状のものであつたのに対し、弾力性ある高分子製の略
板状体を上下両側から硬いセラミツクス製略板状体で挟
んでサンドイツチ構造にしたものである。したがつて、
この人工椎間板の上下のセラミツクス部分を生体内の椎
体に接合すれば、あたかも椎間板が上下の椎体を柔軟に
連結しているように、弾力ある高分子板を中心にして上
下のセラミツクス板がある程度自由に旋回する。したが
つて、この人工椎間板は前屈,後屈等の動きに合わせて
柔軟に動くので、脊椎全体がスムーズに動き、無理な荷
重がかからない。また、人工椎間板が上下のセラミツク
ス部と中央の弾性体部の3部分に分かれているため、そ
れぞれの部分の形状や材質を適宜に選択することによ
り、患者の体格や他の脊椎機能とのバランス等をみなが
ら、その人その人に合つた人工椎間板を提供することが
でき、きめこまやかな治療を施すことができる。That is, in contrast to the conventional artificial vertebral body having a hard block shape, the present invention sandwiches a substantially plate-shaped body made of an elastic polymer from both upper and lower sides with a substantially plate-shaped body made of hard ceramics, and is provided with a sun-germany structure. It is structured. Therefore,
If the upper and lower ceramic parts of this artificial disc are joined to the vertebral bodies in the living body, the upper and lower ceramic discs center around the elastic polymer plate as if the intervertebral discs flexibly connect the upper and lower vertebral bodies. Turn freely to some extent. Therefore, the artificial intervertebral disc flexibly moves in accordance with the forward bending, backward bending, etc., so that the entire spine moves smoothly and no excessive load is applied. In addition, the artificial disc is divided into three parts, the upper and lower ceramic parts and the central elastic body part, so by appropriately selecting the shape and material of each part, the balance with the physique of the patient and other spinal functions is achieved. It is possible to provide an artificial intervertebral disc that fits the person while observing the like, and to give a detailed treatment.
つぎに、この発明を詳細に説明する。 Next, the present invention will be described in detail.
この発明の人工椎間板は、例えば、第1図に示すよう
な3層構造になつている。すなわち、上下の2層がとも
にセラミツクス製の硬い円板状体10,11で形成され、上
記2層に挟まれた中間層が、弾力的な高分子からなる円
板状体12で形成されている。The artificial intervertebral disc of the present invention has, for example, a three-layer structure as shown in FIG. That is, the upper and lower two layers are both formed of hard disc-shaped bodies 10 and 11 made of ceramics, and the intermediate layer sandwiched between the two layers is formed of a disc-shaped body 12 made of an elastic polymer. There is.
上記上層および下層となるセラミツクス円板10,11
は、骨と化学的に結合し分離不可能となる生体活性を備
えていることが必要であり、生体活性を備えたセラミツ
クス材料からつくられる。上記セラミツクス材料として
は、例えば、ハイドロキシアパタイト,バイオガラス,
ガラスセラミツクス等があげられる。なかでも、結晶化
ガラスであるアパタイト−ウオラストナイト含有ガラス
セラミツクスが好適である。Ceramic disks 10 and 11 for the upper and lower layers
Is required to have bioactivity that chemically binds to bone and becomes inseparable, and is made from a bioactive ceramic material. Examples of the ceramic material include hydroxyapatite, bioglass,
Examples include glass ceramics. Of these, glass ceramics containing apatite-wollastonite, which is a crystallized glass, is suitable.
一方、上記セラミツクス円板10,11に挟まれる高分子
円板12は、生体適合性および一定の弾力性を備えている
ことが必要で、例えば生体用シリコーンゴムや生体用ウ
レタンゴム等からつくられる。また、発泡によつて弾性
が与えられたシリコーン樹脂やウレタン樹脂を用いても
よい。ただし、これらの高分子弾性材料は、硬さ(JIS
A)が10〜50度の範囲内であることが望ましい。硬さが1
0度未満では、軟らかすぎて脊椎途中に埋め込んだ場合
に、負荷によつてこの部分が簡単に変形して前後左右方
向にはみ出し、神経組織を圧迫するため不適である。逆
に、硬さが50度を超えると硬すぎて得られる人工椎間板
に屈曲性がなくなり、使い勝手が悪い。On the other hand, the polymer disc 12 sandwiched between the ceramic discs 10 and 11 needs to have biocompatibility and a certain elasticity, and is made of, for example, biogenic silicone rubber or biogenic urethane rubber. . Moreover, you may use the silicone resin or urethane resin to which elasticity was given by foaming. However, these polymeric elastic materials have hardness (JIS
It is desirable that A) is in the range of 10 to 50 degrees. Hardness 1
If the angle is less than 0 degrees, it is too soft to be embedded in the middle of the spine, and this portion is easily deformed by the load and protrudes in the anteroposterior, leftward, and rightward directions, and it is not suitable because it presses the nerve tissue. On the other hand, if the hardness exceeds 50 degrees, the artificial intervertebral disc that is too hard loses flexibility and is inconvenient to use.
そして、上記高分子弾性材料を略円板状に成形するに
は、ゴムを用いるのであれば、所定形状の型内に未加硫
(未架橋)の樹脂材料を充填し、これを加硫(架橋)さ
せて硬化させるようにすればよい。また、発泡樹脂を用
いる場合には、所定形状の発泡樹脂を切断によつて円板
状に成形するようにすればよい。If rubber is used to mold the polymeric elastic material into a substantially disk shape, an unvulcanized (uncrosslinked) resin material is filled in a mold of a predetermined shape and vulcanized ( It may be crosslinked) and cured. When a foamed resin is used, a foamed resin having a predetermined shape may be cut into a disk shape.
この発明の人工椎間板は、上記高分子円板12を中央に
置き、上下から前記セラミツクス円板10,11でこれを挟
むようにして3者を一体的に接合して得ることができ
る。上記接合には、生体適合性ある接着剤が用いられ
る。このような生体適合性ある接着剤としては、シリコ
ーン系カツプリング剤,チタン系カツプリング剤,アル
ミニウム系カツプリング剤等があげられ、なかでも、シ
リコーン系カツプリング剤が好適である。The artificial intervertebral disc of the present invention can be obtained by placing the polymer disc 12 at the center and sandwiching the polymer discs 12 from above and below to integrally join the three discs. A biocompatible adhesive is used for the joining. Examples of such biocompatible adhesives include silicone-based coupling agents, titanium-based coupling agents, and aluminum-based coupling agents. Among them, silicone-based coupling agents are preferable.
なお、この発明の人工椎間板において、セラミツクス
円板10,11および高分子円板12の形状や厚み、あるいは
弾性体層の硬さは、患者の体格や他の脊椎機能とのバラ
ンス等に応じて個別に設定することができる。例えば、
高分子円板12の外周面を、第2図に示すように、凹状に
へこませて全体がくの字状に屈曲しやすくしてもよい
し、逆に、第3図に示すように、凸状の丸みを持たせて
上下方向にかかる荷重に対し強い抵抗力を示すようにし
てもよい。Incidentally, in the artificial intervertebral disc of the present invention, the shape and thickness of the ceramic discs 10, 11 and the polymer disc 12, or the hardness of the elastic body layer, depending on the physique of the patient and the balance with other spinal functions. Can be set individually. For example,
As shown in FIG. 2, the outer peripheral surface of the polymer disk 12 may be recessed to make it easier to bend into a dogleg shape, or conversely, as shown in FIG. You may make it show a strong resistance to the load applied to the up-down direction by giving a convex roundness.
また、セラミツクス円板10,11の外側にくる面に、第
4図に示すような突起(あるいは筋状の溝)を形成する
ようにしてもよい。このようにすると、生体内に埋め込
む場合に、椎体(第7図参照)とセラミツクス円板10,1
1との接合面積が大きくなり、人工椎間板の固定が強固
に行われるようになる。Further, projections (or streak-like grooves) as shown in FIG. 4 may be formed on the outer surfaces of the ceramic disks 10 and 11. In this way, the vertebral body (see FIG. 7) and the ceramic disc 10,1 when implanted in a living body.
The joint area with 1 becomes large, and the artificial intervertebral disc is firmly fixed.
さらに、上下のセラミツクス円板10,11および高分子
円板12の形状を、実際の脊椎を模して、第4図に示すよ
うに、円の片側がおしつぶれたような形状に設定しても
よい。Further, the upper and lower ceramic discs 10 and 11 and the polymer disc 12 are shaped so that one side of the circle is crushed, as shown in FIG. 4, imitating an actual spine. May be.
なお、上下のセラミツクス板および高分子板は円板状
に限定されず、四角板状等、適宜の形状のものを用いる
ことができる。The upper and lower ceramic plates and the polymer plate are not limited to disc shapes, and square plates and other appropriate shapes can be used.
つぎに、実施例について比較例と併せて説明する。 Next, examples will be described together with comparative examples.
〔実施例1〜3〕 まず、生体活性結晶化ガラスの円板(直径40mm、厚み
5mm)を2枚作製した。また、シリコーンゴム(Q74720,
ダウコーニング社製、硬度30度)を、直径40mm、厚み10
mmの円板状に成形した。ただし、円周面を凹状にへこま
せた。そして、これらを、接着剤(プライマーA,信越化
学社製)によつて接合し、第2図に示すような人工椎間
板をつくつた。Examples 1 to 3 First, a disk of bioactive crystallized glass (diameter 40 mm, thickness
5 mm) were produced. In addition, silicone rubber (Q74720,
Made by Dow Corning, hardness 30 degrees), diameter 40mm, thickness 10
It was formed into a disk shape of mm. However, the circumferential surface was recessed. Then, these were joined by an adhesive (Primer A, manufactured by Shin-Etsu Chemical Co., Ltd.) to produce an artificial intervertebral disc as shown in FIG.
また、シリコーンゴムの硬度を10度(実施例2),50
度(実施例3)のそれぞれに変えた人工椎間板をつくつ
た。Also, the hardness of the silicone rubber is 10 degrees (Example 2), 50
Artificial intervertebral discs with different degrees (Example 3) were prepared.
このようにして得られた3種類の人工椎間板につい
て、試験速度1mm/minで試料を圧縮することにより圧縮
ばね特性を測定した。その結果を第6図に示す。The compression spring characteristics of the three types of artificial intervertebral discs thus obtained were measured by compressing the sample at a test speed of 1 mm / min. The result is shown in FIG.
〔実施例4〜7〕 下記の表にしたがつて、セラミツクス円板のセラミツ
クス材料および高分子円板の高分子弾性材料の種類を変
えた。それ以外は実施例1と同様にして人工椎間板をつ
くつた。[Examples 4 to 7] The types of the ceramics material of the ceramics disk and the polymeric elastic material of the polymeric disk were changed according to the following tables. An artificial intervertebral disc was prepared in the same manner as in Example 1 except for the above.
そして、上記実施例1〜7の人工椎間板を死体標本に
埋め込んで、前方屈曲性、後方屈曲性、軸方向ねじり
性、側方屈曲性を測定し、実際の椎間板のそれと対比
し、動きの良否を評価した。Then, the artificial intervertebral discs of Examples 1 to 7 were embedded in a cadaver specimen, and the anterior flexibility, the posterior flexibility, the axial twistability, and the lateral flexibility were measured, and compared with that of the actual intervertebral disc, the movement was good or bad. Was evaluated.
これらの結果を下記の表に示す。また、対照例とし
て、第8図に示す従来の人工椎体を準備し、上記と同様
の評価を行い、その結果を下記の表に併せて示した。The results are shown in the table below. As a control example, the conventional artificial vertebral body shown in FIG. 8 was prepared and evaluated in the same manner as above, and the results are also shown in the table below.
以上の結果から、実施例品は、いずれも良好なばね圧
縮性を示し、また、対照品に比べて屈曲性に優れている
ことがわかる。 From the above results, it can be seen that the products of the Examples all exhibit good spring compressibility and have excellent flexibility as compared with the control product.
以上のように、この発明の人工椎間板は、弾力性ある
高分子製の略板状体を上下両側から硬いセラミツクス製
略板状体で挟んでサンドイツチ構造にしているため、こ
の人工椎間板は、弾力ある高分子板を中心にして上下の
セラミツクス板がある程度自由に旋回する。したがつ
て、この人工椎間板は前屈,後屈等の動きに合わせて柔
軟に動くので、脊椎全体がスムーズに動き、無理な荷重
がかからない。また、人工椎間板が上下のセラミツクス
部と中央の弾性体部の3部分に分かれているため、それ
ぞれの部分の形状や材質を適宜に選択することにより、
患者の体格や他の脊椎機能とのバランス等をみながら、
その人その人に合つた人工椎間板を提供することがで
き、きめのこまかい治療を施すことができる。As described above, the artificial intervertebral disc of the present invention has a San-Gerench structure in which a substantially plate-shaped body made of a polymer having elasticity is sandwiched from both upper and lower sides by substantially plate-shaped bodies made of hard ceramics. The upper and lower ceramic plates freely rotate about a polymer plate to some extent. Therefore, the artificial intervertebral disc flexibly moves in accordance with the forward bending, backward bending, etc., so that the entire spine moves smoothly and no excessive load is applied. Further, since the artificial intervertebral disc is divided into three parts, the upper and lower ceramic parts and the central elastic body part, by appropriately selecting the shape and material of each part,
While looking at the patient's physique and balance with other spinal functions,
The person can be provided with an artificial intervertebral disc suitable for the person, and can be given detailed treatment.
第1図はこの発明の一実施例を示す斜視図、第2図は他
の実施例を示す斜視図、第3図はさらに他の実施例を示
す斜視図、第4図はセラミツクス円板の変形例を示す斜
視図、第5図はセラミツクス円板および高分子円板の形
状の変形例を示す平面図、第6図は実施例品の圧縮ばね
特性を示す線図、第7図は脊椎の構成を示す部分的な斜
視図、第8図および第9図はそれぞれ従来品の一例を示
す斜視図である。 10,11……セラミツクス円板、12……高分子円板FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a perspective view showing another embodiment, FIG. 3 is a perspective view showing yet another embodiment, and FIG. 4 is a ceramic disk. FIG. 5 is a perspective view showing a modified example, FIG. 5 is a plan view showing a modified example of the shapes of the ceramic disk and the polymer disk, FIG. 6 is a diagram showing the compression spring characteristics of the example product, and FIG. 7 is the spine. FIG. 8 is a partial perspective view showing the structure of FIG. 8, and FIGS. 8 and 9 are perspective views showing an example of a conventional product. 10, 11 ... Ceramic disc, 12 ... Polymer disc
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 博將 北海道札幌市厚別区もみじ台南3―12―10 (72)発明者 渋谷 武宏 滋賀県大津市本宮2丁目41―7 (72)発明者 高木 雅隆 滋賀県神埼郡能登川町躰光寺626番地 (72)発明者 桜場 幸雄 愛知県小牧市大字北外山字哥津3600 東海 ゴム工業株式会社内 (72)発明者 馬場 潔 愛知県小牧市大字北外山字哥津3600 東海 ゴム工業株式会社内 (56)参考文献 特開 平2−215461(JP,A) ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroaki Ishikawa 3-12-10 Momiji Tainan, Atsubetsu-ku, Sapporo, Hokkaido (72) Inventor Takehiro Shibuya 2-41-7, Motomiya, Otsu City, Shiga Prefecture Inventor Masataka Takagi 626, Kogoji Temple, Notogawa-cho, Kanzaki-gun, Shiga Prefecture (72) Inventor Yukio Sakuraba 3600 Amagatsu, Komaki-shi, Aichi Prefecture, Toyama Rubber Industry Co., Ltd. (72) Kiyoshi Baba, Komaki-shi, Aichi Prefecture Tsu 3600 Tokai Rubber Industry Co., Ltd. (56) Reference JP-A-2-215461 (JP, A)
Claims (3)
略板状体が、生体適合性ある高分子弾性材料からなる略
板状体の上面および下面に、それぞれ一体的に取り付け
られていることを特徴とする人工椎間板。1. Two substantially plate-shaped bodies made of a bioactive ceramic material are integrally attached to the upper surface and the lower surface of the substantially plate-shaped body made of a biocompatible polymer elastic material, respectively. Characteristic artificial intervertebral disc.
ラスまたは生体活性結晶化ガラスである請求項(1)記
載の人工椎間板。2. The artificial intervertebral disc according to claim 1, wherein the bioactive ceramic material is bioactive glass or bioactive crystallized glass.
ンゴムもしくはシリコーンゴムである請求項(1)また
は(2)記載の人工椎間板。3. The artificial intervertebral disc according to claim 1, wherein the biocompatible polymeric elastic material is urethane rubber or silicone rubber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2074524A JPH084606B2 (en) | 1990-03-23 | 1990-03-23 | Artificial disc |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2074524A JPH084606B2 (en) | 1990-03-23 | 1990-03-23 | Artificial disc |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03275055A JPH03275055A (en) | 1991-12-05 |
JPH084606B2 true JPH084606B2 (en) | 1996-01-24 |
Family
ID=13549793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2074524A Expired - Lifetime JPH084606B2 (en) | 1990-03-23 | 1990-03-23 | Artificial disc |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH084606B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008526458A (en) * | 2005-01-19 | 2008-07-24 | ネクスジェン スパイン、インク. | Fixing elastomers to rigid structures |
JP2012115683A (en) * | 2005-01-19 | 2012-06-21 | Nexgen Spine Inc | Fixation of elastomer to rigid structure |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05277141A (en) * | 1992-03-30 | 1993-10-26 | Tokai Rubber Ind Ltd | Artificial intervertebral disk |
DE69428143T2 (en) * | 1993-02-09 | 2002-05-29 | Depuy Acromed, Inc. | disc |
FR2753368B1 (en) | 1996-09-13 | 1999-01-08 | Chauvin Jean Luc | EXPANSIONAL OSTEOSYNTHESIS CAGE |
US8388684B2 (en) | 2002-05-23 | 2013-03-05 | Pioneer Signal Technology, Inc. | Artificial disc device |
US20050015150A1 (en) * | 2003-07-17 | 2005-01-20 | Lee Casey K. | Intervertebral disk and nucleus prosthesis |
DE10337088A1 (en) * | 2003-08-12 | 2005-03-10 | Biedermann Motech Gmbh | Placeholder for vertebral bodies or intervertebral discs |
KR100778542B1 (en) * | 2006-04-04 | 2007-11-28 | 재단법인서울대학교산학협력재단 | Laminal Spacer in Use for Laminoplasty of Cervical Spine |
US8715350B2 (en) | 2006-09-15 | 2014-05-06 | Pioneer Surgical Technology, Inc. | Systems and methods for securing an implant in intervertebral space |
WO2008034135A2 (en) | 2006-09-15 | 2008-03-20 | Pioneer Surgical Technology, Inc. | Joint arthroplasty devices having articulating members |
JP5283227B2 (en) * | 2009-06-05 | 2013-09-04 | 学校法人日本大学 | Intervertebral disk hardness measurement device |
JP6263314B2 (en) | 2014-06-04 | 2018-01-17 | ヴェンツェル スパイン,インコーポレイテッド | Interbody fusion device that expands bilaterally |
US9408714B1 (en) | 2015-06-12 | 2016-08-09 | Amendia, Inc. | Artificial disc |
AU2018327353B2 (en) | 2017-09-08 | 2024-12-12 | Pioneer Surgical Technology, Inc. | Intervertebral implants, instruments, and methods |
USD907771S1 (en) | 2017-10-09 | 2021-01-12 | Pioneer Surgical Technology, Inc. | Intervertebral implant |
US11219531B2 (en) | 2019-04-10 | 2022-01-11 | Wenzel Spine, Inc. | Rotatable intervertebral spacing implant |
-
1990
- 1990-03-23 JP JP2074524A patent/JPH084606B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008526458A (en) * | 2005-01-19 | 2008-07-24 | ネクスジェン スパイン、インク. | Fixing elastomers to rigid structures |
JP2012115683A (en) * | 2005-01-19 | 2012-06-21 | Nexgen Spine Inc | Fixation of elastomer to rigid structure |
US8864831B2 (en) | 2005-01-19 | 2014-10-21 | K2M, Inc. | Fixation of elastomer to rigid structures |
Also Published As
Publication number | Publication date |
---|---|
JPH03275055A (en) | 1991-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH084606B2 (en) | Artificial disc | |
EP0563332B1 (en) | Hydrogel intervertebral disc nucleus | |
US7927373B2 (en) | Intervertebral disc prosthesis | |
US8202320B2 (en) | Intervertebral disc prosthesis | |
JPH0363898B2 (en) | ||
JP5209493B2 (en) | Anatomical intervertebral spacer and its applications | |
US6533818B1 (en) | Artificial spinal disc | |
JP2007504899A (en) | Flexible spine | |
JPH02224660A (en) | Intervertebral spacer and making thereof | |
JP2004105732A (en) | Radiation visible hydrogel intervertebral disk nucleus | |
CS64090A2 (en) | Artificial intervertebral plate | |
JPH08511701A (en) | Intervertebral disc prosthesis | |
WO2005084590A1 (en) | Spinal prosthesis | |
WO2010088766A1 (en) | Implant for total disc replacement, and method of forming | |
CA2728686C (en) | Implant device | |
CN107847326B (en) | Orthopedic implants | |
US8029569B2 (en) | Implantable spinal disk | |
JPH05277141A (en) | Artificial intervertebral disk | |
JPH084607B2 (en) | Artificial disc | |
WO2011098473A1 (en) | Orthopedic implant | |
JPH05317407A (en) | Artificial intervertebral plate | |
Harms et al. | The triazine carbon fiber-reinforced disc prosthesis: Biomechanical and biological properties |