Nothing Special   »   [go: up one dir, main page]

JPH08320430A - Automatic focus detector - Google Patents

Automatic focus detector

Info

Publication number
JPH08320430A
JPH08320430A JP7148227A JP14822795A JPH08320430A JP H08320430 A JPH08320430 A JP H08320430A JP 7148227 A JP7148227 A JP 7148227A JP 14822795 A JP14822795 A JP 14822795A JP H08320430 A JPH08320430 A JP H08320430A
Authority
JP
Japan
Prior art keywords
scanning
image forming
light
photoelectric conversion
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7148227A
Other languages
Japanese (ja)
Inventor
Haruto Sakai
春人 酒井
Aiichi Ishikawa
愛一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7148227A priority Critical patent/JPH08320430A/en
Publication of JPH08320430A publication Critical patent/JPH08320430A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Lens Barrels (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE: To provide an automatic focus detector capable of exactly detecting a focusing state even when few object exists on the surface of the object or a photoelectric transducer is slightly inclined. CONSTITUTION: In this automatic focus detector provided with an illuminating optical system by which an object surface is irradiated with a light beam from a light source, an image forming optical system dividing a light beam reflected on the object surface into two light beams having an optical path difference, forming the image of one light beam on a first image forming position and the image of the other beam on a second image forming position and a photoelectric transducer arranged between both image forming positions and receiving two light beams, the detector is provided with a scanning area setting part 10, using a CCD area sensor 5 as the photoelectric transducer and setting two scanning areas being two-dimensionally scanned by the CCD area sensor 5, and a control circuit for performing focusing control by comparing the high frequency components of two light beams received by two scanning areas set by the setting part 10. The images of object included in two light beams are surely received by two scanning areas of the CCD area sensor 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は顕微鏡等の光学機器に
使用可能な自動焦点検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic focus detection device that can be used in optical instruments such as microscopes.

【0002】[0002]

【従来の技術】従来の自動焦点検出装置としては、例え
ば、光源と、この光源からの光を物体面に照射する照射
光学系と、物体面からの反射光を光路差を有する2つの
光束に分割し、前記2つの光束の一方を第1結像位置に
結像させると共に、前記2つの光束の他方を第1結像位
置に対し光軸方向にずれた第2結像位置に結像させる結
像光学系と、第1結像位置と第2結像位置との間に配置
され、前記2つの光束の光学像を受光する光電変換素子
とを備え、光電変換素子により受光した2つの光束(2
つの光学像)を2つの電気信号に変換し、各電気信号の
高周波成分のみを取り出し、その絶対値を積分し、その
両積分値の差をとって合焦ずれ信号を得、この信号に基
づいて合焦状態を検出するように構成されたものが知ら
れている。そして、前記光電変換素子としては、図7に
示すようなCCDラインセンサ70が使用されている。
このCCDラインセンサ67は、1列に並んだ複数の素
子を有し、各素子から光電変換された電気信号が時系列
的に(順次)出力されるように構成されている。
2. Description of the Related Art As a conventional automatic focus detection device, for example, a light source, an irradiation optical system for irradiating light from the light source onto an object surface, and reflected light from the object surface into two light fluxes having an optical path difference. Splitting, one of the two light beams is imaged at the first image forming position, and the other of the two light beams is imaged at the second image forming position deviated in the optical axis direction with respect to the first image forming position. Two light fluxes received by the photoelectric conversion element, which are provided with an imaging optical system and a photoelectric conversion element which is arranged between the first imaging position and the second imaging position and which receives the optical images of the two light fluxes. (2
One optical image) into two electric signals, extract only the high-frequency components of each electric signal, integrate the absolute values, obtain the difference between the two integrated values to obtain the focus deviation signal, and based on this signal It is known that the focus state is detected by the above-mentioned method. A CCD line sensor 70 as shown in FIG. 7 is used as the photoelectric conversion element.
The CCD line sensor 67 has a plurality of elements arranged in a line, and is configured so that electric signals photoelectrically converted from the respective elements are output in time series (sequentially).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、光電変換素子として図7に示すようなCC
Dラインセンサ70を使用しているので、(1)物体面
上の物体が少ないと、光路差を有する2つの光束(2つ
の光学像)71、72に含まれる物体の像71a、72
aがCCDラインセンサ70に受光されない場合があ
り、この場合には前記合焦ずれ信号が得られないので、
合焦状態を検出することができず、また、(2)CCD
ラインセンサ70が図7に示すように僅かでも傾いてい
ると、CCDラインセンサ70に受光される2つの光学
像71、72が一致しないので、合焦状態を正確に検出
できないという問題がある。
However, in the above-mentioned prior art, as a photoelectric conversion element, a CC as shown in FIG. 7 is used.
Since the D line sensor 70 is used, (1) When there are few objects on the object plane, the object images 71a, 72 included in the two light fluxes (two optical images) 71, 72 having the optical path difference.
In some cases, a may not be received by the CCD line sensor 70, and in this case, the in-focus deviation signal cannot be obtained.
In-focus state cannot be detected, and (2) CCD
If the line sensor 70 is slightly tilted as shown in FIG. 7, the two optical images 71 and 72 received by the CCD line sensor 70 do not coincide with each other, so that the in-focus state cannot be accurately detected.

【0004】この発明はこのような事情に鑑みてなされ
たもので、その課題は物体面上の物体が少ない場合や光
電変換素子が僅かに傾いている場合でも、合焦状態を正
確に検出することができる自動焦点検出装置を提供する
ことである。
The present invention has been made in view of the above circumstances, and its object is to accurately detect the in-focus state even when there are few objects on the object surface or when the photoelectric conversion element is slightly tilted. It is an object of the present invention to provide an automatic focus detection device capable of performing the above.

【0005】[0005]

【課題を解決するための手段】前述の課題を解決するた
め請求項1記載の発明の自動焦点検出装置は、光源と、
この光源からの光を物体面に照射する照射光学系と、前
記物体面からの反射光を光路差を有する2つの光束に分
割し、前記2つの光束の一方を第1結像位置に結像させ
ると共に、前記2つの光束の他方を前記第1結像位置に
対し光軸方向にずれた第2結像位置に結像させる結像光
学系と、前記第1結像位置と前記第2結像位置との間に
配置され、前記2つの光束を受光する光電変換素子とを
備え、前記光電変換素子により得られる前記2つの光束
の光情報を比較することにより合焦状態を検出する自動
焦点検出装置において、前記光電変換素子は二次元的に
走査可能に構成され、かつ前記光電変換素子によって二
次元的に走査する2つの走査領域を設定する走査領域設
定手段と、前記走査領域設定手段により設定された前記
光電変換素子の2つの走査領域で受光された前記2つの
光束の光情報を比較して合焦ずれ信号を求め、この合焦
ずれ信号に基づいて合焦制御を行う制御回路とを備えて
いる。
In order to solve the above-mentioned problems, the automatic focus detection device according to the invention of claim 1 comprises a light source,
An irradiation optical system that irradiates the object surface with light from this light source, and splits the reflected light from the object surface into two light beams having an optical path difference, and forms one of the two light beams at a first imaging position. And an image forming optical system that forms the other of the two light beams at a second image forming position that is displaced in the optical axis direction with respect to the first image forming position, and the first image forming position and the second combination. An automatic focusing device that is disposed between the image position and a photoelectric conversion element that receives the two light fluxes, and detects a focus state by comparing optical information of the two light fluxes obtained by the photoelectric conversion element. In the detection device, the photoelectric conversion element is configured to be two-dimensionally scannable, and the scanning area setting means for setting two scanning areas for two-dimensionally scanning by the photoelectric conversion element, and the scanning area setting means. 2 of the photoelectric conversion elements set By comparing the optical information of the two light beams received by the scanning area determined focus deviation signal, and a control circuit for performing focus control based on the focus error signal.

【0006】請求項2記載の発明の自動焦点検出装置
は、前記走査領域設定手段は、前記光電変換素子の、所
定間隔離れた2つの走査領域を二次元的に走査させるよ
うに構成されている。
In the automatic focus detection device according to the present invention, the scanning area setting means is configured to two-dimensionally scan two scanning areas of the photoelectric conversion element, which are separated by a predetermined distance. .

【0007】請求項3記載の発明の自動焦点検出装置
は、前記制御回路は、前記2つの走査領域内の対応する
1つの走査ラインで得られる2つの光情報を比較して得
られる合焦ずれ信号を、前記走査領域内の全ての走査ラ
インについて積算する積算手段を含んでいる。
In the automatic focus detection device according to the third aspect of the present invention, the control circuit compares the two optical information obtained in one corresponding scanning line in the two scanning areas with each other to obtain a focus shift. Integrating means is included to integrate the signal for all scan lines in the scan area.

【0008】[0008]

【作用】請求項1記載の自動焦点検出装置では、光電変
換素子は二次元的に走査可能であり、走査領域設定手段
により設定された光電変換素子の2つの走査領域で光路
差を有する2つの光束を受けるので、物体面上の物体が
少ない場合でも、2つの光束に含まれる物体の像を光電
変換素子の2つの走査領域で確実に受光することができ
ると共に、光電変換素子が僅かに傾いている場合でも、
光電変換素子の2つの走査領域内で一致した2つの光学
像を受光することができる。
In the automatic focus detection device according to the present invention, the photoelectric conversion element can be two-dimensionally scanned, and two photoelectric conversion elements having the optical path difference in the two scanning areas set by the scanning area setting means. Since the light beam is received, even when there are few objects on the object plane, the images of the object included in the two light beams can be reliably received by the two scanning regions of the photoelectric conversion element, and the photoelectric conversion element is slightly tilted. Even if
Two coincident optical images can be received in the two scanning areas of the photoelectric conversion element.

【0009】請求項2記載の自動焦点検出装置では、走
査領域設定手段により、光電変換素子の、所定間隔離れ
た2つの走査領域を二次元的に走査させるので、光電変
換素子の全面を二次元的に走査する場合よりも走査時間
及び信号処理時間が短縮され、高速に合焦状態を検出す
ることができる。
In the automatic focus detection device according to the present invention, the scanning area setting means two-dimensionally scans two scanning areas of the photoelectric conversion element which are separated by a predetermined distance, so that the entire surface of the photoelectric conversion element is two-dimensionally scanned. The scanning time and the signal processing time are shortened as compared with the case of scanning manually, and the focused state can be detected at high speed.

【0010】請求項3記載の自動焦点検出装置では、積
算手段が、設定された2つの走査領域内の対応する1つ
の走査ラインで得られる2つの光情報を比較して得られ
る合焦ずれ信号を、各走査領域内の全ての走査ラインに
ついて積算するので、広い範囲に亘ってレベルの高い合
焦ずれ信号が得られる。
In the automatic focus detection device according to the third aspect of the present invention, the focusing means is a focusing deviation signal obtained by comparing the two optical information obtained by the corresponding one scanning line in the two set scanning areas. Is integrated for all the scanning lines in each scanning region, so that a high-level focusing deviation signal can be obtained over a wide range.

【0011】[0011]

【実施例】以下この発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図2はこの発明の一実施例に係る顕微鏡用
の自動焦点検出装置の光学系を、図1は同装置に使用さ
れる合焦制御を行う制御回路のブロック図をそれぞれ示
している。
FIG. 2 shows an optical system of an automatic focus detection apparatus for a microscope according to an embodiment of the present invention, and FIG. 1 shows a block diagram of a control circuit for performing focus control used in the apparatus. .

【0013】図2に示す顕微鏡用の自動焦点検出装置
は、光源1と、ハーフミラー2及び対物レンズ3を有
し、光源1からの光を被検物4の物体面4aに照射する
照射光学系と、物体面4aからの反射光を光路差を有す
る2つの光束に分割し、2つの光束の一方を第1結像位
置xに結像させると共に、2つの光束の他方を第1結像
位置xに対し光軸方向にずれた第2結像位置yに結像さ
せる結像光学系と、第1結像位置xと第2結像位置yと
の間に配置され、光路差を有する2つの光束(2つの光
学像)を受ける光電変換素子5とを備えている。結像光
学系には、物体面4aからの反射光を結像する対物レン
ズ3と、対物レンズ3を通ってくる物体面4aからの反
射光を透過光と反射光とに分割するハーフプリズム6
と、ハーフプリズム6で反射された光を光路差を有する
2つの光束に分割するハーフプリズム7とが設けられて
いる。前記ハーフプリズム6を透過した物体面4aから
の反射光は不図示の像面に結像され、この像面を観察光
学系によって観察可能である。
The automatic focus detection device for a microscope shown in FIG. 2 has a light source 1, a half mirror 2 and an objective lens 3, and irradiating optics for irradiating the object surface 4a of an object 4 with light from the light source 1. The system and the reflected light from the object surface 4a are divided into two light fluxes having an optical path difference, one of the two light fluxes is imaged at the first imaging position x, and the other of the two light fluxes is first imaged. It is arranged between the first image forming position x and the second image forming position y and an image forming optical system for forming an image at a second image forming position y which is displaced in the optical axis direction with respect to the position x, and has an optical path difference. The photoelectric conversion element 5 receives two light fluxes (two optical images). The imaging optical system includes an objective lens 3 which forms an image of reflected light from the object surface 4a, and a half prism 6 which divides the reflected light from the object surface 4a passing through the objective lens 3 into a transmitted light and a reflected light.
And a half prism 7 that splits the light reflected by the half prism 6 into two light beams having an optical path difference. The reflected light from the object surface 4a that has passed through the half prism 6 is imaged on an image surface (not shown), and this image surface can be observed by an observation optical system.

【0014】なお、前記物体面4aが合焦位置(図2の
B位置)にあるとき、XーY=0(X:第1結像位置x
と光電変換素子5の受光面との間の距離、Y:第2結像
位置yと前記受光面との間の距離)となるように光電変
換素子5の位置を予め調整してある。
When the object plane 4a is at the in-focus position (position B in FIG. 2), XY = 0 (X: first image forming position x
The distance between the photoelectric conversion element 5 and the light receiving surface of the photoelectric conversion element 5, Y: the distance between the second image forming position y and the light receiving surface) is adjusted in advance.

【0015】前記光電変換素子5として、二次元的に走
査可能なCCDエリアセンサが用いられている。このC
CDエリアセンサ5は、図5に示すように、n個(例え
ば10個)の素子が1列に並んだN本の走査ライン(例
えば、1番目の走査ラインL1から20番目の走査ライ
ンL20までの20本の走査ライン)を有し、各走査ラ
インL1〜L20の各素子から光電変換された電気信号
が時系列的に(順次)出力されるように構成されてい
る。図4及び図5において、符号5aは仮想の中心線5
0で分割されたCCDエリアセンサ5の左半分の受光範
囲を、符号5bはCCDエリアセンサ5の右半分の受光
範囲をそれぞれ示している。また、図4及び図5におい
て、2つの光学像の一方41が受光する左半分の受光範
囲5a内に、2つの光学像の他方が右半分の受光範囲5
b内にそれぞれ受光されている。
As the photoelectric conversion element 5, a CCD area sensor capable of two-dimensional scanning is used. This C
As shown in FIG. 5, the CD area sensor 5 includes N scanning lines (for example, from the first scanning line L1 to the twentieth scanning line L20) in which n (for example, 10) elements are arranged in one row. 20 scanning lines), and the electric signals photoelectrically converted from the respective elements of the scanning lines L1 to L20 are output in time series (sequentially). In FIGS. 4 and 5, reference numeral 5a denotes a virtual center line 5.
The left half of the CCD area sensor 5 is divided by 0, and the reference numeral 5b indicates the right half of the CCD area sensor 5. Further, in FIGS. 4 and 5, one of the two optical images 41 receives light in the left half of the light receiving range 5a, and the other of the two optical images receives in the right half of the light receiving range 5a.
Light is received in each of b.

【0016】図1に示す制御回路は、CCDエリアセン
サ5によって二次元的に走査する2つの走査領域(左半
分の受光範囲5a内での走査領域と、右半分の受光範囲
5b内での走査領域)を任意に設定可能な走査領域設定
部10を備えている。この走査領域設定部10は、例え
ば、左半分の受光範囲5a内では2番目の走査ラインL
2から9番目の走査ラインまでの走査領域を設定すると
共に、右半分の受光範囲5b内では12番目の走査ライ
ンL12から19番目の走査ラインまでの走査領域を設
定することができる。また、走査領域設定部10は、後
述するタイミングコントロール回路18で制御されるタ
イミングで、1つの走査ライン毎に、図3のA1〜C1
で示すような受光量に応じて光電変換された電気信号3
1又は31′を読み出して出力するようになっている。
The control circuit shown in FIG. 1 has two scanning areas which are two-dimensionally scanned by the CCD area sensor 5 (a scanning area within the light receiving area 5a in the left half and a scanning area within the light receiving area 5b in the right half). The scanning area setting unit 10 capable of arbitrarily setting the area) is provided. The scanning area setting unit 10 may, for example, scan the second scanning line L in the left half light receiving range 5a.
The scanning area from the 2nd to 9th scanning lines can be set, and the scanning area from the 12th scanning line L12 to the 19th scanning line can be set within the right half light receiving range 5b. Further, the scanning area setting unit 10 has timings controlled by a timing control circuit 18, which will be described later, and for each scanning line, A1 to C1 of FIG.
Electric signal 3 photoelectrically converted according to the amount of received light
1 or 31 'is read and output.

【0017】図3のA1〜C1において、電気信号31
は、図5に示す一方の走査領域内における1つの走査ラ
イン(例えば走査ラインL3)の各素子から時系列的に
出力される信号(光情報)であり、電気信号31′は他
方の走査領域内における1つの走査ライン(例えば走査
ラインL3と対応する走査ラインL13)の各素子から
時系列的に出力される信号(光情報)である。そして、
図3のB1は、物体面4aが合焦位置(図2のB位置)
にあるときの状態を、同図のA1及びC1は物体面4a
が合焦位置からずれた図2のA位置及びC位置にあると
きの状態をそれぞれ示している。
In A1 to C1 of FIG. 3, an electric signal 31
Is a signal (optical information) output from each element of one scanning line (for example, the scanning line L3) in one scanning region shown in FIG. 5 in time series, and the electric signal 31 'is the other scanning region. It is a signal (optical information) that is output in time series from each element of one scanning line (for example, the scanning line L13 corresponding to the scanning line L3) in the inside. And
In B1 in FIG. 3, the object plane 4a is in the in-focus position (position B in FIG. 2)
A1 and C1 in the figure are the object plane 4a.
3A and 3B respectively show the states at positions A and C in FIG. 2 which are deviated from the in-focus position.

【0018】前記制御回路は、さらに、走査領域設定部
10の出力信号からDC成分を取り除くDCオフセット
除去回路11と、DCオフセット除去回路11の出力信
号を増幅する増幅器12と、増幅器12の出力信号から
高周波成分(光学像41、42のコントラストを表す光
情報)を取り出し、図3のA2〜C2でそれぞれ示す信
号32又は32′を出力するバンドパスフィルタ13と
を備えている。図3のA2〜C2は図3のA1〜C1に
それぞれ対応している。
The control circuit further includes a DC offset removing circuit 11 for removing a DC component from the output signal of the scanning region setting section 10, an amplifier 12 for amplifying the output signal of the DC offset removing circuit 11, and an output signal of the amplifier 12. And a bandpass filter 13 for extracting a high frequency component (optical information representing the contrast of the optical images 41 and 42) and outputting a signal 32 or 32 'shown by A2 to C2 in FIG. 3, respectively. A2 to C2 in FIG. 3 correspond to A1 to C1 in FIG. 3, respectively.

【0019】さらに、制御回路は、バンドパスフィルタ
13の出力信号の絶対値を検出する絶対値回路14と、
絶対値回路14の出力信号を積分する積分器15と、2
つのサンプルホールド回路16、17と、タイミングコ
ントロール回路18とを備えている。
The control circuit further includes an absolute value circuit 14 for detecting the absolute value of the output signal of the bandpass filter 13,
An integrator 15 for integrating the output signal of the absolute value circuit 14 and 2
It is provided with one sample hold circuit 16 and 17 and a timing control circuit 18.

【0020】タイミングコントロール回路18は、走査
領域設定部10、積分器15、及び2つのサンプルホー
ルド回路16、17の動作タイミングを制御している。
The timing control circuit 18 controls the operation timings of the scanning area setting section 10, the integrator 15, and the two sample hold circuits 16 and 17.

【0021】タイミングコントロール回路18は、走査
領域設定部10により2番目の走査ラインL2から9番
目の走査ラインL9までの走査領域と12番目の走査ラ
インL12から19番目の走査ラインL19までの走査
領域とを設定した場合、2番目の走査ラインL2、走査
ラインL2と対応する12番目の走査ラインL12、3
番目の走査ラインL3、走査ラインL3と対応する13
番目の走査ラインL13…及び19番目の走査ラインの
順に各走査ラインから前記電気信号31または31′が
出力されるように、走査領域設定部10の動作タイミン
グを制御するように構成されている。
The timing control circuit 18 includes a scanning area from the second scanning line L2 to the ninth scanning line L9 and a scanning area from the twelfth scanning line L12 to the nineteenth scanning line L19 by the scanning area setting unit 10. When and are set, the second scan line L2 and the twelfth scan line L12, 3 corresponding to the scan line L2
Th scan line L3, 13 corresponding to scan line L3
The operation timing of the scanning area setting unit 10 is controlled so that the electrical signal 31 or 31 'is output from each scanning line in the order of the thirteenth scanning line L13 ... And the nineteenth scanning line.

【0022】また、タイミングコントロール回路18
は、2番目〜9番目の走査ラインL2〜L9から前記電
気信号31がそれぞれ出力されるときに積分器15を動
作させ、このときの積分値を表す信号(図3のA3〜C
3に示す信号33)を一方のサンプルホールド回路16
で保持させると共に、12番目〜19番目の走査ライン
L12〜L19から前記電気信号31′がそれぞれ出力
されるときに積分器15を動作させ、このときの積分値
を表す信号(図3のA3〜C3に示す信号33′)を他
方のサンプルホールド回路17で保持させるように構成
されている。
Further, the timing control circuit 18
Operates the integrator 15 when the electric signal 31 is output from each of the second to ninth scan lines L2 to L9, and a signal indicating an integrated value at this time (A3 to C in FIG. 3).
The signal 33) shown in FIG.
In addition, the integrator 15 is operated when the electrical signal 31 'is output from each of the 12th to 19th scanning lines L12 to L19, and a signal indicating the integrated value at this time (A3 to FIG. The other sample-hold circuit 17 holds the signal 33 'shown at C3.

【0023】前記制御回路は、さらに、サンプルホール
ド回路16、17の出力信号(積分値を表す信号)を比
較し、その差を表す信号(被検物4の合焦位置からのず
れ量を表す合焦ずれ信号で、設定された2つの走査領域
内の対応する1つの走査ライン、例えば走査ラインL
3、L13からの電気信号31、31′を信号処理して
得られる図6の信号61)を出力する差動増幅器19
と、差動増幅器19からの合焦ずれ信号61を各走査領
域内の全ての走査ラインについて積算して合焦ずれ信号
62(図6参照)を出力する積算回路20と、被検物4
と対物レンズ3との光軸方向における相対位置を制御す
る焦準用モータ22と、積算回路20からの出力信号に
より焦準用モータ22を制御するモータ制御回路20と
を備えている。
The control circuit further compares the output signals of the sample and hold circuits 16 and 17 (signals representing integrated values), and the signal representing the difference (represents the amount of deviation of the object 4 from the in-focus position). With a focus shift signal, one corresponding scan line in the two scan areas set, for example, scan line L
3, the differential amplifier 19 for outputting the signal 61) of FIG. 6 obtained by signal processing the electric signals 31, 31 'from L13.
And an integrator circuit 20 which integrates the focus shift signal 61 from the differential amplifier 19 for all the scanning lines in each scanning area and outputs a focus shift signal 62 (see FIG. 6), and the object to be inspected 4
And a focusing motor 22 for controlling the relative position of the objective lens 3 in the optical axis direction, and a motor control circuit 20 for controlling the focusing motor 22 by an output signal from the integrating circuit 20.

【0024】次に、上記構成を有する一実施例の動作を
説明する。
Next, the operation of the embodiment having the above configuration will be described.

【0025】光源1からの光は、ハーフミラー2及び対
物レンズ3を経由して物体面4aに照射される。物体面
4aからの反射光は、対物レンズ3、ハーフミラー2及
びハーフプリズム6を経由した後、ハーフプリズム7に
よって光路差を有する2つの光束に分割される。2つの
光束の一方は第1結像位置xに結像され、2つの光束の
他方は第1結像位置xに対し光軸方向にずれた第2結像
位置yに結像される。これによって、 光路差を有する
2つの光束(図4及び図5に示す2つの光学像41、4
2)の一方及び他方がCCDエリアセンサ5の左半分の
受光範囲5a及び右半分の受光範囲5b内でそれぞれ受
光される。
The light from the light source 1 is applied to the object surface 4a via the half mirror 2 and the objective lens 3. The reflected light from the object surface 4a passes through the objective lens 3, the half mirror 2 and the half prism 6, and is then split by the half prism 7 into two light beams having an optical path difference. One of the two light beams is imaged at the first image forming position x, and the other of the two light beams is imaged at the second image forming position y which is displaced in the optical axis direction with respect to the first image forming position x. As a result, the two light fluxes having the optical path difference (the two optical images 41 and 4 shown in FIGS.
2) One and the other are received within the light receiving range 5a in the left half and the light receiving range 5b in the right half of the CCD area sensor 5, respectively.

【0026】いま、CCDエリアセンサ5によって二次
元的に走査する任意の2つの走査領域が走査領域設定部
10によって設定されている(例えば、左右の受光範囲
5a、5bの全面を走査するように設定されている)も
のとする。このとき、走査領域設定部10は、最初に一
方の走査領域5a内にある1番目の走査ラインL1で得
られる電気信号31(図3のA1〜C1参照)を出力
し、次に他方の走査領域5b内にある走査ラインL1と
対応する11番目の走査ラインL11で得られる電気信
号31′(同図参照)を出力し、次に走査領域5a内に
ある2番目の走査ラインL2で得られる電気信号31を
出力し、次に走査領域5b内にある走査ラインL2と対
応する12番目の走査ラインL12で得られる電気信号
31′を出力する。以下同様に、2つの走査領域5a、
5b内の対応する1つの走査ラインで得られる電気信号
32、32′を交互に出力させ、最後に走査ラインL2
0で得られる電気信号32′を出力させる。
Now, two arbitrary scanning areas which are two-dimensionally scanned by the CCD area sensor 5 are set by the scanning area setting section 10 (for example, the entire surfaces of the left and right light receiving areas 5a and 5b are scanned). It has been set). At this time, the scanning area setting unit 10 first outputs the electric signal 31 (see A1 to C1 in FIG. 3) obtained on the first scanning line L1 in one scanning area 5a, and then the other scanning. An electric signal 31 '(see the same figure) obtained by the eleventh scan line L11 corresponding to the scan line L1 in the area 5b is output, and then obtained by the second scan line L2 in the scan area 5a. The electric signal 31 is output, and then the electric signal 31 'obtained on the 12th scanning line L12 corresponding to the scanning line L2 in the scanning area 5b is output. Similarly, the two scanning areas 5a,
The electric signals 32, 32 'obtained in one corresponding scanning line in 5b are alternately output, and finally the scanning line L2
The electric signal 32 'obtained at 0 is output.

【0027】このようにして信号31、31′が走査領
域設定部10から交互に出力されると、DCオフセット
除去回路11は信号31、31′からDC成分を取り除
き、この信号を増幅器12が増幅した後、バンドパスフ
ィルタ13が高周波成分を取り出すと、図3のA2〜C
2でそれぞれ示す信号32、32′が得られる。A2の
信号32、32′がA1の信号31、31′に、B2の
信号32、32′がB1の信号31、31′に、C2の
信号32、32′がC1の信号31、31′にそれぞれ
対応する。バンドパスフィルタ13の出力信号の絶対値
を絶対値回路14により検出し、絶対値回路14の出力
信号を積分器15により積分すると、図3のA3〜C3
でそれぞれ示す積分値を表す33、33′が得られる。
A3の信号33、33′がA2の信号32、32′に、
B3の信号33、33′がB2の信号32、32′に、
C3の信号33、33′がC2の信号32、32′にそ
れぞれ対応する。
When the signals 31 and 31 'are alternately output from the scanning area setting unit 10 in this way, the DC offset removing circuit 11 removes the DC component from the signals 31 and 31', and the amplifier 12 amplifies this signal. After that, when the bandpass filter 13 extracts the high frequency component, A2 to C in FIG.
Signals 32 and 32 ', respectively indicated by 2, are obtained. A2 signals 32 and 32 'become A1 signals 31 and 31', B2 signals 32 and 32 'become B1 signals 31 and 31', and C2 signals 32 and 32 'become C1 signals 31 and 31'. Corresponds to each. When the absolute value of the output signal of the bandpass filter 13 is detected by the absolute value circuit 14 and the output signal of the absolute value circuit 14 is integrated by the integrator 15, A3 to C3 in FIG.
33 and 33 ', which represent the integrated values respectively shown in FIG.
A3 signals 33 and 33 'become A2 signals 32 and 32',
B3 signals 33 and 33 'become B2 signals 32 and 32',
The signals 33 and 33 'of C3 correspond to the signals 32 and 32' of C2, respectively.

【0028】A3〜C3の信号33、33′は2つの光
学像41、42(図4参照)にそれぞれ対応しており、
信号33はサンプルホールド回路16により保持され、
信号33′はサンプルホールド回路17により保持され
る。サンプルホールド回路16、17の出力信号(積分
値を表す信号)を差動増幅器19が比較して図6に示す
合焦ずれ信号61を出力する。この合焦ずれ信号61
は、設定された2つの走査領域内の対応する1つの走査
ライン(例えば、対応する走査ラインL3とL13)毎
に得られる信号である。積算回路20は、差動増幅器1
9からの合焦ずれ信号61を走査領域内の全ての走査ラ
インについて積算して図6に示す合焦ずれ信号62を出
力する。モータ制御回路21は、積算回路20からの合
焦ずれ信号62により焦準用モータ22を制御する。す
なわち、モータ制御回路21は、合焦ずれ信号62が0
になるように、焦準用モータ22を制御して結像光学系
の光軸方向における被検物4と対物レンズ3との相対位
置を制御する。
The signals 33 and 33 'of A3 to C3 correspond to the two optical images 41 and 42 (see FIG. 4), respectively.
The signal 33 is held by the sample hold circuit 16,
The signal 33 'is held by the sample hold circuit 17. The differential amplifier 19 compares the output signals of the sample and hold circuits 16 and 17 (the signals representing the integrated value) and outputs the out-of-focus signal 61 shown in FIG. This out-of-focus signal 61
Is a signal obtained for each corresponding one scanning line (for example, corresponding scanning lines L3 and L13) in the set two scanning regions. The integrating circuit 20 is the differential amplifier 1
The focus shift signal 61 from 9 is integrated for all the scanning lines in the scan area, and the focus shift signal 62 shown in FIG. 6 is output. The motor control circuit 21 controls the focusing motor 22 based on the focus shift signal 62 from the integrating circuit 20. That is, the motor control circuit 21 determines that the focus shift signal 62 is 0.
The focusing motor 22 is controlled to control the relative position between the object 4 and the objective lens 3 in the optical axis direction of the imaging optical system.

【0029】このように、上記一実施例に係る自動焦点
検出装置では、積算回路20から出力される合焦ずれ信
号62が0になるように、結像光学系の光軸方向におけ
る被検物4と対物レンズ3との相対位置を焦準用モータ
22によって制御することにより自動合焦動作がなされ
る。
As described above, in the automatic focus detection apparatus according to the above-described embodiment, the object to be inspected in the optical axis direction of the imaging optical system is adjusted so that the focus shift signal 62 output from the integrating circuit 20 becomes zero. An automatic focusing operation is performed by controlling the relative position between the objective lens 3 and the objective lens 4 by the focusing motor 22.

【0030】上記一実施例によれば、CCDエリアセン
サ5は二次元的に走査可能であり、走査領域設定部10
により設定されたCCDエリアセンサ5の2つの走査領
域で光路差を有する2つの光束(2つの光学像41、4
2)を受けるので(図4及び図5参照)、物体面4a上
の物体が少ない場合でも、2つの光学像41、42に含
まれる物体の像をCCDエリアセンサ5の2つの走査領
域で確実に受光することができる。また、CCDエリア
センサ5が図4の実線で示すように僅かに傾いている場
合でも、CCDエリアセンサ5の2つの走査領域内で一
致した2つの光学像を受光することができる。したがっ
て、物体面4a上の物体が少ない場合やCCDエリアセ
ンサ5が僅かに傾いている場合でも、合焦状態を正確に
検出することができる。
According to the above-described embodiment, the CCD area sensor 5 can be two-dimensionally scanned, and the scanning area setting unit 10 can be used.
The two light beams (two optical images 41, 4 and 4) having an optical path difference in the two scanning areas of the CCD area sensor 5 set by
2) (see FIGS. 4 and 5), the image of the object included in the two optical images 41 and 42 can be reliably detected by the two scanning areas of the CCD area sensor 5 even when there are few objects on the object surface 4a. Can receive light. Further, even when the CCD area sensor 5 is slightly tilted as shown by the solid line in FIG. 4, two coincident optical images can be received in the two scanning areas of the CCD area sensor 5. Therefore, even if there are few objects on the object surface 4a or the CCD area sensor 5 is slightly tilted, the focus state can be accurately detected.

【0031】また、上記一実施例によれば、積算回路2
0が、差動増幅器19からの合焦ずれ信号61をCCD
エリアセンサ5の2つの走査領域内の全ての走査ライン
について積算して図6に示す合焦ずれ信号62を出力す
るように構成してあるので、図6から明らかなように合
焦ずれの検出範囲を広くすることができる。
Further, according to the above embodiment, the integrating circuit 2
0 indicates the focus shift signal 61 from the differential amplifier 19 to the CCD
Since all the scanning lines in the two scanning areas of the area sensor 5 are integrated and the focusing deviation signal 62 shown in FIG. 6 is output, the focusing deviation is detected as apparent from FIG. The range can be widened.

【0032】なお、上記一実施例において、走査領域設
定部10による走査領域の設定によって、CCDエリア
センサ5の所定間隔(例えば、図4に示す間隔m)だけ
離れた2つの走査領域を二次元的に走査すれば、CCD
エリアセンサ5の受光範囲全体を二次元的に走査する場
合よりも、走査時間及び信号処理時間が短縮され、高速
に合焦状態を検出することができる。
In the above embodiment, the two scanning areas separated by a predetermined interval (for example, the interval m shown in FIG. 4) of the CCD area sensor 5 are two-dimensionally set by the scanning area setting unit 10. CCD if scanned
The scanning time and the signal processing time are shortened as compared with the case where the entire light receiving range of the area sensor 5 is two-dimensionally scanned, and the focused state can be detected at high speed.

【0033】さらに、上記一実施例において、予め基準
となる物体を図4に示す前記2つの光学像41、42と
同様にCCDエリアセンサ5の受光面上に結像させ、2
つの光学像41、42の間隔mを不図示のメモリー部に
記憶させておく。そして、実際に合焦検出を行う際に、
記憶した間隔mだけ離れた対応する2つの走査ライン5
c、5dで前記2つの光学像41、42の高周波成分を
検出するように、走査領域設定部10を構成すれば、走
査時間及び信号処理時間がさらに短縮され、より高速に
合焦状態を検出することができる。
Further, in the above embodiment, a reference object is previously formed on the light receiving surface of the CCD area sensor 5 in the same manner as the two optical images 41 and 42 shown in FIG.
The distance m between the two optical images 41, 42 is stored in a memory unit (not shown). And when actually performing focus detection,
Two corresponding scan lines 5 separated by the stored distance m
If the scanning area setting unit 10 is configured to detect the high frequency components of the two optical images 41 and 42 at c and 5d, the scanning time and the signal processing time can be further shortened, and the focused state can be detected at a higher speed. can do.

【0034】なお、上記一実施例において、CCDエリ
アセンサ5に代えて二次元的に走査可能に構成された他
の光電変換素子を用いることもできる。
It should be noted that in the above-described embodiment, it is possible to use another photoelectric conversion element configured to be two-dimensionally scannable instead of the CCD area sensor 5.

【0035】[0035]

【発明の効果】以上説明したように、請求項1記載の発
明に係る自動焦点検出装置によれば、光電変換素子は二
次元的に走査可能であり、走査領域設定手段により設定
された光電変換素子の2つの走査領域で光路差を有する
2つの光束を受けるので、物体面上の物体が少ない場合
でも、2つの光束に含まれる物体の像を光電変換素子の
2つの走査領域で確実に受光することができると共に、
光電変換素子が僅かに傾いている場合でも、光電変換素
子の2つの走査領域内で一致した2つの光学像を受光す
ることができる。したがって、物体面上の物体が少ない
場合や光電変換素子が僅かに傾いている場合でも、合焦
状態を正確に検出することができる。
As described above, according to the automatic focus detection device of the first aspect of the invention, the photoelectric conversion element can be two-dimensionally scanned, and the photoelectric conversion set by the scanning area setting means is performed. Since two light fluxes having an optical path difference are received in the two scanning areas of the element, the image of the object included in the two light fluxes can be reliably received by the two scanning areas of the photoelectric conversion element even when there are few objects on the object plane. You can
Even when the photoelectric conversion element is slightly inclined, it is possible to receive two coincident optical images in the two scanning regions of the photoelectric conversion element. Therefore, even if there are few objects on the object surface or the photoelectric conversion element is slightly tilted, the focus state can be accurately detected.

【0036】請求項2記載の発明に係る自動焦点検出装
置によれば、走査領域設定手段により、光電変換素子
の、所定間隔離れた2つの走査領域を二次元的に走査さ
せるので、光電変換素子の全面を二次元的に走査する場
合よりも走査時間及び信号処理時間が短縮され、高速に
合焦状態を検出することができる。
According to the automatic focus detection device of the second aspect of the invention, the scanning area setting means causes the two scanning areas of the photoelectric conversion element, which are separated by a predetermined distance, to be two-dimensionally scanned. The scanning time and the signal processing time are shortened as compared with the case where the entire surface of 2 is scanned two-dimensionally, and the focused state can be detected at high speed.

【0037】請求項3記載の発明に係る自動焦点検出装
置によれば、積算手段が、設定された2つの走査領域内
の対応する1つの走査ラインで得られる2つの光情報を
比較して得られる合焦ずれ信号を、各走査領域内の全て
の走査ラインについて積算するので、広い範囲に亘って
レベルの高い合焦ずれ信号が得られる。したがって、合
焦ずれの検出範囲が広くなる。
According to the automatic focus detection device of the third aspect of the present invention, the integrating means obtains by comparing the two optical information obtained by the corresponding one scanning line in the two set scanning areas. Since the focus shift signals generated are integrated for all the scanning lines in each scan area, a high level focus shift signal can be obtained over a wide range. Therefore, the focus shift detection range is widened.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はこの発明の一実施例に係る自動焦点検出
装置の主要部をなす制御回路のブロック図である。
FIG. 1 is a block diagram of a control circuit which is a main part of an automatic focus detection device according to an embodiment of the present invention.

【図2】図2はこの発明の一実施例に係る自動焦点検出
装置の光学系を示す概略構成図である。
FIG. 2 is a schematic configuration diagram showing an optical system of an automatic focus detection device according to an embodiment of the present invention.

【図3】図3は合焦制御を説明するための信号波形図で
ある。
FIG. 3 is a signal waveform diagram for explaining focusing control.

【図4】図4はCCDエリアセンサが傾いた状態を示す
説明図である。
FIG. 4 is an explanatory diagram showing a state where the CCD area sensor is tilted.

【図5】図5はCCDエリアセンサを示す動作説明図で
ある。
FIG. 5 is an operation explanatory view showing a CCD area sensor.

【図6】図6は一実施例に係る自動焦点検出装置によっ
て得られる合焦ずれ信号を示す図である。
FIG. 6 is a diagram showing an out-of-focus signal obtained by the automatic focus detection device according to one embodiment.

【図7】図7は従来の自動焦点検出装置におけるCCD
ラインセンサを示す平面図である。
FIG. 7 is a CCD in a conventional automatic focus detection device.
It is a top view which shows a line sensor.

【符号の説明】[Explanation of symbols]

1 光源 4a 物体面 5 CCDエリアセンサ(光電変換素子) 10 走査領域設定部(走査領域設定手段) 20 積算回路(積算手段) x 第1結像位置 y 第2結像位置 DESCRIPTION OF SYMBOLS 1 light source 4a object surface 5 CCD area sensor (photoelectric conversion element) 10 scanning area setting unit (scanning area setting means) 20 integrating circuit (integrating means) x first image forming position y second image forming position

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源と、この光源からの光を物体面に照
射する照射光学系と、前記物体面からの反射光を光路差
を有する2つの光束に分割し、前記2つの光束の一方を
第1結像位置に結像させると共に、前記2つの光束の他
方を前記第1結像位置に対し光軸方向にずれた第2結像
位置に結像させる結像光学系と、前記第1結像位置と前
記第2結像位置との間に配置され、前記2つの光束を受
光する光電変換素子とを備え、前記光電変換素子により
得られる前記2つの光束の光情報を比較することにより
合焦状態を検出する自動焦点検出装置において、 前記光電変換素子は二次元的に走査可能に構成され、か
つ前記光電変換素子によって2次元的に走査する2つの
走査領域を設定する走査領域設定手段と、 前記走査領域設定手段により設定された前記光電変換素
子の2つの走査領域で受光された前記2つの光束の光情
報を比較して合焦ずれ信号を求め、この合焦ずれ信号に
基づいて合焦制御を行う制御回路とを備えていることを
特徴とする自動焦点検出装置。
1. A light source, an irradiation optical system for irradiating an object surface with light from the light source, and a light beam reflected from the object surface is divided into two light beams having an optical path difference, and one of the two light beams is An image forming optical system that forms an image at a first image forming position and forms an image of the other of the two light fluxes at a second image forming position that is displaced in the optical axis direction with respect to the first image forming position; A photoelectric conversion element that is arranged between the image forming position and the second image forming position and receives the two light beams, and compares the optical information of the two light beams obtained by the photoelectric conversion element. In an automatic focus detection device for detecting a focus state, the photoelectric conversion element is configured to be two-dimensionally scannable, and scanning area setting means for setting two scanning areas to be two-dimensionally scanned by the photoelectric conversion element. And is set by the scanning area setting means. A control circuit for comparing the optical information of the two light beams received in the two scanning regions of the photoelectric conversion element to obtain a focus shift signal, and performing focus control based on the focus shift signal. An automatic focus detection device characterized in that
【請求項2】 前記走査領域設定手段は、前記光電変換
素子の、所定間隔離れた2つの走査領域を二次元的に走
査させるように構成されていることを特徴とする請求項
1記載の自動焦点検出装置。
2. The automatic scanning apparatus according to claim 1, wherein the scanning area setting unit is configured to scan two scanning areas of the photoelectric conversion element, which are separated by a predetermined distance, two-dimensionally. Focus detection device.
【請求項3】 前記制御回路は、前記2つの走査領域内
の対応する1つの走査ラインで得られる2つ光情報を比
較して得られる合焦ずれ信号を、前記走査領域内の全て
の走査ラインについて積算する積算手段を含んでいるこ
とを特徴とする請求項1記載の自動焦点検出装置。
3. The control circuit outputs an out-of-focus signal obtained by comparing two pieces of optical information obtained by corresponding one scanning line in each of the two scanning areas to all scanning in the scanning areas. The automatic focus detection device according to claim 1, further comprising integration means for integrating lines.
JP7148227A 1995-05-23 1995-05-23 Automatic focus detector Pending JPH08320430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7148227A JPH08320430A (en) 1995-05-23 1995-05-23 Automatic focus detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7148227A JPH08320430A (en) 1995-05-23 1995-05-23 Automatic focus detector

Publications (1)

Publication Number Publication Date
JPH08320430A true JPH08320430A (en) 1996-12-03

Family

ID=15448129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7148227A Pending JPH08320430A (en) 1995-05-23 1995-05-23 Automatic focus detector

Country Status (1)

Country Link
JP (1) JPH08320430A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345706B2 (en) 2002-08-23 2008-03-18 Fuji Photo Optical Co., Ltd. Auto focus system
JP2013127578A (en) * 2011-12-19 2013-06-27 Hamamatsu Photonics Kk Image acquisition device and focus method thereof
JP2013127579A (en) * 2011-12-19 2013-06-27 Hamamatsu Photonics Kk Image acquisition device and focus method thereof
JP2013127580A (en) * 2011-12-19 2013-06-27 Hamamatsu Photonics Kk Image acquisition device and focus method thereof
JP2013231990A (en) * 2013-06-26 2013-11-14 Hamamatsu Photonics Kk Image acquisition device and focus method of image acquisition device
WO2014112084A1 (en) * 2013-01-17 2014-07-24 浜松ホトニクス株式会社 Image acquisition device and focus method for image acquisition device
WO2014112086A1 (en) * 2013-01-17 2014-07-24 浜松ホトニクス株式会社 Image acquisition device and focus method for image acquisition device
WO2014112083A1 (en) * 2013-01-17 2014-07-24 浜松ホトニクス株式会社 Image acquisition device and focus method for image acquisition device
WO2014112085A1 (en) * 2013-01-17 2014-07-24 浜松ホトニクス株式会社 Image acquisition device and focus method for image acquisition device
WO2014174919A1 (en) 2013-04-26 2014-10-30 浜松ホトニクス株式会社 Image acquisition device and focusing method for image acquisition device
WO2014199696A1 (en) 2013-06-12 2014-12-18 浜松ホトニクス株式会社 Sample retaining member insertion-removal mechanism and image acquisition device
WO2014199685A1 (en) 2013-06-11 2014-12-18 浜松ホトニクス株式会社 Image acquisition device and image acquisition device focusing method
US10330910B2 (en) 2013-04-26 2019-06-25 Hamamatsu Photonics K.K. Image acquisition device and method and system for acquiring focusing information for specimen
US10348954B2 (en) 2013-04-26 2019-07-09 Hamamatsu Photonics K.K. Image acquisition device and method and system for creating focus map for specimen
EP3353601A4 (en) * 2015-09-24 2019-10-02 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
US10852521B2 (en) 2012-05-02 2020-12-01 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345706B2 (en) 2002-08-23 2008-03-18 Fuji Photo Optical Co., Ltd. Auto focus system
US10298833B2 (en) 2011-12-19 2019-05-21 Hamamatsu Photonics K.K. Image capturing apparatus and focusing method thereof
JP2013127578A (en) * 2011-12-19 2013-06-27 Hamamatsu Photonics Kk Image acquisition device and focus method thereof
JP2013127579A (en) * 2011-12-19 2013-06-27 Hamamatsu Photonics Kk Image acquisition device and focus method thereof
JP2013127580A (en) * 2011-12-19 2013-06-27 Hamamatsu Photonics Kk Image acquisition device and focus method thereof
US9860437B2 (en) 2011-12-19 2018-01-02 Hamamatsu Photonics K.K. Image capturing apparatus and focusing method thereof
US20170285306A9 (en) * 2011-12-19 2017-10-05 Hamamatsu Photonics K.K. Image capturing apparatus and focusing method thereof
US9971140B2 (en) 2011-12-19 2018-05-15 Hamamatsu Photonics K.K. Image capturing apparatus and focusing method thereof
US9921392B2 (en) 2011-12-19 2018-03-20 Hamamatsu Photonics K.K. Image capturing apparatus and focusing method thereof
US10571664B2 (en) 2011-12-19 2020-02-25 Hamamatsu Photonics K.K. Image capturing apparatus and focusing method thereof
US11243387B2 (en) 2012-05-02 2022-02-08 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
US10852521B2 (en) 2012-05-02 2020-12-01 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
WO2014112085A1 (en) * 2013-01-17 2014-07-24 浜松ホトニクス株式会社 Image acquisition device and focus method for image acquisition device
CN104919351A (en) * 2013-01-17 2015-09-16 浜松光子学株式会社 Image acquisition device and focus method for image acquisition device
WO2014112083A1 (en) * 2013-01-17 2014-07-24 浜松ホトニクス株式会社 Image acquisition device and focus method for image acquisition device
WO2014112086A1 (en) * 2013-01-17 2014-07-24 浜松ホトニクス株式会社 Image acquisition device and focus method for image acquisition device
WO2014112084A1 (en) * 2013-01-17 2014-07-24 浜松ホトニクス株式会社 Image acquisition device and focus method for image acquisition device
US10330910B2 (en) 2013-04-26 2019-06-25 Hamamatsu Photonics K.K. Image acquisition device and method and system for acquiring focusing information for specimen
US9661212B2 (en) 2013-04-26 2017-05-23 Hamamatsu Photonics K.K. Image acquisition device and focusing method for image acquisition device
US10348954B2 (en) 2013-04-26 2019-07-09 Hamamatsu Photonics K.K. Image acquisition device and method and system for creating focus map for specimen
US10598916B2 (en) 2013-04-26 2020-03-24 Hamamatsu Photonics K.K. Image acquisition device and method and system for acquiring focusing information for specimen
WO2014174919A1 (en) 2013-04-26 2014-10-30 浜松ホトニクス株式会社 Image acquisition device and focusing method for image acquisition device
US9667858B2 (en) 2013-06-11 2017-05-30 Hamamatsu Photonics K.K. Image acquisition device and image acquisition device focusing method
WO2014199685A1 (en) 2013-06-11 2014-12-18 浜松ホトニクス株式会社 Image acquisition device and image acquisition device focusing method
US10088659B2 (en) 2013-06-12 2018-10-02 Hamamatsu Photonics K.K. Sample retaining member insertion-removal mechanism and image acquisition device
WO2014199696A1 (en) 2013-06-12 2014-12-18 浜松ホトニクス株式会社 Sample retaining member insertion-removal mechanism and image acquisition device
JP2013231990A (en) * 2013-06-26 2013-11-14 Hamamatsu Photonics Kk Image acquisition device and focus method of image acquisition device
EP3353601A4 (en) * 2015-09-24 2019-10-02 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
US10634894B2 (en) 2015-09-24 2020-04-28 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
US11422350B2 (en) 2015-09-24 2022-08-23 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging

Similar Documents

Publication Publication Date Title
JPH08320430A (en) Automatic focus detector
KR910000617B1 (en) Image pick-up apparatus
JP3978528B2 (en) Pattern defect inspection apparatus and laser microscope
JP2004509360A (en) Arrangement configuration for confocal autofocusing
US20070182844A1 (en) Optical system for producing differently focused images
JPS59109805A (en) Position detector
JP2003185914A (en) Focus detector, optical device equipped with the same and focus detecting method
JP2624481B2 (en) Inspection system for semiconductor device by photo-induced current
JPH08248302A (en) Automatic focus detector
JPH09127403A (en) Automatic focus detector
JP3709238B2 (en) Automatic focus detection device and microscope using the same
JP3376680B2 (en) Microscope equipment
JP4406873B2 (en) Scan measurement inspection equipment
JP2007148084A (en) Focus detector
JP2556015B2 (en) Position shift detector
US6750436B2 (en) Focus error detection apparatus and method having dual focus error detection path
JPH07113613A (en) Image sensor
JPH0743458B2 (en) Automatic focus control device
JP2001280910A (en) Method and instrument for detecting focal point, and instrument for inspecting pattern
JP3256465B2 (en) Leukocyte identification device and leukocyte identification method
JP3542171B2 (en) Microscope equipment
JPH05268606A (en) Image pickup device
JPH03261808A (en) Minute shape measuring apparatus
JPH01263610A (en) Focusing device
JP3091825B2 (en) Wafer foreign matter detection method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412