Nothing Special   »   [go: up one dir, main page]

JPH08310808A - Production of granular polysilicon - Google Patents

Production of granular polysilicon

Info

Publication number
JPH08310808A
JPH08310808A JP11734895A JP11734895A JPH08310808A JP H08310808 A JPH08310808 A JP H08310808A JP 11734895 A JP11734895 A JP 11734895A JP 11734895 A JP11734895 A JP 11734895A JP H08310808 A JPH08310808 A JP H08310808A
Authority
JP
Japan
Prior art keywords
fine powder
gas
silicon
collector
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11734895A
Other languages
Japanese (ja)
Inventor
Junya Sakai
純也 阪井
Shoji Iiyama
昭二 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP11734895A priority Critical patent/JPH08310808A/en
Publication of JPH08310808A publication Critical patent/JPH08310808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE: To efficiently treat the by-produced fine powder by passing the waste gas of a reactor for producing granular polysilicon through a fine powder collector provided with an agitated tank at its bottom. CONSTITUTION: A reactor 1 packed with the silicon seed grains having 250-1500μm grain size distribution is heated by a heater 14, silanes of desired concn. are introduced from a reacting gas inlet pipe 17 to fluidize the silicon, and the silicon grains is grown by thermal decomposition or reduction. The reaction gas contg. fine grains is discharged from a gas discharge pipe 16 and introduced into a fine powder collector 2, the fine powder is separated by a filter 7 and accumulated on a silicon grain-packed bed 3 at the bottom of the collector 2, and the gas is passed through a gas discharge pipe 8 and sent to a booster compressor 21. After reaction, valves 10 and 13 are closed, valves 11 and 12 are opened, a fine powder carrier gas is supplied from a feed port 4 to fluidize the silicon-packed bed, the fine powder layer is agitated, and the fine powder is entrained by the carrier gas and discharged into a tower 22 for making fine powder harmless through a gas discharge pipe 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シラン類の分解または
還元をおこなって、粒状ポリシリコンを製造する方法に
おいて、発生する排気ガスおよび、副生微粉を効率的に
処理する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently treating exhaust gas and fine powder produced as a by-product in a method for producing granular polysilicon by decomposing or reducing silanes. .

【0002】[0002]

【従来の技術】従来、粒状ポリシリコンは、流動層反応
器を用いてシラン類の熱分解または還元反応により生成
するポリシリコンを、反応器内の流動したシリコン顆粒
上に析出させて製造される。この方法においてシラン類
の熱分解または還元反応により生成したポリシリコンは
シリコン顆粒表面に析出するだけでなく、凝集して核化
しシリコン微粉となる。反応ガスまたは流動駆動ガス
は、この生成したシリコン微粉の大部分を伴って、流動
層反応器外に排気ガスとして排出される。排気ガスは微
粉捕集器に通過させて、ガス中の微粉が除去された後、
回収され、再使用される。また、捕集された微粉は、微
粉捕集器より除害塔へ搬送して、除害処理される。
2. Description of the Related Art Conventionally, granular polysilicon is produced by depositing polysilicon produced by thermal decomposition or reduction reaction of silanes in a fluidized bed reactor on the fluidized silicon granules in the reactor. . In this method, the polysilicon produced by the thermal decomposition or reduction reaction of silanes not only deposits on the surface of silicon granules but also aggregates and nucleates to become silicon fine powder. The reaction gas or the fluid driving gas is discharged as an exhaust gas to the outside of the fluidized bed reactor together with most of the generated silicon fine powder. Exhaust gas is passed through a fines collector to remove fines in the gas,
Recovered and reused. Further, the collected fine powder is conveyed from the fine powder collector to the abatement tower and subjected to a harmful treatment.

【0003】ところが、従来の該微粉捕集器を利用する
と、捕集器内底部に収集された微粉は捕集時にケ−キ
状、ブロック状に固まって捕集器から除害塔に搬出する
のが非常に困難であるという問題があった。微粉捕集器
の捕集物は、微粉捕集器上部より微粉搬出ガスを供給し
て、微粉捕集器底部に設けられた微粉排出口(口径;D
t)から圧送により微粉除害塔に搬出される。このとき
粒状ポリシリコンの製造で副生する微粉は1〜10μm
と極小のため、排出口断面積当たりの微粉の最大排出速
度FがF=ρs×(1−εs)×(uo−ut)[ρ
s;シリコン密度、εs;空隙率、uo;ガス線速、u
t;微粉の終末速度]を越えてしまい閉塞する。また、
微粉捕集器底部にスクリ−ンを設け、スクリ−ンの下方
から上方へ向けて微粉搬出用ガスを供給して、該ガスに
微粉を同伴させて除害塔に搬出する方法もある。この場
合、器内底部に堆積した微粉がケ−キ状、ブロック状と
なっているために微粉搬出用ガスは微粉層を片流れ(チ
ャンネリング)してしまい、同伴される微粉量が極端に
少なく、搬出時間が長時間に及んだり、多量の微粉搬出
用ガスを要するので実用性に問題があった。
However, when the conventional fine powder collector is used, the fine powder collected at the inner bottom of the collector solidifies into a cake or block during collection and is carried out from the collector to the abatement tower. There was a problem that it was very difficult. For the collected matter of the fine powder collector, the fine powder discharge gas is supplied from the upper portion of the fine powder collector, and the fine powder discharge port (diameter: D is provided at the bottom of the fine powder collector.
From t), it is conveyed to the fine powder abatement tower by pressure. At this time, the fine powder produced as a by-product in the production of granular polysilicon is 1 to 10 μm.
Therefore, the maximum discharge rate F of fine powder per discharge port cross-sectional area is F = ρs × (1−εs) × (uo-ut) [ρ
s: Silicon density, εs: Porosity, uo: Gas linear velocity, u
t; end velocity of fine powder], and blockage. Also,
There is also a method in which a screen is provided at the bottom of the fine powder collector, a fine powder discharge gas is supplied from below the screen upward, and the fine powder is carried along with the gas to the abatement tower. In this case, since the fine powder accumulated on the bottom of the vessel is in the form of a cake or block, the fine powder carry-out gas flows through the fine powder layer in one direction (channeling), and the amount of fine powder entrained is extremely small. However, the carrying-out time is long and a large amount of fine powder carrying-out gas is required, so that there is a problem in practicality.

【0004】[0004]

【発明が解決しようとする課題】上記従来方法の欠点を
補う新しい技術の開発が望まれてきた。即ち微粉捕集器
内に収集された微粉を捕集器外へ容易に搬出する方法の
開発が求められていた。
It has been desired to develop a new technique for compensating for the drawbacks of the above conventional methods. That is, there has been a demand for development of a method for easily carrying out the fine powder collected in the fine powder collector to the outside of the collector.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記技術課
題を解決すべく鋭意研究を行ってきた結果、捕集器内に
ケ−キ状、ブロック状に固まって収集され微粉は緩やか
な撹拌によって元の微粉に分散され、そして、撹拌雰囲
気下に微粉搬出ガスを捕集器内に投入することにより、
該ガスに同伴されて系外に容易かつ迅速に排出できるよ
うになることを見出だし本発明を完成するに至った。
As a result of intensive studies to solve the above-mentioned technical problems, the present inventor has collected in a collector a cake-like or block-like collected fine powder. Dispersed into the original fine powder by stirring, and by introducing the fine powder discharge gas into the collector under a stirring atmosphere,
They have found that they can be easily and quickly discharged out of the system by being entrained by the gas, and completed the present invention.

【0006】即ち、本発明は、シラン類の熱分解または
還元反応によって、粒状ポリシリコンを製造する方法に
おいて、反応器より搬出されるガスを底部に撹拌槽を設
けた微粉捕集器に通過させることを特徴とする粒状ポリ
シリコンの製造方法である。
That is, according to the present invention, in the method for producing granular polysilicon by the thermal decomposition or reduction reaction of silanes, the gas discharged from the reactor is passed through a fine powder collector having a stirring tank at the bottom. And a method for manufacturing granular polysilicon.

【0007】本発明において、粒状ポリシリコンを製造
するためのシラン類の熱分解または還元反応は、公知の
方法が特に制限なく適用できる。シラン類としては、通
常、モノシラン、ジシランまたはハロゲン化シランが単
独または混合物で使用される。好適にはモノシランが有
利に使用される。ここで、ハロゲン化シランは、具体的
には、モノクロルシラン、ジクロルシラン、トリクロル
シラン、テトラクロルシラン、ヘキサクロルシラン等が
好適に用いられる。これらのハロゲン化シランは、通
常、水素ガスと混合され還元反応に供される。
In the present invention, a known method can be applied to the thermal decomposition or reduction reaction of silanes for producing granular polysilicon without particular limitation. As silanes, monosilane, disilane or halogenated silanes are usually used alone or in a mixture. Monosilane is preferably used advantageously. Here, as the halogenated silane, specifically, monochlorosilane, dichlorosilane, trichlorosilane, tetrachlorosilane, hexachlorosilane and the like are preferably used. These halogenated silanes are usually mixed with hydrogen gas and subjected to a reduction reaction.

【0008】本発明において用いられる微粉捕集器底部
に設けた撹拌槽は、捕集器内に収集された微粉を撹拌す
る機能を有するものであれば特に限定されない。例え
ば、撹拌槽がシリコン粒子の流動層である微粉捕集器で
も良いし、捕集器底部にスクリュ−による機械的撹拌機
能を有したものでも良いし、底部にスクリ−ンを設けそ
のスクリ−ンを振動さて微粉層が撹拌できる構造でも良
い。
The stirring tank provided at the bottom of the fine powder collector used in the present invention is not particularly limited as long as it has a function of stirring the fine powder collected in the collector. For example, the agitation tank may be a fine powder collector having a fluidized bed of silicon particles, a collector having a mechanical stirring function by a screw at the bottom, or a screen provided at the bottom with a screen. The structure may be such that the fine powder layer can be stirred by vibrating the liquid.

【0009】次に、この発明の詳細を図面に基づいて説
明する。図1は本発明の一実施態様を示す模式図であ
る。微粉捕集器2は底部に流動駆動ガス供給管4及びス
クリ−ン5が設けてある。また、スクリ−ン5の上に粒
状シリコン3が所定量充填してある。シリコン粒子径は
150〜300μm程度が好ましく、これより小さいと
十分な撹拌効果が得られず、大きいと流動化させるガス
量が多くなり好ましくない。上部に反応器よりのガスの
導入口6、フィルタ−7のガス抜き管8を設けて回収ガ
スの昇圧コンプレッサ−21に接続されている。フィル
タ−7を経ないガス抜き管9も設けてあり、微粉除害塔
22に接続されている。ガス抜き管8、9にはそれぞれ
バルブ10、11が設けてある。流動駆動ガス供給管4
にはバルブ12が設けてある。反応器1内には250〜
1500μmの粒度分布を持つ種粒子を静止層高が10
00mmとなるように充填し、容器内をヒ−タ14で加
熱しながら反応ガス導入管17よりモノシラン濃度が所
望の濃度、好適には10mol%となるように反応容器
1内にガスを吹き込む。反応容器1内に吹き込まれたガ
スは反応容器1内を上昇し、この過程で物理的には容器
内のシリコンを流動化させて流動層を形成し、化学的に
はシリコン粒子の表面にシリコンを析出させて、シリコ
ン粒子を成長させる。それと共に微粉を副生させる。所
定の析出反応を終えたシリコンは、顆粒状シリコンの抜
き出し菅19より反応容器1外に逐次抜き出され、代わ
りに供給管20から種粒子が反応容器内へ挿入される。
Next, details of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing an embodiment of the present invention. The fine powder collector 2 has a flow driving gas supply pipe 4 and a screen 5 at the bottom. Further, a predetermined amount of granular silicon 3 is filled on the screen 5. The silicon particle size is preferably about 150 to 300 μm, and if it is smaller than this, a sufficient stirring effect cannot be obtained, and if it is larger, the amount of gas to be fluidized is increased, which is not preferable. An inlet 6 for gas from the reactor and a gas vent pipe 8 for the filter 7 are provided in the upper part and are connected to the booster compressor -21 for the recovered gas. A gas vent pipe 9 not passing through the filter 7 is also provided and is connected to the fine powder abatement tower 22. The degassing pipes 8 and 9 are provided with valves 10 and 11, respectively. Flow drive gas supply pipe 4
A valve 12 is provided in the. 250 ~ in the reactor 1
Seed particles with a particle size distribution of 1500 μm have a stationary bed height of 10
Gas is blown into the reaction container 1 through the reaction gas introduction pipe 17 so that the monosilane concentration becomes a desired concentration, preferably 10 mol%, while the container is filled with 00 mm and heated by the heater 14. The gas blown into the reaction vessel 1 rises in the reaction vessel 1, and in this process, the silicon in the vessel is physically fluidized to form a fluidized bed, and chemically, silicon is formed on the surface of the silicon particles. Are deposited to grow silicon particles. Along with that, fine powder is produced as a by-product. The silicon that has undergone a predetermined deposition reaction is sequentially withdrawn from the reaction vessel 1 through a granular silicon withdrawal tube 19, and seed particles are inserted into the reaction vessel from the supply tube 20 instead.

【0010】シリコン析出反応に使用された後の微粉を
含んだガスは、ガス抜き菅16より反応容器1外に排出
され、微粉捕集器2に導入される。微粉捕集器2内のフ
ィルタ−7によりガス中の微粉が分離され捕集器2底部
のシリコン充填層の上に堆積される。ガス抜き菅8より
排出したガスは昇圧コンプレッサ−21により所定圧ま
で昇圧して、反応器1に補給ガス供給菅18より導入さ
れるガスと共にモノシラン濃度が前記所望の値となるよ
うに供給される。上記所定の反応が終了後、反応器1へ
のガス供給を停止し、バルブ10、13を閉めて、バル
ブ11、12を開ける。微粉捕集器2の底部よりガス
を、好適にはガス線速uがu=a×umf[a;2〜
3,umf;最小流動化速度]となるように導入する。
このガス線速uが上記範囲にある場合において、捕集器
底部のシリコン充填層が特に良好に攪拌され、また、効
率的な量でガスができ好ましい。微粉捕集器2底部の充
填シリコンが流動することにより、その充填層上部に前
記反応中に堆積した微粉は撹拌されて、分散される。そ
の結果、ガス抜き菅9より排出されるガスに微粉が同伴
して、最大排出速度F=ρs×(1−εs)×(uo−
ut)[ρs;シリコン密度、εs;空隙率、uo;ガ
ス線速、ut;微粉の終末速度]で微粉除害塔22へ搬
送される。
The gas containing the fine powder that has been used for the silicon deposition reaction is discharged from the reaction vessel 1 through the degassing tube 16 and introduced into the fine powder collector 2. The fine powder in the gas is separated by the filter 7 in the fine powder collector 2 and deposited on the silicon-filled layer at the bottom of the collector 2. The gas discharged from the degassing tube 8 is pressurized to a predetermined pressure by the pressure boosting compressor 21 and is supplied to the reactor 1 together with the gas introduced from the supplementary gas supply tube 18 so that the monosilane concentration becomes the desired value. . After the completion of the predetermined reaction, the gas supply to the reactor 1 is stopped, the valves 10 and 13 are closed, and the valves 11 and 12 are opened. A gas is supplied from the bottom of the fine powder collector 2, preferably a gas linear velocity u is u = a × umf [a;
3, umf; minimum fluidization rate].
When the gas linear velocity u is in the above range, the silicon-filled layer at the bottom of the collector is stirred particularly well, and an efficient amount of gas can be obtained, which is preferable. As the silicon filling at the bottom of the fine powder collector 2 flows, the fine powder accumulated during the reaction above the packed bed is agitated and dispersed. As a result, the fine gas is entrained in the gas discharged from the degassing tube 9, and the maximum discharge speed F = ρs × (1−εs) × (uo−
ut) [ρs: silicon density, εs: porosity, uo: gas linear velocity, ut: final velocity of fine powder], and conveyed to the fine powder removal tower 22.

【0011】以上に、撹拌槽としてシリコン粒子の流動
層を用いた場合について説明したが、撹拌機能を有する
ものであれば特に限定されず、図2で示すように、微粉
捕集器2底部にスクリュ−による機械的撹拌機能15を
設け、底部に搬出用ガス供給口4、搬出ガス抜き口9及
びバルブ11、12を設けたものでも良い。また、図1
におけるスクリ−ン5の上に粒状シリコンを充填せず
に、スクリ−ンを振動機能を有するものとしても同様な
結果が得られる。
Although the case where the fluidized bed of silicon particles is used as the stirring tank has been described above, the stirring tank is not particularly limited as long as it has a stirring function, and as shown in FIG. It is also possible to provide a mechanical stirring function 15 by a screw and to provide a carrying-out gas supply port 4, a carrying-out gas vent 9 and valves 11 and 12 at the bottom. Also, FIG.
Similar results can be obtained even if the screen has a vibrating function without filling the screen 5 with granular silicon.

【0012】[0012]

【発明の効果】以上の説明により理解されるように、本
発明によれば、シラン類の熱分解または還元反応によっ
て粒状シリコンを製造する際に副生する微粉が微粉捕集
器底部にケ−キ状またはブロック状に堆積しても、容易
に該容器外に搬出されるため、短時間及び少量のガスで
行え、しかも搬出口が微粉により閉塞しないので効率的
に反応排気ガス及び微粉の処理が出来るという効果を発
揮することができる。
As can be understood from the above description, according to the present invention, fine powder produced as a by-product during the production of granular silicon by the thermal decomposition or reduction reaction of silanes is deposited on the bottom of the fine powder collector. Even if it accumulates in a box shape or a block shape, it can be easily carried out of the container, so that it can be carried out in a short time and with a small amount of gas, and the carry-out port is not clogged with fine powder, so the reaction exhaust gas and fine powder can be efficiently treated It is possible to exert the effect of being able to.

【0013】[0013]

【実施例】【Example】

実施例1 図1に示す態様により下記条件で粒状シリコンを製造し
た。直径150mm,高さ2500mmの反応器1内に
250〜1500μmの粒度分布を持つ種粒子を静止層
高が1000mmとなるように充填し、容器内をヒ−タ
14で650℃に加熱しながら反応ガス導入管17より
モノシラン濃度が10mol%となるように反応容器1
内にガスを吹き込んだ。反応器よりの排気ガスは反応器
ガス抜き菅16からバルブ13を経て供給口6より微粉
捕集器2(直径150mm,高さ1500mm,底部に
開口100μmの焼結フィルタ−5を設置してその上に
平均粒子径300μmのシリコン粒子を層高300mm
充填したもの)に導入され、フィルタ−7(開口1μ
m)を経て、ガス抜き菅8よりバルブ10を経て昇圧コ
ンプレッサ−21に排出され、所定圧まで昇圧して、反
応器1に補給ガス供給菅18より導入されるガスと共に
モノシラン濃度が10mol%となるように供給され
た。微粉捕集器2には1〜10μmの微粉が平均0.0
13g/lの濃度で供給口6より入った。反応終了後、
バルブ10、13を閉め、バルブ11、12を開けて微
粉搬出ガス(アルゴン)を供給口4よりガス線速uがシ
リコン充填層でu=2×umfとなるようにガスを供給
して、焼結フィルタ−5の上のシリコン粒子を流動さ
せ、その上に堆積した微粉層を撹拌させた。撹拌されて
分散した微粉はガスに同伴して、ガス抜き菅11を経
て、微粉除害塔22に排出した。その時の微粉の排出速
度は最大190kg/hであった。
Example 1 Granular silicon was produced under the following conditions according to the embodiment shown in FIG. A reactor 1 having a diameter of 150 mm and a height of 2500 mm was filled with seed particles having a particle size distribution of 250 to 1500 μm so that the stationary layer height was 1000 mm, and the reaction was performed while heating the inside of the container to 650 ° C. with a heater 14. The reaction vessel 1 is adjusted so that the monosilane concentration is 10 mol% through the gas introduction pipe 17.
Gas was blown inside. Exhaust gas from the reactor is passed through the reactor degassing pipe 16 and the valve 13 and then the fine powder collector 2 (diameter 150 mm, height 1500 mm, 100 μm opening sintered filter 5 at the bottom is installed from the supply port 6). Silicon particles with an average particle diameter of 300 μm are deposited on the top of the layer with a height of 300 mm
Introduced into the filter, the filter-7 (opening 1μ)
m), the gas is discharged from the degassing tube 8 through the valve 10 to the pressurizing compressor-21, the pressure is increased to a predetermined pressure, and the monosilane concentration is 10 mol% together with the gas introduced from the supplementary gas supply tube 18 to the reactor 1. Was supplied. The fine powder collector 2 has an average fine powder of 1 to 10 μm of 0.0
It entered through the supply port 6 at a concentration of 13 g / l. After the reaction,
The valves 10 and 13 are closed, the valves 11 and 12 are opened, and the fine powder discharge gas (argon) is supplied from the supply port 4 so that the gas linear velocity u becomes u = 2 × umf in the silicon-filled layer, and the baking is performed. The silicon particles on the binding filter-5 were caused to flow, and the fine powder layer deposited thereon was stirred. The fine powder that was stirred and dispersed was entrained in the gas, passed through the degassing tube 11, and was discharged to the fine powder removal tower 22. The discharge rate of fine powder at that time was a maximum of 190 kg / h.

【0014】比較例 微粉捕集器2底部に平均粒子径300μmのシリコン粒
子を充填しなかった以外は全て同様な操作を行ったとこ
ろ、微粉の排出速度は最大1.5kg/hしかなかっ
た。
Comparative Example The same operation was performed except that the bottom of the fine powder collector 2 was not filled with silicon particles having an average particle diameter of 300 μm, and the discharge rate of the fine powder was only 1.5 kg / h at the maximum.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するための装置の系統図で
ある。
1 is a systematic diagram of an apparatus for carrying out the method of the present invention.

【図2】本発明の方法を実施するための微粉捕集器の装
置図である。
FIG. 2 is an apparatus diagram of a fine powder collector for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1、粒状シリコン製造装置 2、微粉捕集器 3、粒状シリコン充填層 4、微粉搬出用ガス供給口 5、焼結フィルタ− 6、反応排気ガス導入口 7、フィルタ− 8、反応時のガス抜き口 9、微粉搬出時のガス抜き口 10、バルブ 11、 〃 12、 〃 13、 〃 14、反応器加熱ヒ−タ 15、スクリュ−撹拌機 16、反応ガス排出管 17、反応器ガス供給口 18、補給ガス導入口 19、顆粒状シリコンの抜き出し口 20、種供給管 21、昇圧コンプレッサ− 22、微粉除害塔 1, granular silicon manufacturing device 2, fine powder collector 3, granular silicon packed bed 4, fine powder carrying gas supply port 5, sintering filter-6, reaction exhaust gas introduction port 7, filter-8, degassing during reaction Port 9, gas outlet 10 for discharging fine powder, valve 11, 〃 12, 〃 13, 〃 14, reactor heating heater 15, screw agitator 16, reaction gas discharge pipe 17, reactor gas supply port 18 , Supplementary gas inlet 19, granular silicon outlet 20, seed supply pipe 21, booster compressor 22, fine powder abatement tower

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】シラン類の熱分解または還元反応によっ
て、粒状ポリシリコンを製造する方法において、反応器
より排出するガスを底部に撹拌槽を設けた微粉捕集器に
通過させることを特徴とする粒状ポリシリコンの製造方
法。
1. A method for producing granular polysilicon by thermal decomposition or reduction reaction of silanes, characterized in that the gas discharged from the reactor is passed through a fine powder collector having a stirring tank at the bottom. Manufacturing method of granular polysilicon.
【請求項2】前記、微粉捕集器の攪拌槽が、シリコン粒
子の流動層である請求項1記載の粒状ポリシリコンの製
造方法。
2. The method for producing granular polysilicon according to claim 1, wherein the stirring tank of the fine powder collector is a fluidized bed of silicon particles.
JP11734895A 1995-05-16 1995-05-16 Production of granular polysilicon Pending JPH08310808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11734895A JPH08310808A (en) 1995-05-16 1995-05-16 Production of granular polysilicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11734895A JPH08310808A (en) 1995-05-16 1995-05-16 Production of granular polysilicon

Publications (1)

Publication Number Publication Date
JPH08310808A true JPH08310808A (en) 1996-11-26

Family

ID=14709477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11734895A Pending JPH08310808A (en) 1995-05-16 1995-05-16 Production of granular polysilicon

Country Status (1)

Country Link
JP (1) JPH08310808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509071A (en) * 2004-08-10 2008-03-27 ジョイント ソーラー シリコン ゲーエムベーハー ウント コンパニー カーゲー Production method of reactor for gas decomposition
JP2012017247A (en) * 2010-06-08 2012-01-26 Osaka Titanium Technologies Co Ltd Method for producing silicon-containing pellet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509071A (en) * 2004-08-10 2008-03-27 ジョイント ソーラー シリコン ゲーエムベーハー ウント コンパニー カーゲー Production method of reactor for gas decomposition
JP2012017247A (en) * 2010-06-08 2012-01-26 Osaka Titanium Technologies Co Ltd Method for producing silicon-containing pellet

Similar Documents

Publication Publication Date Title
RU2518613C2 (en) Production of silicon in fluidised bed reactor with use of tetrachlorosilane for decreasing sedimentation at reactor walls
KR101830856B1 (en) Method for producing high-purity granular silicon
JP6038201B2 (en) Fluidized bed reactor system and method for reducing silicon deposition on reactor wall
RU2428377C2 (en) Producing silicon using fluidised-bed reactor built into siemens process
JP5623478B2 (en) High purity granular silicon and method for producing the same
US5037503A (en) Method for growing silicon single crystal
CN101475159B (en) Fluidizing bed apparatus for producing carbon nanotubes and carbon nanotube production facility and method using the same
JP2011526239A (en) Method to improve productivity of polycrystalline silicon reactor by recycling silicon fine particles
US5326547A (en) Process for preparing polysilicon with diminished hydrogen content by using a two-step heating process
US4154870A (en) Silicon production and processing employing a fluidized bed
JPH08310808A (en) Production of granular polysilicon
US4328368A (en) Method for reclaiming polyurethane foam
JPH02153814A (en) Polysilicon decreased in hydrogen content
JPH06127916A (en) Production of spherical high-purity polycrystalline silicon
JPS605013A (en) Preparation of silicon powder and its device
CN109879287B (en) Preparation device and method for granular polycrystalline silicon
CN115417410B (en) Fluidization powder removing device for granular silicon and circulating fluidization powder removing system thereof
CN109395675B (en) Fixed fluidization process
CN109292781B (en) Method and device for producing chlorosilane by using organosilicon silicon slag
AU6282098A (en) Apparatus for contacting solids in the form of flowable lumps with liquids and optionally gases
JP3243377B2 (en) Manufacturing method of granular polysilicon
JPH0840717A (en) Fluidized bed reactor for decomposing monosilane