JPH08292324A - Light transmission body - Google Patents
Light transmission bodyInfo
- Publication number
- JPH08292324A JPH08292324A JP11900995A JP11900995A JPH08292324A JP H08292324 A JPH08292324 A JP H08292324A JP 11900995 A JP11900995 A JP 11900995A JP 11900995 A JP11900995 A JP 11900995A JP H08292324 A JPH08292324 A JP H08292324A
- Authority
- JP
- Japan
- Prior art keywords
- light
- face
- light guide
- incident end
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Light Guides In General And Applications Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はコピー機の感光体ドラム
の除電用光源、ファックスやイメージスキャナの原稿読
み取り光源あるいは液晶ディスプレーや看板・照明器具
等の面発光の導光装置に利用出来る導光体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light guide for a charge eliminating light source for a photoconductor drum of a copying machine, a light source for reading an original document of a fax machine or an image scanner, or a light guide device for surface light emission of a liquid crystal display, a signboard, a lighting fixture or the like. Regarding the body
【0002】[0002]
【従来の技術】従来の面光源装置としては表示板の背面
直下に光源を配置する直下型と側面に光源を配置するエ
ッジライト型が知られている。そして装置の軽量、薄型
化が好まれることから、現在ではエッジライト型が主流
となっている。エッジライト型面光源装置の例を図7に
示す。2. Description of the Related Art As conventional surface light source devices, there are known a direct type in which a light source is arranged directly below the back surface of a display plate and an edge light type in which a light source is arranged on a side surface. The edge light type is now the mainstream because the device is favored to be lightweight and thin. An example of the edge light type surface light source device is shown in FIG.
【0003】ここで用いられる透明素材からなる導光体
には光を効率よく出射するために、その裏面に白色系塗
料等を用いて印刷して光拡散パターンを形成している。
そしてこの光拡散パターンは光出射面の輝度分布を均一
にする目的で光源からの距離に応じて、点状や網目状の
ドットパターン模様を変化させている。(例えば、特開
昭57−12838号公報等) しかしながら、この方法では塗料の組成が変化すると光
反射性能が変化して輝度が均一にならず、顔料による光
の吸収損失があり、さらには印刷に用いるスクリーン網
目に詰りが生ずると点状や網目状等の模様が正確に印刷
されず、均一な輝度分布が再現出来なくなるという欠点
もあり、生産性を低下させ低コスト化を阻害している。In order to efficiently emit light, the light guide body made of a transparent material used here is printed with a white paint or the like on its back surface to form a light diffusion pattern.
The light diffusion pattern changes a dot-shaped or mesh-shaped dot pattern pattern in accordance with the distance from the light source for the purpose of making the brightness distribution on the light emitting surface uniform. (For example, Japanese Patent Application Laid-Open No. 57-12838) However, in this method, when the composition of the coating material changes, the light reflection performance changes and the brightness is not uniform, and there is light absorption loss due to the pigment. If the screen mesh used for screen is clogged, dot-like or mesh-like patterns will not be printed accurately, and uniform brightness distribution cannot be reproduced. This also reduces productivity and hinders cost reduction. .
【0004】[0004]
【発明が解決しようとする課題】従って、本発明が解決
しようとする課題は、従来技術の問題点を解消し、単純
な構造でありながら、光源から入射して来る光を実質的
に垂直方向へ効率よく出射させ、出射面の輝度分布が均
一で、且つ生産性の良い導光体を提供することである。SUMMARY OF THE INVENTION Accordingly, the problem to be solved by the present invention is to solve the problems of the prior art, and to make the light incident from the light source substantially vertical in spite of its simple structure. It is to provide a light guide body that efficiently emits light, has a uniform luminance distribution on the exit surface, and has high productivity.
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明者は検討を重ねた結果、透明な導光体の光
出射面と対向する裏面に、光入射端面に平行な複数の凹
部を設けると共に、該複数の凹部反射面の面積率を光入
射端面から離れるに従って順次増大させ、該複数の凹部
反射面によって光を順次反射させながら、光出射面から
出射させると、光出射面全体に亘って輝度が均一となる
導光体が得られる事を見出し、本発明を完成するに至っ
た。In order to achieve the above object, the inventors of the present invention have conducted extensive studies, and as a result, as a result, a plurality of transparent light guides having a plurality of surfaces parallel to the light incident end surface are formed on the back surface facing the light emitting surface. When the area ratio of the plurality of concave reflecting surfaces is gradually increased with increasing distance from the light incident end face, and the light is emitted from the light emitting surface while sequentially reflecting the light by the plurality of concave reflecting surfaces, the light is emitted. The present invention has been completed by finding that a light guide body having uniform brightness over the entire surface can be obtained.
【0006】限定されるものではないが、内容の理解を
容易にするために、図によって本発明を詳細に説明す
る。Although not limited thereto, the present invention will be described in detail with reference to the drawings in order to facilitate understanding of the contents.
【0007】図1は1つの端面に光源を設置して用いる
一端面入射式導光体の一例を示す側断面図であり、
(a)はA部の拡大図である。同図において1は透明な
導光体、2は光入射端面、3は光入射端面2と対向する
端面、4は光出射面、5は光出射面に対向する裏面、6
は裏面に設けた凹部を示す。FIG. 1 is a side cross-sectional view showing an example of a one-side incident type light guide used by installing a light source on one end face,
(A) is an enlarged view of part A. In the figure, 1 is a transparent light guide, 2 is a light incident end face, 3 is an end face facing the light incident end face 2, 4 is a light emitting face, 5 is a back face facing the light emitting face, 6
Indicates a concave portion provided on the back surface.
【0008】導光体1は光線透過率の高いメタクリル樹
脂、ポリカーボネート、ポリ塩化ビニルなどの透明樹脂
から成り、入射端面2は光を効率的に導光体1内に導入
する必要があるため平滑面にしている。The light guide 1 is made of a transparent resin such as methacrylic resin, polycarbonate or polyvinyl chloride having a high light transmittance, and the incident end face 2 is smooth because it is necessary to efficiently introduce light into the light guide 1. I'm on the surface.
【0009】入射端面2と対向する端面3も平滑面が好
ましい。光出射面4は光の出射が円滑に行なわれる様に
鏡面仕上げにしておくのが好ましい。裏面5は光出射面
4の対向面であり、凹部のない部分は鏡面仕上げにして
おくのが好ましい。The end face 3 facing the incident end face 2 is also preferably a smooth surface. The light emitting surface 4 is preferably mirror-finished so that the light can be emitted smoothly. The back surface 5 is the surface facing the light emitting surface 4, and it is preferable that the portion having no recess is mirror-finished.
【0010】図1に示す様に、本発明の導光体では、導
光体1の裏面5に光入射端面2に平行に複数の凹部を設
け、かつ、個々の凹部反射面の面積率が、光入射端面2
から離れるに従って順次増大する様にしている。As shown in FIG. 1, in the light guide according to the present invention, a plurality of recesses are provided on the back surface 5 of the light guide 1 in parallel with the light incident end face 2, and the area ratio of each recess reflection surface is large. , Light incident end face 2
It is designed to increase gradually as it moves away from.
【0011】凹部6の断面形状は図1の(a)に示す様
に凹部反射面6aと、その対向面6bにより形成されて
いる。凹部反射面6a及び対向面6bとのなす頂角をθ
とするときその法線により分割された角度θ1 ,θ2 の
大きさの範囲は光の全反射の性質から30°≦θ1 ≦4
5°、0≦θ2 ≦45°の場合が好ましい。As shown in FIG. 1A, the cross-sectional shape of the concave portion 6 is formed by a concave reflecting surface 6a and a facing surface 6b thereof. The apex angle formed by the concave reflecting surface 6a and the facing surface 6b is θ
Where the range of the angles θ 1 and θ 2 divided by the normal is 30 ° ≦ θ 1 ≦ 4 due to the property of total internal reflection of light.
The case of 5 ° and 0 ≦ θ 2 ≦ 45 ° is preferable.
【0012】すなわちθは30〜90°、好ましくは6
0〜90°である。また、凹部反射面6a及び対向面6
bは導光体の成形加工や切削・研磨加工等によって得ら
れる実質的鏡面が好ましい。That is, θ is 30 to 90 °, preferably 6
It is 0 to 90 °. In addition, the concave reflecting surface 6a and the facing surface 6
b is preferably a substantially mirror surface obtained by molding, cutting or polishing of the light guide.
【0013】導光体に設ける凹部の数、隣り合う凹部の
間隔、凹部反射面の面積等は導光体の材質、厚みや長さ
等の寸法に応じて適宜調節して決める事が出来るが、い
ずれの場合も、導光体内を全反射により伝搬する光を各
凹部反射面で一定量反射させ、光出射面4から出射させ
て、光入射端面に対向する端面3に漏れて到達する光の
量がほとんどない様に設計するのが好ましい。The number of recesses provided in the light guide, the distance between adjacent recesses, the area of the reflection surface of the recesses, etc. can be appropriately adjusted and determined according to the material of the light guide and the dimensions such as thickness and length. In any case, the light propagating in the light guide body by total reflection is reflected by each concave part reflecting surface by a certain amount, is emitted from the light emitting surface 4, and leaks and reaches the end face 3 facing the light incident end face. It is preferable to design so that the amount of
【0014】本発明者は図1に示した様な導光体に於
て、光出射面4からの出射光となる光の大部分は凹部反
射面6aからの反射光である事、また凹部のパターンに
ついては、凹部の深さや幅などの一次元的な寸法で間接
的に規定した場合には、パターン形成時の加工精度など
による誤差の影響を受けるため、二次元的に凹部反射面
の面積率で下記式(1)の様に定義し、直接的に規定す
る事を考えた。更に、凹部反射面6aの面積率が下記式
(2)を満足する様に複数の凹部を設ける事によって、
光出射面全体に亘って一層均一な輝度分布が得られる事
を見出した。In the light guide shown in FIG. 1, the inventor of the present invention finds that most of the light emitted from the light emitting surface 4 is reflected light from the concave reflecting surface 6a, and the concave portion. When the pattern is defined indirectly by one-dimensional dimensions such as the depth and width of the recess, it is affected by errors due to processing accuracy during pattern formation. The area ratio was defined as the following formula (1), and it was considered to directly define it. Further, by providing a plurality of concave portions so that the area ratio of the concave reflecting surface 6a satisfies the following expression (2),
It was found that a more uniform luminance distribution can be obtained over the entire light emitting surface.
【0015】 凹部反射面面積率=(凹部反射面の面積/1ピッチ当り投影面積)×100 (1) m={K/(L−x+l0 )}×100 (2) 式中、m=凹部反射面の面積率 K=5.66(経験上定めた定数) L=導光体の長さ、 x=導光距離 l0 =光入射端面から最初の凹部までの距離 すなわち、上記の式(2)に見るように、凹部反射面の
面積率を導光距離xの関数とする事によって、導光距離
にかかわらず光出射面4から一定光量の光が出射される
様にすることが出来る。Area ratio of concave reflecting surface = (area of reflecting surface of concave / projected area per pitch) × 100 (1) m = {K / (L−x + l 0 )} × 100 (2) where m = concave Area ratio of reflecting surface K = 5.66 (constant determined by experience) L = length of light guide, x = light guiding distance l 0 = distance from light incident end face to first concave portion That is, the above formula ( As seen in 2), by making the area ratio of the concave reflecting surface a function of the light guide distance x, a certain amount of light can be emitted from the light emitting surface 4 regardless of the light guide distance. .
【0016】本発明の導光体に於て、光入射端面2の厚
さ(T)は使用する光源のサイズにもよるが、通常2〜
6mmが好ましい。また、隣り合う凹部の間隔(ピッ
チ)は凹部6と裏面5の輝度むらが目立たなくするため
最大で600μm以下が好ましい。また、導光体の全長
に亘って一定にする必要はなく、むしろ光入射端面2か
ら離れるとピッチが小さくなる様に部分的に変えて上記
式(2)の面積率を満足する様に凹部を形成する方が輝
度の均一化を図る上で調整が容易である。In the light guide of the present invention, the thickness (T) of the light incident end surface 2 is usually 2 though it depends on the size of the light source used.
6 mm is preferred. The interval (pitch) between adjacent recesses is preferably 600 μm or less at the maximum in order to make the uneven brightness of the recesses 6 and the back surface 5 inconspicuous. Further, it is not necessary to make it constant over the entire length of the light guide body, but rather it is partially changed so that the pitch becomes smaller as it goes away from the light incident end surface 2, and the concave portion is made so as to satisfy the area ratio of the above formula (2). It is easier to form the film in order to make the brightness uniform.
【0017】以上は、1つの端面に光源を配置する方式
の導光体について説明してきたが、図2に示す様に、1
つの光入射端面2とそれに対向する側端面7の両方に光
源を配置する方式の導光体であっても良い。The light guide body in which the light source is arranged on one end face has been described above, but as shown in FIG.
It may be a light guide body in which a light source is arranged on both of the two light incident end faces 2 and the side end faces 7 facing the two light incident end faces 2.
【0018】図2において1は透明な導光体、2及び7
は光入射端面、4は光出射面、5は裏面、6は凹部を示
す。In FIG. 2, 1 is a transparent light guide, 2 and 7
Is a light incident end surface, 4 is a light emitting surface, 5 is a back surface, and 6 is a recess.
【0019】図2に示す様な両端面光源式の導光体で
は、導光体の中央部が入射端面からの距離が最大とな
り、輝度の不足が最も生じやすいので裏面に設けた凹部
反射面は、その面積率が中央部で最大となる様に順次増
大する様に設け、各凹部反射面の面積率は中心線に対し
対称となる様にする。In the light guide of the both-end surface light source type as shown in FIG. 2, the central portion of the light guide has the maximum distance from the incident end face, and the lack of brightness is most likely to occur. Are provided so that the area ratio thereof gradually increases so that the area ratio becomes maximum in the central portion, and the area ratio of each concave reflecting surface is symmetrical with respect to the center line.
【0020】図2に示す両端面光源式の導光体に於ても
凹部反射面の面積率は前記の式(2)に準じて求めるこ
とが出来る。In the light guide of the both-end surface light source type shown in FIG. 2, the area ratio of the concave reflecting surface can be obtained according to the above equation (2).
【0021】また図3に示す様に光出射面に対向する裏
面が傾斜する様に形成しても良い。図3において1は透
明な導光板、2は光入射端面、3は光入射端面2と対向
する端面、4は光出射面、5は裏面、6は凹部を示す。
図3に示す様な裏面が傾斜した導光体では光入射端面2
から導光体に入射した光の中で導光体内を伝搬し光入射
端面2に対向する端面3に到達する光が減り光出射面4
からの出射光量を増加させる効果がある。Further, as shown in FIG. 3, the back surface facing the light emitting surface may be formed to be inclined. In FIG. 3, 1 is a transparent light guide plate, 2 is a light incident end face, 3 is an end face facing the light incident end face 2, 4 is a light emitting face, 5 is a back face, and 6 is a recess.
In the light guide body whose back surface is inclined as shown in FIG.
In the light incident on the light guide from the light, the light propagating in the light guide and reaching the end face 3 facing the light incident end face 2 is reduced, and the light exit face 4 is reduced.
The effect is to increase the amount of light emitted from.
【0022】また図4に示す様に両端面光源式の導光体
についても同様に光出射面に対向する裏面が傾斜する様
に形成しても良い。図4に示す様な導光体についても前
記図3に示す一端面光源式の導光体と同様に光出射面4
からの出射光量を増加させる効果がある。Further, as shown in FIG. 4, a light guide of the both-end surface light source type may also be formed so that the back surface facing the light emission surface is inclined. As for the light guide body as shown in FIG. 4, the light emitting surface 4 is the same as the light guide body of the one end face light source type shown in FIG.
The effect is to increase the amount of light emitted from.
【0023】また図5に示す様に光入射端面を光源に向
かって凸レンズ状に形成しても良い。図5において光入
射端面のレンズ状部分の厚み(R)は経験上 0≦R≦T/2 (T:入射端面の厚み) が好ましく、光入射端面2は光源から到達した光をレン
ズ効果により集光させるため入射効率を向上させる効果
がある。Further, as shown in FIG. 5, the light incident end face may be formed in a convex lens shape toward the light source. In FIG. 5, the thickness (R) of the lens-like portion of the light incident end face is empirically 0 ≦ R ≦ T / 2 (T: thickness of the incident end face). Since the light is condensed, it has an effect of improving the incidence efficiency.
【0024】本発明の導光体の製造方法は特に限度され
ず、例えばアクリル樹脂、ポリカーボネートあるいはポ
リ塩化ビニルなどの透明な合成樹脂の平板を切削加工し
て製造しても良く、該樹脂の射出成形材料によって、パ
ターン付金型を用いて射出成形により転写製造しても良
い。特に射出成形法を採用した場合は高い歩留りで生産
性よく製造することが出来る。The method for producing the light guide of the present invention is not particularly limited, and it may be produced by cutting a flat plate of a transparent synthetic resin such as acrylic resin, polycarbonate or polyvinyl chloride, and injecting the resin. Depending on the molding material, transfer manufacturing may be performed by injection molding using a patterned die. In particular, when the injection molding method is adopted, it is possible to manufacture with high yield and high productivity.
【0025】[0025]
【作用】本発明の導光体では、光源からの光は光入射端
面2から導光体1内に入り、全反射の法則(臨界角:ア
クリル樹脂で42°、ポリカーボネートで39°)に従
い導光体内を伝播していく。そしてこの光が凹部反射面
6aに入射すると反射によってほとんどは光出射面4へ
の直接出射光となる。In the light guide of the present invention, the light from the light source enters the light guide 1 from the light incident end face 2 and is guided according to the law of total reflection (critical angle: 42 ° for acrylic resin, 39 ° for polycarbonate). Propagate in the light body. When this light is incident on the concave reflecting surface 6a, most of the light is directly emitted to the light emitting surface 4 due to reflection.
【0026】また凹部反射面の面積率は導光距離xの関
数として光入射端面2から離れるに従って順次増大する
様に配置しているため、マクロ的には導光距離によらず
光出射面4の全面に亘って均一に出射させる事が出来
る。塗料等の印刷により光拡散パターンを形成する従来
技術に比して塗料等による光吸収を排除出来るため、輝
度は向上し輝度分布も均一になる。Further, since the area ratio of the concave reflecting surface is arranged so as to gradually increase as it goes away from the light incident end face 2 as a function of the light guiding distance x, the light emitting surface 4 is macroscopically independent of the light guiding distance. Can be emitted uniformly over the entire surface. Compared with the conventional technique of forming a light diffusion pattern by printing paint or the like, light absorption by paint or the like can be eliminated, so that the brightness is improved and the brightness distribution becomes uniform.
【0027】[0027]
【実施例】次いで本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるものではない。EXAMPLES Next, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
【0028】実施例1 厚さ5mm、幅204mm、長さ156mmの透明メタ
クリル樹脂板の裏面に略三角形の凹部(頂角θ=85
°、θ1 =θ2 )を凹部反射面の面積率が式(2)を満
足する様に切削加工により形成した導光体を作製した。
該導光体の最初の凹部におけるx=4mmでm=3.5
4%、最終の凹部におけるx=150mmでm=56.
6%であった。該導光体を用いて、光入射端面2の側に
管径3mmの冷陰極型蛍光管を配置し、導光体の光入射
端面及び光出射面を除く残りの面と管状光源の外周を白
色のポリエステル製反射フィルムで覆い、図6に示す一
般的な面光源装置を作製した。上記で作製した面光源装
置に於て、導光体の光出射面4における輝度をトプコン
社製の輝度計BM−8で測定した。Example 1 A substantially triangular recess (vertical angle θ = 85) was formed on the back surface of a transparent methacrylic resin plate having a thickness of 5 mm, a width of 204 mm and a length of 156 mm.
°, was prepared theta 1 = theta 2) light guides formed by cutting as the area ratio of the concave reflecting surface satisfies the equation (2).
M = 3.5 at x = 4 mm in the first recess of the light guide
4%, x = 150 mm in final recess m = 56.
It was 6%. Using this light guide, a cold cathode type fluorescent tube having a tube diameter of 3 mm is arranged on the light incident end face 2 side, and the remaining surface of the light guide except the light incident end face and the light emitting face and the outer circumference of the tubular light source are arranged. By covering with a white polyester reflective film, a general surface light source device shown in FIG. 6 was produced. In the surface light source device produced above, the brightness on the light emitting surface 4 of the light guide was measured with a brightness meter BM-8 manufactured by Topcon.
【0029】その結果、全面に渡って輝度レベルは高
く、また下記の式(3)に従って輝度均斉度を求めたと
ころ85%で、ほぼ均一である事が判った。As a result, it was found that the luminance level was high over the entire surface, and the luminance uniformity was calculated according to the following equation (3) to be 85%, which was almost uniform.
【0030】 輝度均斉度={(最小輝度)/(最大輝度)}×100 (3) 実施例2 図3に示す様な光出射面に対向する裏面が傾斜する様に
形成し、それ以外は実施例1の導光体と同様にして導光
体を作製した。該導光体を用いて実施例1と同様な面光
源装置を作製して、実施例1と同様な方法で輝度測定を
実施したところ、実施例1と比べて、輝度均斉度は84
%でほぼ同等であったが輝度レベルは約2%向上する事
が判った。Luminance uniformity ratio = {(minimum luminance) / (maximum luminance)} × 100 (3) Example 2 Formed so that the back surface facing the light exit surface as shown in FIG. 3 is inclined, and otherwise A light guide was prepared in the same manner as the light guide of Example 1. When a surface light source device similar to that of Example 1 was manufactured using the light guide and luminance was measured by the same method as in Example 1, the luminance uniformity ratio was 84 as compared with Example 1.
%, It was almost the same, but it was found that the brightness level was improved by about 2%.
【0031】実施例3 厚さ6mm、幅10mm、長さ308mmの棒状透明メ
タクリル樹脂の裏面を図4に示す様な裏面が傾斜する形
状に切削し、中央の最小板厚を2mmとした両端面入射
式の導光体を作成した。Example 3 A back surface of a rod-shaped transparent methacrylic resin having a thickness of 6 mm, a width of 10 mm and a length of 308 mm was cut into a shape in which the back surface is inclined as shown in FIG. An incident light guide was created.
【0032】該導光体の凹部は実施例1と同じm=3.
54%〜56.6%面積率とし、導光体長手方向の中央
で面積率が最大となる様に形成した。上記導光体の両方
の光入射端面に径5mmのLED光源をそれぞれ配置し
た両端面入射式の棒状面光源装置を作製して、実施例1
と同様な方法で輝度測定を実施したところ中央部が暗い
事もなく、輝度均斉度85%とほぼ均一であった。The concave portion of the light guide is the same as that of the first embodiment, m = 3.
The area ratio was 54% to 56.6%, and the area ratio was maximized at the center in the longitudinal direction of the light guide. Example 1 A double-sided incident type rod-shaped surface light source device in which LED light sources each having a diameter of 5 mm are arranged on both light incident end surfaces of the light guide is manufactured, and
When the luminance was measured in the same manner as in 1., the central portion was not dark and the luminance uniformity was 85%, which was almost uniform.
【0033】比較例1 導光体として、凹部形成なしの透明メタクリル樹脂板
(実施例1で使用したメタクリル樹脂板と同じもの)を
そのまま使用して面光源装置を作製し実施例1と同様な
方法で輝度を測定したところ、面方向への出射光はほと
んどなく光出射面のほぼ全面で輝度レベルが極めて低か
った。Comparative Example 1 A surface illuminant device was produced by using a transparent methacrylic resin plate without recess formation (the same methacrylic resin plate used in Example 1) as it was as a light guide, and producing a surface light source device in the same manner as in Example 1. When the luminance was measured by the method, there was almost no light emitted in the plane direction, and the luminance level was extremely low over almost the entire light emitting surface.
【0034】比較例2 導光体の裏面に形成する凹部反射面の面積率が導光距離
に関係なくm=10%(一定)となる様に形成し、それ
以外は実施例1と同様にして導光体を作製した。この導
光体を用いて、実施例1と同様な面光源装置を作製して
実施例1と同様な方法で輝度測定を実施したところ、光
入射端面付近の輝度が高く、光入射端面から離れた位置
での輝度が低くなって輝度均斉度が15%と悪い事が判
った。Comparative Example 2 The same procedure as in Example 1 was carried out except that the area ratio of the concave reflecting surface formed on the back surface of the light guide was m = 10% (constant) regardless of the light guide distance. A light guide was produced by Using this light guide, a surface light source device similar to that in Example 1 was produced and luminance was measured in the same manner as in Example 1. As a result, the luminance in the vicinity of the light incident end face was high and It was found that the luminance was low at the positions where the luminance was uniform and the luminance uniformity was 15%.
【0035】[0035]
【発明の効果】本発明の導光体は、光出射面の全面に渡
って輝度むらがなく均一に光を出射する事が出来、しか
も出射光となる導光体内の反射光の角度までも制御する
事が出来る。又塗装等により形成した光拡散パターンを
用いた従来の導光板に比べて光の吸収がないため効率良
く光を出射する事が出来る。更に、導光体の製造には射
出成形法が採用出来るため生産性が向上する。従って、
本発明の導光体は一般的なサイドライト型面光源装置に
とって有用な導光体となる。According to the light guide of the present invention, it is possible to uniformly emit light over the entire surface of the light exit surface without unevenness of brightness, and even the angle of the reflected light in the light guide that becomes the exit light. You can control. Further, since light is not absorbed as compared with a conventional light guide plate using a light diffusion pattern formed by painting or the like, light can be efficiently emitted. Further, since the injection molding method can be adopted for manufacturing the light guide, productivity is improved. Therefore,
The light guide of the present invention is a useful light guide for a general sidelight type surface light source device.
【図1】一端面入射式導光体の一例を示す側断面図であ
り、(a)はA部の拡大図である。FIG. 1 is a side sectional view showing an example of a one-side incidence type light guide, and FIG. 1 (a) is an enlarged view of part A.
【図2】両端面入射式の導光体の一例を示す側断面図で
ある。FIG. 2 is a side cross-sectional view showing an example of a both-end surface incident type light guide.
【図3】一端面入射式で光出射面に対向する裏面が傾斜
する様に形成した導光体の一例を示す側断面図である。FIG. 3 is a side cross-sectional view showing an example of a light guide body of a one-sided incidence type in which a back surface facing a light emission surface is inclined.
【図4】両端面入射式で光出射面に対向する裏面が傾斜
する様に形成した導光体の一例を示す側断面図である。FIG. 4 is a side cross-sectional view showing an example of a light guide body which is formed in such a manner that the back surface facing the light exit surface is inclined in a both-end surface incident type.
【図5】光入射端面を光源に向かって凸レンズ状に形成
した導光体の一例を示す部分断面図である。FIG. 5 is a partial cross-sectional view showing an example of a light guide body in which a light incident end face is formed in a convex lens shape toward a light source.
【図6】本発明の導光体を用いた平面光源装置例の側断
面図である。FIG. 6 is a side sectional view of an example of a flat light source device using the light guide of the present invention.
【図7】従来の面光源装置の構造を示す側断面図で、
(b)は光拡散パターンの例を示す平面図である。FIG. 7 is a side sectional view showing the structure of a conventional surface light source device,
(B) is a plan view showing an example of a light diffusion pattern.
1…導光体 2…光入射端面 3…端面 4…光出射面 5…裏面 6…凹部、6a…凹部反射面、6b…対向面 7…側端面 8…光源 9…反射シート(又はフィルム) 11…拡散シート(又はフィルム) 12…鏡面反射層 13…光拡散パターン 14…発光面 15…光散乱物質 DESCRIPTION OF SYMBOLS 1 ... Light guide 2 ... Light incident end surface 3 ... End surface 4 ... Light emission surface 5 ... Back surface 6 ... Recessed part, 6a ... Recessed reflective surface, 6b ... Opposing surface 7 ... Side end surface 8 ... Light source 9 ... Reflective sheet (or film) 11 ... Diffusion sheet (or film) 12 ... Specular reflection layer 13 ... Light diffusion pattern 14 ... Light emitting surface 15 ... Light scattering material
Claims (3)
に、光入射端面に平行な複数の凹部を設け、該凹部反射
面の1ピッチ当りの投影面積に対する面積率を入射端面
から離れるに従って順次増大させた事を特徴とする導光
体。1. A transparent light guide body is provided with a plurality of concave portions parallel to a light incident end surface on a surface facing a light emitting surface, and an area ratio of the concave reflecting surface to a projected area per pitch is calculated from the incident end surface. A light guide characterized by being increased in sequence as the distance increases.
事を特徴とする請求項1に記載の導光体。2. The light guide according to claim 1, wherein the back surface facing the light emitting surface is inclined.
に形成させた事を特徴とする請求項1又は請求項2に記
載の導光体。3. The light guide according to claim 1, wherein the light incident end face is formed in a convex lens shape toward the light source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11900995A JPH08292324A (en) | 1995-04-21 | 1995-04-21 | Light transmission body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11900995A JPH08292324A (en) | 1995-04-21 | 1995-04-21 | Light transmission body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08292324A true JPH08292324A (en) | 1996-11-05 |
Family
ID=14750738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11900995A Pending JPH08292324A (en) | 1995-04-21 | 1995-04-21 | Light transmission body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08292324A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11167028A (en) * | 1997-12-04 | 1999-06-22 | Shinyei Kaisha | Surface light emitter |
WO2011122220A1 (en) * | 2010-03-30 | 2011-10-06 | シャープ株式会社 | Solar cell module and solar photovoltaic device |
JP2016133646A (en) * | 2015-01-20 | 2016-07-25 | コニカミノルタ株式会社 | Light guide, luminaire and image reader |
-
1995
- 1995-04-21 JP JP11900995A patent/JPH08292324A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11167028A (en) * | 1997-12-04 | 1999-06-22 | Shinyei Kaisha | Surface light emitter |
WO2011122220A1 (en) * | 2010-03-30 | 2011-10-06 | シャープ株式会社 | Solar cell module and solar photovoltaic device |
JP2016133646A (en) * | 2015-01-20 | 2016-07-25 | コニカミノルタ株式会社 | Light guide, luminaire and image reader |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5066741B2 (en) | Light guide plate for surface light source | |
US7400817B2 (en) | Light guide member and backlight unit including light guide member and methods of fabricating light guide members and backlight units | |
KR100483209B1 (en) | Apparatus of surface light source | |
EP1004819A2 (en) | Backlighting device with a transparent sheet having straight ridges | |
JP2003043265A (en) | Light transmission plate, method for manufacturing the same, and liquid crystal display device utilizing the same | |
JPH10206643A (en) | Sheet-like light source device | |
JP2008218418A (en) | Surface light source and light guide used for same | |
JPH04191704A (en) | Surface luminous device and its manufacture | |
JP2000098382A (en) | Transparent light guiding plate | |
JP3064006B2 (en) | Surface emitting device | |
JP2004045645A (en) | Surface light source device and liquid crystal display device | |
JPH08292324A (en) | Light transmission body | |
JPH08146230A (en) | Surface light emitting device | |
JP4815930B2 (en) | Light transmissive film, backlight device, and liquid crystal display device | |
JP2009164100A (en) | Backlight | |
KR20030094527A (en) | Light Guide Plate, Manufacturing Method thereof, and Surface Light Source Employing the Light Guide Plate | |
JP2603649B2 (en) | Surface lighting | |
JP2003066238A (en) | Light transmission body, surface light source device and front light device and liquid crystal display device employing the light transmission body | |
KR20010035196A (en) | Non printed light guide pipe with two kind patterns and backlight | |
JP2001006418A (en) | Lighting system | |
US6969187B2 (en) | Light guiding plate for front light | |
JP3235773B2 (en) | Sidelight type surface light source device | |
JPH09211230A (en) | Surface light source device | |
JPH09184924A (en) | Light guide plate | |
JPH05142537A (en) | Illuminating device for liquid crystal |