Nothing Special   »   [go: up one dir, main page]

JPH08260127A - Screw parts - Google Patents

Screw parts

Info

Publication number
JPH08260127A
JPH08260127A JP7061083A JP6108395A JPH08260127A JP H08260127 A JPH08260127 A JP H08260127A JP 7061083 A JP7061083 A JP 7061083A JP 6108395 A JP6108395 A JP 6108395A JP H08260127 A JPH08260127 A JP H08260127A
Authority
JP
Japan
Prior art keywords
titanium metal
treatment
titanium
plasma
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7061083A
Other languages
Japanese (ja)
Inventor
Shinichi Tanaka
信一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Ltd
Original Assignee
Tanaka Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Ltd filed Critical Tanaka Ltd
Priority to JP7061083A priority Critical patent/JPH08260127A/en
Publication of JPH08260127A publication Critical patent/JPH08260127A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE: To reduce the coefficient of friction and wear by subjecting the surface of screw parts made of titanium metal to sliding treatment with durability without deteriorating the corrosion resistance characteristic of titanium metal of its own. CONSTITUTION: Screw parts made of titanium metal composed of pure titanium metal or an alloy of titanium and the other metallic components are subjected to plasma carburizing treatment in an atmosphere contg. gaseous hydrocarbons such as methane homologues shown by Cn H2n+2 under the vacuum heating conditions of 0.5 to 15Torr and 700 to 1100 deg.C, or, the screw face in the obtd. screw parts is moreover coated with a lubricating coating material contg. polytetrafluoroethylene.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、チタン金属製のねじ
部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw part made of titanium metal.

【0002】[0002]

【従来の技術】一般に、ねじ部品は、使用条件に充分な
耐腐食性を備える必要があるので、そのような使用条件
(たとえば、地中、水中または海中などにおいて真水や
海水に曝される状態)でも比較的よく耐える成形材料が
採用されている。
2. Description of the Related Art Generally, threaded parts are required to have sufficient corrosion resistance under the conditions of use, and therefore such conditions (for example, the condition of being exposed to fresh water or seawater under the ground, in the water or under the sea). ), But a molding material that withstands relatively well is adopted.

【0003】耐食性に優れたねじ部品用成形材料として
は、鉄鋼、特にステンレス鋼が知られており、耐食性に
優れた工業材料としてはチタン金属が知られている。
Steel, especially stainless steel, is known as a molding material for screw parts having excellent corrosion resistance, and titanium metal is known as an industrial material having excellent corrosion resistance.

【0004】上記チタン金属は、耐熱性が高く、強度も
ほぼ炭素鋼に等しく、また表面に酸化被膜を形成するの
で、耐食性に優れた性質を有する。また、純チタンは、
全ての金属、特に銅、スズ、鉄、アルミニウム、バナジ
ウム、クロム、コバルト、モリブデン、タングステンな
どと合金をつくり、その加工性や機械的強度を種々改良
することが可能である。
The titanium metal has high heat resistance, strength almost equal to that of carbon steel, and since it forms an oxide film on the surface, it has excellent corrosion resistance. Also, pure titanium is
It is possible to form alloys with all metals, especially copper, tin, iron, aluminum, vanadium, chromium, cobalt, molybdenum, tungsten, etc., and to improve their workability and mechanical strength in various ways.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記したよう
にチタン金属からねじ部品を製造すると、耐食性や機械
的強度などにおいて優れた性質を有するが、ねじ部品と
して所要の耐摩耗性、および締付け時に機械設計上必要
な締まり力(軸力)を確保するためにねじ面などを低摩
擦係数にすることについて、そのような所要特性を充分
に満足するものでないという問題点がある。
However, when a threaded part is manufactured from titanium metal as described above, it has excellent properties such as corrosion resistance and mechanical strength. There is a problem in that such a required characteristic is not sufficiently satisfied in order to secure a tightening force (axial force) required for mechanical design in order to make the thread surface have a low friction coefficient.

【0006】そこで、この発明の課題は上記した問題点
を解決して、チタン金属製のねじ部品を、チタン金属本
来の耐食性を劣化させることなく、その表面に耐久性の
ある摺動処理を施して、摩擦・摩耗係数を低減させるこ
とである。
Therefore, the object of the present invention is to solve the above-mentioned problems and subject a threaded component made of titanium metal to a durable sliding treatment on its surface without deteriorating the original corrosion resistance of titanium metal. To reduce the friction / wear coefficient.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、この発明においては、炭化水素ガスを含有する0.
5〜15torr、700〜1100℃の雰囲気内でプ
ラズマ浸炭処理したチタン金属からなるねじ部品とした
のである。
In order to solve the above problems, in the present invention, a hydrocarbon gas containing 0.
This is a threaded component made of titanium metal plasma-carburized in an atmosphere of 5 to 15 torr and 700 to 1100 ° C.

【0008】または、炭化水素ガスを含有する0.5〜
15torr、700〜1100℃の雰囲気内でプラズ
マ浸炭処理したチタン金属からなるねじ部品において、
このねじ部品のねじ面にポリテトラフルオロエチレンを
含有する潤滑性塗料を塗着したのである。
Alternatively, 0.5 to 0.5 containing a hydrocarbon gas
In a threaded component made of titanium metal plasma-carburized in an atmosphere of 15 torr and 700 to 1100 ° C.,
The lubrication paint containing polytetrafluoroethylene was applied to the thread surface of this threaded component.

【0009】前記潤滑性塗料のポリテトラフルオロエチ
レンは、分子量(Mn)8000以下の低分子量ポリテ
トラフルオロエチレンを採用することが好ましい。
As the polytetrafluoroethylene of the above-mentioned lubricating coating, it is preferable to employ low molecular weight polytetrafluoroethylene having a molecular weight (Mn) of 8000 or less.

【0010】以下に、その詳細を述べる。この発明でい
うねじ部品は、その形状や使用目的を特に限定したもの
ではなく、小ねじ類、ボルト・ナット(たとえば、六角
ボルト等の多角形ボルト、六角穴付きボルト等の穴付き
ボルト、植え込みボルト、基礎ボルト、角根丸頭ボルト
等とそれらに対応するナット類)、座金類その他の周知
のねじ部品である。
The details will be described below. The threaded component referred to in the present invention is not particularly limited in its shape or purpose of use, and may include machine screws, bolts and nuts (for example, polygonal bolts such as hexagon bolts, holed bolts such as hexagon socket head bolts, and implants). Bolts, foundation bolts, square root bolts, etc. and their corresponding nuts), washers, and other well-known screw parts.

【0011】また、この発明に用いるチタン金属は、純
チタンまたはチタンと他の金属成分との合金のいずれで
あってもよく、特に合金の組成を限定して行なうもので
はない。市販のチタン金属のチタニウムの純度は、9
9.9〜99.5%程度であるが、このような純チタン
を用いることもできる。
The titanium metal used in the present invention may be either pure titanium or an alloy of titanium and another metal component, and the composition of the alloy is not particularly limited. The purity of titanium, which is a commercially available titanium metal, is 9
Although it is about 9.9 to 99.5%, such pure titanium can also be used.

【0012】チタン合金の他の金属成分としては、前述
したようにチタン金属が全ての金属と合金を形成するこ
とから、特に限定されるものではないが、たとえば銅、
スズ、鉄、アルミニウム、バナジウム、クロム、コバル
ト、モリブデン、タングステンなどを挙げることができ
る。
Other metal components of the titanium alloy are not particularly limited because titanium metal forms an alloy with all metals as described above, but for example, copper,
Examples thereof include tin, iron, aluminum, vanadium, chromium, cobalt, molybdenum, and tungsten.

【0013】このようなチタン金属は、ねじ部品に成形
した後、プラズマ浸炭処理の前に、その表面を有機溶媒
に浸漬し、また超音波による洗浄処理を行なうことが望
ましい。
After forming such a titanium metal into a threaded part and before plasma carburizing, it is desirable to immerse the surface in an organic solvent and perform ultrasonic cleaning.

【0014】プラズマ浸炭処理を行なうには、加熱炉内
にグラファイトファイバー等の断熱材で囲まれた処理室
を形成し、この処理室内をロッドグラファイトからなる
発熱体で加熱すると共に、処理室内の上部に直流グロー
放電の正極を接続し、かつ処理品の載置台に陰極を接続
し、また処理室内の要所にはガスマニホールドを設置し
て炭化水素、窒素、アルゴン、水素などのプロセスガス
またはクリーニング用ガスを適宜分散させながら導入す
るようにした公知の浸炭処理装置を用いることができ
る。
To carry out the plasma carburizing treatment, a treatment chamber surrounded by a heat insulating material such as graphite fiber is formed in the heating furnace, the treatment chamber is heated by a heating element made of rod graphite, and the upper portion of the treatment chamber is heated. Connect the positive electrode of the DC glow discharge to the and the cathode of the processing table, and install the gas manifold at the important points in the processing chamber to install process gas such as hydrocarbon, nitrogen, argon, hydrogen or cleaning. It is possible to use a known carburizing treatment device in which the working gas is introduced while being appropriately dispersed.

【0015】すなわち、この発明のプラズマ浸炭は、以
下の操作を行なって処理することができる。
That is, the plasma carburization of the present invention can be processed by the following operations.

【0016】まず、処理室にチタン金属を装入して排気
した後、ヒータにより700〜1100℃の浸炭温度に
まで加熱し、水素、アルゴン、窒素などの希釈またはク
リーニング用ガスを導入し、200〜1500Vの直流
高電圧を印加して10〜30分保持する。
First, after titanium metal is charged into the processing chamber and exhausted, it is heated to a carburizing temperature of 700 to 1100 ° C. by a heater, and a diluting or cleaning gas such as hydrogen, argon or nitrogen is introduced, and 200 A high DC voltage of ˜1500 V is applied and held for 10 to 30 minutes.

【0017】このとき、導入されたガスはプラズマ化す
るが、プラズマ中の電位は陽極から陰極までの大部分で
ほぼ一様であり、陰極付近で急激に電位が低下する。こ
のため、プラズマ中の水素イオンH+ やアルゴンイオン
Ar+ は、陰極降下によって加速され、チタン金属表面
に衝突して表面の酸化物その他の付着物を跳ね飛ばして
チタン金属表面をクリーニングする。
At this time, the introduced gas is turned into plasma, but the potential in the plasma is almost uniform from the anode to the cathode, and the potential drops sharply near the cathode. Therefore, the hydrogen ions H + and the argon ions Ar + in the plasma are accelerated by the cathode fall and collide with the titanium metal surface to splash oxides and other deposits on the surface to clean the titanium metal surface.

【0018】次に、メタンガスなどの炭化水素ガスを
0.5〜15torrの範囲で導入すると、プラズマガ
ス中には、イオン化した活性化炭素C+ が発生し、これ
がチタン金属表面に付着してさらに内部に拡散するか、
スパッタリング、または打込みの作用によって浸炭反応
が進行する。
Next, when a hydrocarbon gas such as methane gas is introduced in the range of 0.5 to 15 torr, ionized activated carbon C + is generated in the plasma gas, which is further adhered to the titanium metal surface and is further adsorbed. Diffuse inside,
The carburization reaction proceeds by the action of sputtering or implantation.

【0019】この発明において使用する炭化水素ガス
は、Cn 2n+2で示されるメタン同属体であって前記浸
炭温度において気体であるものを、特にその種類を限定
することなく使用することができる。特に、常温で気体
のメタン、エタン、プロパン、ブタンは、使用に際して
気化設備が不要であるので、好ましいものであるといえ
る。
The hydrocarbon gas used in the present invention is a methane congener represented by C n H 2n + 2 and is a gas at the above carburizing temperature, and it is possible to use the hydrocarbon gas without particularly limiting its kind. it can. In particular, methane, ethane, propane, and butane, which are gases at room temperature, are preferable because they do not require vaporization equipment when used.

【0020】ここで、前記したプラズマ浸炭処理の条件
における炭化水素ガスの圧力は0.5〜15torrで
ある。このような炭化水素ガスの圧力は、チタン金属表
面に主にTiCからなる処理層を形成するために必要で
あって、0.5torr未満の低圧では処理層の炭素量
が少なく、摺動特性の改善が充分でない。また、15t
orrを越える高圧では、浸炭層の炭素量が飽和値とな
って、これ以上の浸炭効果が向上せず、実用的でなくな
るからである。
Here, the pressure of the hydrocarbon gas under the above-mentioned plasma carburizing conditions is 0.5 to 15 torr. Such a pressure of the hydrocarbon gas is necessary for forming a treatment layer mainly made of TiC on the titanium metal surface, and at a low pressure of less than 0.5 torr, the treatment layer has a small amount of carbon and has a sliding property. Improvement is not enough. Also, 15t
This is because when the pressure is higher than orr, the carbon content of the carburized layer becomes a saturated value, and the carburizing effect is not improved any more, which is not practical.

【0021】この発明におけるプラズマ浸炭処理の雰囲
気温度は、700〜1100℃である。なぜなら、70
0℃未満の低温では、チタン金属表面にスーティング
(煤)の発生が起こりやすく、そのため希釈用のガス
(水素、アルゴン、窒素など)の分圧が高くなりすぎて
処理効率が極端に低下する。また、1100℃を越える
高温では、チタンは950℃で六方晶系(α型)から等
軸晶系(β型)に変態して物性が変わり、1100℃を
越える高温では、強度特性を確保するために不利となる
から、これ以上の処理温度は実用的でない。
The atmospheric temperature of the plasma carburizing treatment in the present invention is 700 to 1100 ° C. Because 70
At low temperatures below 0 ° C, sooting (soot) is likely to occur on the titanium metal surface, so that the partial pressure of the diluting gas (hydrogen, argon, nitrogen, etc.) becomes too high, and the treatment efficiency is extremely reduced. . Further, at a temperature higher than 1100 ° C, titanium transforms from a hexagonal system (α type) to an equiaxed system (β type) at 950 ° C to change the physical properties, and at a temperature higher than 1100 ° C, strength characteristics are secured. Therefore, a treatment temperature higher than this is not practical.

【0022】なお、処理時間は雰囲気温度とガスの種
類、濃度および処理圧力を考慮した上で設定されるもの
であるから、例えば、後述する実施例のように、雰囲気
温度が950℃、プロパンガス(100%)の圧力が1
Torrとした場合に、1時間を目安とし、処理される
チタン金属、またはチタン合金製ねじ部品の使用目的に
応じて、所要の機械的強度が得られるように、適宜に増
減変更すればよい。このようなことから、実験的に得ら
れた最も好ましいプラズマ浸炭処理条件は、950℃で
90分である。
Since the treatment time is set in consideration of the ambient temperature, the kind of gas, the concentration and the treatment pressure, for example, the ambient temperature is 950.degree. (100%) pressure is 1
In the case of Torr, one hour is a guideline and may be appropriately increased / decreased so that the required mechanical strength can be obtained according to the intended use of the titanium metal or titanium alloy screw part to be treated. From this, the most preferable experimentally obtained plasma carburizing condition is 950 ° C. for 90 minutes.

【0023】[0023]

【作用】この発明のチタン金属製のねじ部品は、所定の
圧力および温度でプラズマ浸炭処理されているので、そ
の表面に、活性化された炭素イオンが付着し、またはチ
タン金属の表面から飛び出したTi原子が活性化された
炭素イオンと結合してチタン金属表面に被着して内部に
拡散するか、または陰極の近傍で加速された炭素イオン
が直接にチタン金属内に打込まれる作用によって、主に
炭化チタンからなる処理層が形成されている。
The titanium metal screw component of the present invention is plasma-carburized at a predetermined pressure and temperature, so that activated carbon ions are attached to the surface of the threaded component or jump out of the titanium metal surface. The Ti atom is bonded to the activated carbon ion to be deposited on the titanium metal surface and diffused inward, or the accelerated carbon ion in the vicinity of the cathode is directly driven into the titanium metal. A treatment layer mainly made of titanium carbide is formed.

【0024】このように形成されるねじ部品の表面の処
理層は、炭化されたことによってその炭化物が潤滑性を
発揮すると考えられ、摩擦・摩耗係数を低減させるよう
になりねじ部品として締付け時の所要の摺動性を備え、
しかもチタン金属製ねじ部品として本来の優れた耐食性
を具備する。
It is considered that the treated layer on the surface of the screw part thus formed is carbonized so that the carbide exhibits lubricity, so that the coefficient of friction and wear is reduced, and when the screw part is tightened. With the required slidability,
Moreover, it has the original excellent corrosion resistance as a titanium metal screw part.

【0025】なお、処理層は、たとえば70μm 程度の
比較的厚い層に形成することができるので、耐久性のあ
る表面処理層を形成することができる。
Since the treatment layer can be formed as a relatively thick layer of, for example, about 70 μm, a durable surface treatment layer can be formed.

【0026】ねじ部品のねじ面にポリテトラフルオロエ
チレンを含有する潤滑性塗料を塗着すると、ねじ面の摺
動特性はさらに改善されるので、締着時の軸力を低減さ
せて、高い締着性を発揮するねじ部品となる。
When the lubrication paint containing polytetrafluoroethylene is applied to the thread surface of the threaded part, the sliding characteristics of the thread surface are further improved, so that the axial force at the time of tightening can be reduced and high tightening can be achieved. It becomes a threaded part that exhibits wearability.

【0027】[0027]

【実施例】先ず、チタン金属をプラズマ浸炭処理した場
合の摺動特性、耐食性についての実験を以下に述べる。
EXAMPLES First, an experiment on sliding characteristics and corrosion resistance when titanium metal is plasma carburized will be described below.

【0028】〔実験例1〕縦25mm、横35mm、厚
さ3mmの平板状の純チタン(神戸製鋼所社製)を24
0エメリー研磨後、アセトン中で超音波洗浄し、以下の
装置および条件でプラズマ浸炭処理を行なった。
[Experimental Example 1] A plate-shaped pure titanium having a length of 25 mm, a width of 35 mm and a thickness of 3 mm (made by Kobe Steel Ltd.) was used as 24
After 0 emery polishing, ultrasonic cleaning was performed in acetone, and plasma carburization was performed using the following apparatus and conditions.

【0029】すなわち、加熱炉内にグラファイトファイ
バー等の断熱材で囲まれた処理室を有し、この処理室内
をロッドグラファイトからなる発熱体で加熱すると共
に、処理室内の上部に直流グロー放電の正極を接続し、
かつ処理品の載置台に陰極を接続し、また処理室内の要
所にはガスマニホールドを設置して炭化水素、窒素、ア
ルゴン、水素などのプロセスガスを適宜導入するように
した公知の浸炭処理装置(日本電子工業社製)を用い
た。
That is, there is a treatment chamber surrounded by a heat insulating material such as graphite fiber in the heating furnace. The treatment chamber is heated by a heating element made of rod graphite, and a positive electrode for direct current glow discharge is provided above the treatment chamber. Connect
In addition, a known carburizing treatment device in which a cathode is connected to a treatment table and a gas manifold is installed at a required place in the treatment chamber to appropriately introduce process gas such as hydrocarbon, nitrogen, argon and hydrogen. (Manufactured by JEOL Ltd.) was used.

【0030】そして、浸炭処理条件としては、ガス組成
を100%プロパンガスとし、ガス圧力1Torr、処
理時間1時間、処理温度950℃として、処理後に窒素
ガスを処理室内に圧入して常温に冷却した。
As the carburizing treatment conditions, the gas composition was 100% propane gas, the gas pressure was 1 Torr, the treatment time was 1 hour, and the treatment temperature was 950 ° C. After the treatment, nitrogen gas was injected into the treatment chamber and cooled to room temperature. .

【0031】以上の処理を施した実験例について、X
線回折および光学顕微鏡を用いて処理層の結晶構造と厚
さを観察測定し、摩擦・摩耗試験を行なった。
With respect to the experimental example subjected to the above processing, X
The crystal structure and thickness of the treated layer were observed and measured using a line diffraction and an optical microscope, and a friction / wear test was conducted.

【0032】の摩擦・摩耗試験については、以下の装
置および条件で行ない、その結果を図2(a)および図
3(a)に示した。
The friction / wear test of (1) was conducted under the following apparatus and conditions, and the results are shown in FIGS. 2 (a) and 3 (a).

【0033】すなわち、カウンターウェイトによって、
一端に1.96Nの荷重が掛かるように支持されたアー
ムの一端下面に、ピン型の摺動相手材(軸受鋼:SUS
J2または試験片と同じ材質からなるもの)を固定し、
この摺動相手材を前記荷重にて平板状の試料片表面に押
しつけた状態で、この試料片をアームの長手方向と直角
方向に強制的に速度20mm/秒、5mmのストローク
で往復運動させた。このとき、摺動相手材と試料片間に
働く摩擦力をアームに生じた歪みとして歪みゲージによ
って検出し、その歪み量をA/D変換器を介してコンピ
ュータに入力して摩擦係数を算出した。
That is, by the counter weight,
A pin-type sliding mating material (bearing steel: SUS) is attached to the lower surface of one end of the arm supported so that a load of 1.96 N is applied to one end.
J2 or one made of the same material as the test piece)
While this sliding mating member was pressed against the surface of the flat plate-shaped sample piece under the load, the sample piece was forcibly reciprocated at a speed of 20 mm / sec and a stroke of 5 mm in the direction perpendicular to the longitudinal direction of the arm. . At this time, the frictional force acting between the sliding mating material and the sample piece was detected by the strain gauge as the strain generated in the arm, and the strain amount was input to the computer via the A / D converter to calculate the friction coefficient. ..

【0034】なお、この実験は摩擦時間を2時間とし、
相対湿度50〜60%、室温、大気中の条件下で行なっ
た。なお、上記実験の摩擦係数の測定値については、実
験開始当初から60分間の摩擦係数の時間変化を求め、
その結果を図4のグラフに示した。
In this experiment, the friction time was set to 2 hours,
It was carried out under the conditions of a relative humidity of 50 to 60%, room temperature, and the atmosphere. Regarding the measured value of the friction coefficient in the above experiment, the time change of the friction coefficient for 60 minutes from the beginning of the experiment was calculated,
The results are shown in the graph of FIG.

【0035】また、摩耗特性については、表面粗さ計に
よって測定した試料片の摩耗痕の断面形状、または実験
前後の試料片の重量変化から摩耗重量量または摩耗体積
を求め、摩擦実験後の比摩耗量(mm3 /Nm)を求め
た。
As to the wear characteristics, the wear weight amount or wear volume was obtained from the cross-sectional shape of the wear mark of the sample piece measured by a surface roughness meter or the weight change of the sample piece before and after the experiment, and the ratio after the friction experiment was calculated. The amount of wear (mm 3 / Nm) was determined.

【0036】〔実験例2〕実験例1で用いたチタン合金
に代えて、チタン合金(Ti−6Al−4V)(神戸製
鋼所社製、同寸法)を用いたこと以外は、実験例1と全
く同じ条件にてプラズマ浸炭処理を行なって試験片を製
造し、かつ同じ実験を行ない、その結果を図2(b)、
図3(b)に示した。
[Experimental Example 2] Experimental Example 1 except that a titanium alloy (Ti-6Al-4V) (manufactured by Kobe Steel, Ltd., same size) was used in place of the titanium alloy used in Experimental Example 1. Plasma carburization was performed under exactly the same conditions to manufacture a test piece, and the same experiment was performed. The result is shown in FIG.
It is shown in FIG.

【0037】また、実験例2ではポテンショスタット
による耐食性の比較を行ない、3wt%塩化ナトリウム
溶液、21℃、通気なしの条件で、電流密度(μA/c
2)と電位(mV VS.SCE)の関係を測定し、
これを図1に示した。
In Experimental Example 2, the corrosion resistance of potentiostat was compared, and the current density (μA / c) was measured under the conditions of 3 wt% sodium chloride solution, 21 ° C. and no ventilation.
m 2 ) and the potential (mV VS.SCE),
This is shown in FIG.

【0038】〔比較例1〕実験例1でプラズマ浸炭処理
を行なうことに代えて、下記の条件でプラズマ窒化処理
を行なうこと以外は、実験例1と全く同様にして試験片
を製造し、かつ同じ実験を行ない、その結果を図2
(a)、図3(a)、図4に示した。
Comparative Example 1 A test piece was manufactured in exactly the same manner as in Experimental Example 1 except that plasma nitriding treatment was performed under the following conditions instead of performing plasma carburizing treatment in Experimental Example 1. The same experiment was performed, and the results are shown in Fig. 2.
(A), FIG. 3 (a), and FIG.

【0039】また、比較例1ではポテンショスタット
による耐食性の比較を行ない、この結果を図1に示し
た。
Further, in Comparative Example 1, the corrosion resistance by potentiostat was compared, and the result is shown in FIG.

【0040】前記プラズマ窒化処理条件としては、ガス
組成を100%窒素ガスとし、ガス圧力2Torr、処
理時間3時間、処理温度790℃として、処理後に炉内
で常温にまで冷却した。
As the plasma nitriding treatment conditions, the gas composition was 100% nitrogen gas, the gas pressure was 2 Torr, the treatment time was 3 hours, the treatment temperature was 790 ° C., and the furnace was cooled to room temperature after the treatment.

【0041】〔比較例2〕実験例2でプラズマ浸炭処理
を行なうことに代えて、プラズマ窒化処理(比較例1と
同じ条件)を行なうこと以外は、実験例2と全く同様に
して試験片を製造し、かつ同じ実験を行ない、その結果
を図2(b)、図3(b)に示した。
Comparative Example 2 A test piece was prepared in exactly the same manner as in Experimental Example 2 except that plasma nitriding treatment (same conditions as in Comparative Example 1) was performed instead of performing plasma carburizing treatment in Experimental Example 2. It was manufactured and the same experiment was performed, and the results are shown in FIGS. 2 (b) and 3 (b).

【0042】〔比較例3〕純チタン(神戸製鋼所社製)
で試験片を製造し、このもの(表面処理を行わない状
態)に対して実験例1と同じ実験を行ない、その結果を
図2(a)、図3(a)または図4に示した。
[Comparative Example 3] Pure titanium (manufactured by Kobe Steel Ltd.)
A test piece was manufactured in the same manner, and the same experiment as in Experimental Example 1 was performed on the test piece (in the state where the surface treatment was not performed), and the results are shown in FIG.

【0043】また、比較例3ではポテンショスタット
による耐食性の比較を行ない、この結果を図1に示し
た。
In Comparative Example 3, the corrosion resistance of potentiostat was compared, and the results are shown in FIG.

【0044】〔比較例4〕チタン合金(Ti−6Al−
4V)(神戸製鋼所社製)で試験片を製造し、このもの
(表面処理を行わない状態)に対して実験例1と同じ実
験を行ない、その結果を図2(b)、図3(b)に示し
た。
[Comparative Example 4] Titanium alloy (Ti-6Al-
4V) (manufactured by Kobe Steel Ltd.), and the same experiment as in Experimental Example 1 was performed on this (without surface treatment), and the results are shown in FIG. It is shown in b).

【0045】以上述べた実験例および比較例の実験〜
の結果について、以下に述べる。
Experiments of Experimental Examples and Comparative Examples described above
The results of are described below.

【0046】まず、X線回折および光学顕微鏡を用い
た処理層の結晶構造と厚さについてみると、Ti合金:
Ti2 N>TiN、純Ti:TiN>Ti2 Nであり、
純チタン、チタン合金表面に形成された浸炭層の厚さは
70μm であった。この場合、純チタンは処理層が明瞭
であるのに対し、チタン合金の処理層は、拡散層が発達
しており、やや不明瞭であった。これらの処理層は主に
TiCであった。
First, regarding the crystal structure and thickness of the treated layer using X-ray diffraction and an optical microscope, the Ti alloy:
Ti 2 N> TiN, pure Ti: TiN> Ti 2 N,
The carburized layer formed on the surface of pure titanium or titanium alloy had a thickness of 70 μm. In this case, the treated layer of pure titanium was clear, whereas the treated layer of titanium alloy had a diffused layer and was somewhat unclear. These treated layers were predominantly TiC.

【0047】次に、ポテンショスタットによる耐食性
の比較試験については、図1の結果から明らかなよう
に、プラズマ浸炭処理を施したチタン合金からなる実験
例2は、プラズマ窒化処理したチタン合金である比較例
1または未処理の純チタンである比較例3に比べて、電
位は上昇し電流も少なくなり、耐食性が向上していた。
Next, regarding the comparative test of corrosion resistance by potentiostat, as is clear from the result of FIG. 1, the experimental example 2 consisting of the titanium alloy subjected to the plasma carburizing treatment is the titanium alloy subjected to the plasma nitriding treatment. Compared to Example 1 or Comparative Example 3 which is untreated pure titanium, the potential increased, the current decreased, and the corrosion resistance was improved.

【0048】摩擦・摩耗試験については、図2および
図3の結果から明らかなように、純チタンまたはチタン
合金をプラズマ窒化した比較例1または比較例2の摩擦
・摩耗特性は、純チタンで未処理の比較例3またはチタ
ン合金で未処理の比較例4にそれぞれ比べて改善されて
いなかった。
Regarding the friction and wear test, as is clear from the results of FIGS. 2 and 3, the friction and wear characteristics of Comparative Example 1 or Comparative Example 2 in which pure titanium or a titanium alloy was plasma-nitrided were not found to be pure titanium. There was no improvement over the treated Comparative Example 3 or the untreated Comparative Example 4 with the titanium alloy, respectively.

【0049】その理由としては、前述のように窒化層が
非常に薄いために、摩擦初期に剥離または摩耗してしま
い、その後は母材との摩擦に移行してしまうためと考え
られた。
The reason for this is considered to be that the nitride layer is very thin as described above, so that the nitride layer peels off or wears at the initial stage of friction, and thereafter shifts to friction with the base material.

【0050】これに対して、純チタンをプラズマ浸炭処
理した実験例1またはチタン合金をプラズマ浸炭処理し
た実験例2は、処理済の試料片同士を摩擦した場合(図
2)、試料片と軸受鋼を摩擦した場合(図3)のいずれ
の場合でも摩擦係数、比摩耗量共にかなり低下し、摩擦
・摩耗特性が改善されていた。
On the other hand, in Experimental Example 1 in which pure titanium is plasma carburized or Experimental example 2 in which titanium alloy is plasma carburized, when the treated sample pieces rub (FIG. 2), the sample piece and the bearing are In both cases where the steel was rubbed (FIG. 3), both the friction coefficient and the specific wear amount were considerably reduced, and the friction / wear characteristics were improved.

【0051】また、図4の結果からも明らかなように、
プラズマ浸炭処理を施したチタン金属は、摩擦係数の値
が小さいだけでなく、経時的にみてもこれらの値の変動
が非常に小さかった。
Further, as is clear from the result of FIG.
The titanium metal subjected to the plasma carburizing treatment had not only a small coefficient of friction but also a very small variation in these values over time.

【0052】以上の結果から、純チタンを所定の条件で
プラズマ浸炭処理した素材は、ねじ部品として、所要の
耐食性および所要の摺動特性を具備していることがわか
る。
From the above results, it is understood that the material obtained by subjecting pure titanium to the plasma carburizing treatment under the predetermined condition has the required corrosion resistance and the required sliding property as the screw part.

【0053】次に、上記のチタン金属からなるねじ部品
に、潤滑塗料を適宜に併用した場合の実施例1〜3、ま
たは比較例5について説明する。
Next, Examples 1 to 3 or Comparative Example 5 in the case where a lubricating paint is appropriately used in combination with the above threaded component made of titanium metal will be described.

【0054】〔実施例1〜3〕六角ボルト・ナット(M
10×P1.5×60:mm)を純チタン金属で成形
し、表1に示した処理温度および処理時間としたこと以
外は前記した実験例1と全く同様にしてプラズマ浸炭処
理を行ない、ボルト・ナット共に下記の潤滑塗料を塗着
した。
[Examples 1 to 3] Hexagon bolts and nuts (M
(10 × P1.5 × 60: mm) was molded from pure titanium metal, and plasma carburization was performed in exactly the same manner as in Experimental Example 1 described above except that the treatment temperature and the treatment time shown in Table 1 were used.・ The following lubricating paint was applied to both nuts.

【0055】潤滑塗料:分子量(Mn)8000以下の
ポリテトラフルオロエチレン含量7±0.5重量、溶媒
(代替フロン:HCFC−225、接着用樹脂0.3重
量%含む)93重量%からなる潤滑塗料である。
Lubricating paint: Lubrication consisting of a polytetrafluoroethylene content of 7 ± 0.5% by weight having a molecular weight (Mn) of 8000 or less and 93% by weight of a solvent (alternative CFC: HCFC-225, including 0.3% by weight of an adhesive resin). It is paint.

【0056】得られたボルト・ナットに対して、JIS
1084−1990「ねじ部品の締付け試験方法」に準
拠し、締付けトルクを150kgf・cm(耐力値最小
215N/mm)としてトルク係数、軸力、総合摩擦係
数、ねじ部摩擦係数を測定し、結果を表1に併記した。
According to JIS, the obtained bolts and nuts are
In accordance with 1084-1990 "Tightening test method for threaded parts", the torque coefficient, axial force, total friction coefficient, and screw part friction coefficient were measured with a tightening torque of 150 kgf · cm (proof strength value minimum 215 N / mm), and the results were obtained. It is also shown in Table 1.

【0057】[0057]

【表1】 [Table 1]

【0058】〔比較例5〕六角ボルト・ナット(M10
×P1.5×60:mm)を純チタン金属で成形し、プ
ラズマ浸炭処理を行なわなかったこと以外は、実施例1
と全く同様にしてボルト・ナットを製造し、表1中に併
記した潤滑条件において前記した「ねじ部品の締付け試
験」を行ない、得られた結果を表1中に併記した。
[Comparative Example 5] Hexagon bolt / nut (M10
XP1.5x60: mm) was formed from pure titanium metal, and plasma carburization was not performed.
The bolts and nuts were manufactured in exactly the same manner as the above, and the above-mentioned "tightening test of screw parts" was performed under the lubricating conditions also shown in Table 1, and the obtained results are also shown in Table 1.

【0059】表1の結果からも明らかなように、所定の
プラズマ浸炭処理を経ずに潤滑処理のみを行なった比較
例5は、プラズマ浸炭処理を経た実施例1〜3に比べて
高いトルク係数値であり、また、摩擦係数は高く、軸力
は低く、適当なトルクでもって充分な締付け力が得られ
ないねじ部品であった。
As is clear from the results shown in Table 1, Comparative Example 5 in which only the lubrication treatment was performed without performing the predetermined plasma carburizing treatment had a higher torque coefficient than those of Examples 1 to 3 in which the plasma carburizing treatment was performed. It was a numerical value, the coefficient of friction was high, the axial force was low, and it was a screw part that could not obtain a sufficient tightening force with an appropriate torque.

【0060】なお、ねじ部品の潤滑状態を示すトルク係
数値は、チタン金属製で未潤滑処理のねじ部品の場合
は、通常、0.4以上を示し、普通鋼製のねじ部品のト
ルク係数値は、0.14〜0.26である。
The torque coefficient value indicating the lubricated state of the threaded part is usually 0.4 or more in the case of the threaded part made of titanium metal and not subjected to lubrication treatment, and the torque coefficient value of the threaded part made of ordinary steel is shown. Is 0.14 to 0.26.

【0061】上記した比較例に対して、全ての条件を満
足する実施例1〜3は、低いトルク係数値であって摩擦
係数は低く、軸力は高く、優れた締付け特性を有してい
た。そして、前記した実験例から純チタンおよびチタン
合金は、摩耗係数その他の機械的強度面において普通鋼
または合金鋼と同等であるから、従来のねじ部品を用い
た機械の設計を変更することなく、耐食性(耐久性)に
優れたチタン金属製ねじ部品を利用できることになる。
In contrast to the comparative example described above, Examples 1 to 3 satisfying all the conditions had low torque coefficient values, low friction coefficients, high axial forces, and excellent tightening characteristics. . And, pure titanium and titanium alloys from the above-mentioned experimental examples are equivalent to ordinary steel or alloy steel in terms of mechanical strength such as wear coefficient, so without changing the design of the machine using conventional screw parts, Titanium metal screw parts with excellent corrosion resistance (durability) can be used.

【0062】すなわち、実施例のねじ部品は、チタン金
属本来の耐食性を具備すると共に、その表面のプラズマ
浸炭による加工硬化した耐久性のある摺動性の層によっ
て摩擦・摩耗係数の低減したものであった。
That is, the threaded parts of the examples have the inherent corrosion resistance of titanium metal, and the friction and wear coefficients are reduced by the durable slidable layer which is work hardened by plasma carburization on the surface thereof. there were.

【0063】[0063]

【効果】この発明は、以上説明したように、炭化水素ガ
スを含有する所定の真空度および所定温度の雰囲気内で
プラズマ浸炭処理したチタン金属からなるねじ部品とし
たので、このものがチタン金属本来の耐食性を具備する
と共に、その表面の耐久性のある摺動性の層によって摩
擦・摩耗係数が低減する利点がある。
As described above, the present invention is a threaded component made of titanium metal which is plasma carburized in an atmosphere containing a hydrocarbon gas at a predetermined degree of vacuum and a predetermined temperature. In addition to having the corrosion resistance of 1., there is an advantage that the friction and wear coefficient is reduced by the durable and slidable layer on the surface.

【0064】また、ねじ面にポリテトラフルオロエチレ
ンを含有する潤滑性塗料を塗着したねじ部品では、前記
摺動特性がよりいっそう顕著になる利点がある。
Further, in a screw part in which a lubricating coating containing polytetrafluoroethylene is applied to the screw surface, there is an advantage that the sliding property becomes more remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】ポテンショスタットによる電流密度と電位の関
係を示す図表
FIG. 1 is a chart showing the relationship between the current density and the potential by a potentiostat.

【図2】(a)実験例1、比較例1、比較例3の同種材
同士の摩擦係数と比摩耗量を示す図表 (b)実験例2、比較例2、比較例4の同種材同士の摩
擦係数と比摩耗量を示す図表
FIG. 2 (a) is a diagram showing the friction coefficient and the specific wear amount of the same type materials of Experimental Example 1, Comparative Example 1, and Comparative Example 3 (b) The same type materials of Experimental Example 2, Comparative Example 2, and Comparative Example 4 Chart showing friction coefficient and specific wear amount of

【図3】(a)実験例1、比較例1、比較例3の軸受材
に対する摩擦係数と比摩耗量を示す図表 (b)実験例2、比較例2、比較例4の軸受材に対する
摩擦係数と比摩耗量を示す図表
FIG. 3A is a diagram showing the friction coefficient and the specific wear amount of the bearing materials of Experimental Example 1, Comparative Example 1 and Comparative Example 3; and FIG. 3B is the friction of the bearing materials of Experimental Example 2, Comparative Example 2 and Comparative Example 4. Chart showing coefficient and specific wear amount

【図4】実験例1、比較例1、比較例3の軸受鋼に対す
る摩擦係数と摩擦時間の関係を示す図表
FIG. 4 is a chart showing the relationship between friction coefficient and friction time for bearing steels of Experimental Example 1, Comparative Example 1 and Comparative Example 3.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素ガスを含有する0.5〜15t
orr、700〜1100℃の雰囲気内でプラズマ浸炭
処理したチタン金属からなるねじ部品。
1. 0.5 to 15 t containing a hydrocarbon gas
A screw part made of titanium metal subjected to plasma carburization in an atmosphere of orr at 700 to 1100 ° C.
【請求項2】 炭化水素ガスを含有する0.5〜15t
orr、700〜1100℃の雰囲気内でプラズマ浸炭
処理したチタン金属からなるねじ部品において、 このねじ部品のねじ面にポリテトラフルオロエチレンを
含有する潤滑性塗料を塗着したことを特徴とするねじ部
品。
2. 0.5 to 15 t containing a hydrocarbon gas
Orr, threaded parts made of titanium metal plasma-carburized in an atmosphere of 700 to 1100 ° C., wherein threaded surfaces of the threaded parts are coated with a lubricating coating containing polytetrafluoroethylene. .
【請求項3】 前記潤滑性塗料のポリテトラフルオロエ
チレンが、分子量(Mn)8000以下の低分子量ポリ
テトラフルオロエチレンである請求項2に記載のねじ部
品。
3. The screw part according to claim 2, wherein the polytetrafluoroethylene of the lubricating coating is a low molecular weight polytetrafluoroethylene having a molecular weight (Mn) of 8000 or less.
JP7061083A 1995-03-20 1995-03-20 Screw parts Pending JPH08260127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7061083A JPH08260127A (en) 1995-03-20 1995-03-20 Screw parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7061083A JPH08260127A (en) 1995-03-20 1995-03-20 Screw parts

Publications (1)

Publication Number Publication Date
JPH08260127A true JPH08260127A (en) 1996-10-08

Family

ID=13160872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7061083A Pending JPH08260127A (en) 1995-03-20 1995-03-20 Screw parts

Country Status (1)

Country Link
JP (1) JPH08260127A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143770A (en) * 1997-05-28 1999-02-16 Tanaka:Kk Coating method for titanium metal with vitreous carbon
EP0994200A1 (en) * 1998-10-16 2000-04-19 Tanaka Limited Threaded parts for aircraft
JP2005509115A (en) * 2001-11-02 2005-04-07 ニューフレイ リミテッド ライアビリティ カンパニー Helical coiled titanium wire fastener insert
EP1739202A1 (en) 2005-06-28 2007-01-03 General Electric Company Titanium treatment to minimize fretting
WO2010026425A1 (en) * 2008-09-05 2010-03-11 Nordiko Technical Services Limited Gas discharge electron source

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910831A (en) * 1972-06-01 1974-01-30
JPS55107107A (en) * 1979-02-10 1980-08-16 Takayasu Kyoteru Composite bolt
JPS61184290A (en) * 1985-02-08 1986-08-16 住友金属工業株式会社 Seizure preventive method of screw section in titanium or titanuum alloy material
JPH0328364A (en) * 1989-04-05 1991-02-06 Honda Motor Co Ltd Surface treatment of iron-based material
JPH055187A (en) * 1990-07-09 1993-01-14 Daido Sanso Kk Hard screw made of austenitic stainless steel
JPH05140725A (en) * 1991-11-20 1993-06-08 Toyota Central Res & Dev Lab Inc Treatment for surface of titanium material
JPH05263214A (en) * 1991-01-30 1993-10-12 Centre Stephanois Rech Mec Hydromec Frottement Method for improving corrosion resistance of iron metallic articles
JPH06136507A (en) * 1992-10-21 1994-05-17 Daido Steel Co Ltd Surface treatment of ti-al intermetallic compound

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910831A (en) * 1972-06-01 1974-01-30
JPS55107107A (en) * 1979-02-10 1980-08-16 Takayasu Kyoteru Composite bolt
JPS61184290A (en) * 1985-02-08 1986-08-16 住友金属工業株式会社 Seizure preventive method of screw section in titanium or titanuum alloy material
JPH0328364A (en) * 1989-04-05 1991-02-06 Honda Motor Co Ltd Surface treatment of iron-based material
JPH055187A (en) * 1990-07-09 1993-01-14 Daido Sanso Kk Hard screw made of austenitic stainless steel
JPH05263214A (en) * 1991-01-30 1993-10-12 Centre Stephanois Rech Mec Hydromec Frottement Method for improving corrosion resistance of iron metallic articles
JPH05140725A (en) * 1991-11-20 1993-06-08 Toyota Central Res & Dev Lab Inc Treatment for surface of titanium material
JPH06136507A (en) * 1992-10-21 1994-05-17 Daido Steel Co Ltd Surface treatment of ti-al intermetallic compound

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143770A (en) * 1997-05-28 1999-02-16 Tanaka:Kk Coating method for titanium metal with vitreous carbon
EP0994200A1 (en) * 1998-10-16 2000-04-19 Tanaka Limited Threaded parts for aircraft
JP2005509115A (en) * 2001-11-02 2005-04-07 ニューフレイ リミテッド ライアビリティ カンパニー Helical coiled titanium wire fastener insert
EP1739202A1 (en) 2005-06-28 2007-01-03 General Electric Company Titanium treatment to minimize fretting
US7506440B2 (en) 2005-06-28 2009-03-24 General Electric Company Titanium treatment to minimize fretting
WO2010026425A1 (en) * 2008-09-05 2010-03-11 Nordiko Technical Services Limited Gas discharge electron source

Similar Documents

Publication Publication Date Title
JP2909361B2 (en) Surface treatment method for titanium metal
Qiu et al. A study on tribological behavior of double-glow plasma surface alloying W-Mo coating on gear steel
JPH06507210A (en) Surface treatment and deposition method for forming titanium nitride on carbonaceous materials
US5908671A (en) Method of forming a coating of glass-like carbon on titanium metal
Xing et al. Time dependence of microstructure and hardness in plasma carbonized Ti–6Al–4V alloys
EP0724023A1 (en) Hard, amorphous, hydrogen-free carbon films
Kulesh et al. Boron-carbon coatings: structure, morphology and mechanical properties
Li et al. Long-term tribocorrosion resistance and failure tolerance of multilayer carbon-based coatings
Wongpanya et al. Nanomechanical properties and thermal stability of Al–N-co-doped DLC films prepared by filtered cathodic vacuum arc deposition
Wongpanya et al. Adhesion and corrosion of Al–N doped diamond-like carbon films synthesized by filtered cathodic vacuum arc deposition
JPH08260127A (en) Screw parts
CN101768724B (en) Method for preparing film on stainless steel
Chang et al. Deposition of DLC films onto oxynitriding-treated V4E high vanadium tool steel through dc-pulsed PECVD process
JP5657940B2 (en) Titanium metal wear-resistant parts
Dahm et al. Characterisation of nitrogen-bearing surface layers on Ni-base superalloys
EP0801142B1 (en) Treatment method of a metallic substrate, metallic substrate thereby obtained and his applications
JP2001152316A (en) Plasma carburizing method
JP5674180B2 (en) Method for surface modification of stainless steel materials
JP2013224485A (en) Coated member and method for manufacturing the same
CN114351088B (en) Solid self-lubricating coating and preparation method thereof
Choi et al. The corrosion behavior of TiAlN coatings prepared by PVD in a hydrofluoric gas atmosphere
ZHANG et al. Effect of substrate bias on microstructure and tribological performance of GLC films using hybrid HIPIMS technique
JP5664950B2 (en) Rolled titanium alloy screw
Wang et al. The improved mechanical and tribological properties of CrN coatings sealed via electrochemical polarization treatment
JP2011256412A (en) Stainless steel screw