JPH0826710A - Method for refining fullerene - Google Patents
Method for refining fullereneInfo
- Publication number
- JPH0826710A JPH0826710A JP6188699A JP18869994A JPH0826710A JP H0826710 A JPH0826710 A JP H0826710A JP 6188699 A JP6188699 A JP 6188699A JP 18869994 A JP18869994 A JP 18869994A JP H0826710 A JPH0826710 A JP H0826710A
- Authority
- JP
- Japan
- Prior art keywords
- fullerene
- activated carbon
- silica
- column
- crude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はフラーレン含有原料から
高純度フラーレンを得るための精製方法に関するもので
ある。そして得られる高純度フラーレンは超電導材料や
医療材料その他の広範な利用分野に応用が期待されるも
のである。TECHNICAL FIELD The present invention relates to a purification method for obtaining high-purity fullerene from a fullerene-containing raw material. The obtained high-purity fullerene is expected to be applied to a wide range of fields such as superconducting materials, medical materials and the like.
【0002】[0002]
【従来の技術】活性炭カラムによるフラーレンの精製に
関して,すでに2,3の方法が発表されているが,必ず
しも満足すべきものでない。例えばJ.M.Tourら
は米国Norit社の活性炭をクロマト用シリカと混合
してカラム充填剤とし,このカラムによって粗フラーレ
ンを精製したが,1回の精製では純度を99%以上にす
ることはできなかった。これは本発明が指摘している活
性炭のフラーレン吸着容量に対応した粗フラーレンの負
荷量が適切でないことによるものである[J.Am.C
hem.Soc.,114,7917(1992)]。2. Description of the Related Art A few methods have already been announced for the purification of fullerenes by an activated carbon column, but they are not always satisfactory. For example, J. M. Tour et al. Mixed activated carbon from Norit Co., USA with silica for chromatography to form a column packing material, and purified crude fullerenes by this column, but the purity could not be increased to 99% or more by one purification. This is because the loading of crude fullerenes corresponding to the fullerene adsorption capacity of activated carbon pointed out by the present invention is not appropriate [J. Am. C
hem. Soc. , 114 , 7917 (1992)].
【0003】また,A.D.Darwishらも同じ活
性炭とクロマト用アルミナを混合してカラム充填剤と
し,粗フラーレンの精製を検討した。その結果,活性炭
とアルミナの混合比によって,分離精製の良否や収率が
大きく変動するとしている[J.Chem.Soc.,
Chem.Commun.,1994,15]。このよ
うに活性炭を充填剤としたクロマト精製方法には多くの
未解決の問題がある。In addition, A. D. Darwish et al. Also studied the purification of crude fullerenes by mixing the same activated carbon and alumina for chromatography as a column packing material. As a result, it is said that the quality of separation and purification and the yield vary greatly depending on the mixing ratio of activated carbon and alumina [J. Chem. Soc. ,
Chem. Commun. , 1994 , 15]. Thus, the chromatographic purification method using activated carbon as a filler has many unsolved problems.
【0004】[0004]
【発明が解決しようとする課題】そこで本発明では,活
性炭カラムによる精製において,活性炭のフラーレン吸
着容量が精製の良否を決すると考え,これを測定して粗
フラーレンの負荷量を設定する普遍的精製方法を開発
し,常に高純度,高収率が得られるように改善した。ま
た,使用する活性炭の改質および新規な活性炭被覆シリ
カの開発も行った。Therefore, in the present invention, it is considered that in the purification by the activated carbon column, the adsorption capacity of the fullerene of the activated carbon determines the quality of the purification, and this is measured to set the loading amount of the crude fullerene in the universal purification. We have developed a method and improved it so that high purity and high yield can always be obtained. We also modified the activated carbon used and developed a new silica coated with activated carbon.
【0005】[0005]
【課題を解決するための手段】活性炭カラムによるフラ
ーレン精製においては,前述のA.D.Darwish
らも述べているように,活性炭の種類によって精製の良
否が敏感に変わる問題の解決について検討した。すなわ
ち,これは活性炭のフラーレン吸着容量が分かれば解決
可能と考え,広範囲の活性炭について測定し,これを勘
案した普遍的精製方法を案出するに至ったものである。[Means for Solving the Problems] In the fullerene purification by an activated carbon column, the above-mentioned A. D. Darwish
As mentioned above, we examined how to solve the problem that the quality of refining changes sensitively depending on the type of activated carbon. In other words, it is thought that this can be solved if the fullerene adsorption capacity of the activated carbon is known, and we have measured a wide range of activated carbon and devised a universal refining method that takes this into consideration.
【0006】また同時に,活性炭の吸着容量の制御可能
な新規な活性炭被覆シリカの開発に到達したものであ
る。以下これらの手段を詳細に述べる。At the same time, the inventors have reached the development of a new activated carbon-coated silica capable of controlling the adsorption capacity of activated carbon. These means will be described in detail below.
【0007】現在までに,活性炭のフラーレン吸着量を
測定した例は皆無であるため,広範囲の活性炭について
測定した。その結果,トルエン溶液中におけるフラーレ
ンの活性炭による吸着は,ほぼFreundlichの
等温吸着式に従う。例えば平衡濃度0.1mg/mlに
おける吸着容量は,活性炭1g当たり1mg程度の少な
いものから100mg以上のものまで極めて広範囲に及
んでいた。Up to now, since there is no example of measuring the fullerene adsorption amount of activated carbon, it was measured for a wide range of activated carbon. As a result, the adsorption of fullerenes by the activated carbon in the toluene solution substantially follows the Freundlich isotherm adsorption equation. For example, the adsorption capacity at an equilibrium concentration of 0.1 mg / ml ranges from a small amount of about 1 mg per 1 g of activated carbon to 100 mg or more.
【0008】一方,これらの活性炭による粗フラーレン
(C60とC70の混合物)の精製を同一条件下で検討
した結果,吸着容量の小さい活性炭では分離が不十分な
ため,高純度のフラーレンが得られず,逆に大きい活性
炭ではC60の純品を得易いが,収率が極めて低いとい
う予期した結果になった。そこで,吸着容量の小さい活
性炭の場合は,粗フラーレンの負荷量を少なくし,逆に
大きい活性炭の場合は負荷量を多くすることを試みた。
その結果,吸着容量が小さい活性炭による精製は,負荷
量を少なくすることで精製物の純度,収率とも十分満足
できることが分かった。ところが吸着容量が100mg
以上の大きい活性炭では,粗フラーレン負荷量を多くし
ても分離精製に限界があり,特にトルエン溶出の収率が
低く,より溶解度の大きいモノクロルベンゼン,ジクロ
ルベンゼン,あるいはトリクロルベンゼンに切り換える
必要があった。また精製実験はすべて活性炭単独ではな
く,溶出溶媒をなるべく低圧で流せることに配慮して,
シリカまたはアルミナと混合して用いたが,トルエン溶
出による精製では,活性炭のカラム充填量と粗フラーレ
ンの負荷量の比を設定するのみで,シリカやアルミナの
充填量には精製の良否は関係ないことも認められた。す
なわち,フラーレンのトルエン溶液中における活性炭の
吸着容量をA(mg/g),活性炭のカラムへの充填量
をB(kg),そして粗フラーレンのカラムへの負荷量
をC(kg)とすれば表1または図1の関係を満足する
ように活性炭の充填量または粗フラーレンの負荷量を設
定すれば,1回のクロマト操作で高純度フラーレンが高
収率で得られるという結論に達した。On the other hand, as a result of examining the purification of crude fullerenes (mixture of C 60 and C 70 ) with these activated carbons under the same conditions, it was found that high-purity fullerene was obtained because activated carbons with a small adsorption capacity were not sufficiently separated. On the contrary, a large amount of activated carbon was easy to obtain a pure product of C 60 , but the expected result was that the yield was extremely low. Therefore, in the case of activated carbon with a small adsorption capacity, we tried to reduce the load of crude fullerene, and conversely, in the case of large activated carbon, we tried to increase the load.
As a result, it was found that the purification with activated carbon, which has a small adsorption capacity, can sufficiently satisfy the purity and yield of the purified product by reducing the loading amount. However, the adsorption capacity is 100 mg
With the above large activated carbon, separation and purification is limited even if the crude fullerene loading is increased, and especially the yield of toluene elution is low, and it is necessary to switch to monochlorobenzene, dichlorobenzene, or trichlorobenzene with higher solubility. It was Moreover, in consideration of the fact that all the purification experiments can flow the elution solvent at a low pressure as much as possible, instead of using activated carbon alone
Although it was used as a mixture with silica or alumina, in the purification by elution with toluene, only the ratio of the column filling amount of activated carbon and the loading amount of crude fullerene was set, and the filling amount of silica or alumina did not affect the quality of purification. It was also accepted. That is, if the adsorption capacity of activated carbon in a toluene solution of fullerene is A (mg / g), the packed amount of activated carbon in a column is B (kg), and the loading amount of crude fullerene in a column is C (kg). It was concluded that high-purity fullerenes can be obtained in a high yield in a single chromatographic operation if the charging amount of activated carbon or the loading amount of crude fullerenes is set so as to satisfy the relationship shown in Table 1 or FIG.
【0009】さらに研究を拡大し,新規な活性炭被覆シ
リカの試作を検討した結果,製造条件を変えることによ
り,フラーレン吸着容量が制御できる方法を開発した。
例えば,クロマト用シリカに単糖類,多糖類,多環芳香
族化合物,その他各種の高分子化合物を反応または含浸
し,300℃以上の温度で不活性または酸化性ガス雰囲
気下常法で炭化賦活する方法によって広範囲のフラーレ
ン吸着容量を有する活性炭被覆シリカを得た。As a result of further expanding the research and studying the trial production of a new activated carbon-coated silica, a method has been developed in which the fullerene adsorption capacity can be controlled by changing the production conditions.
For example, silica for chromatography is reacted or impregnated with a monosaccharide, a polysaccharide, a polycyclic aromatic compound, and various other polymer compounds, and activated by carbonization in an inert or oxidizing gas atmosphere at a temperature of 300 ° C. or higher by a conventional method. By the method, activated carbon coated silica with wide adsorption capacity of fullerenes was obtained.
【0010】[0010]
【実施例】以上をさらに実施例で具体的に示す。本発明
はこれらの実施例に限定されるものではない。[Examples] The above will be described in more detail with reference to Examples. The present invention is not limited to these examples.
【0011】実施例1 実験した広範囲の市販活性炭の内,代表的なものとし
て,フラーレンの吸着容量Aが4.0,40.0,およ
び150mg/gの3種類を選び,カラムへの充填量B
kgと粗フラーレン(C60約80%,C70約20%
の混合物)の負荷量Ckgの比B/Cを,それぞれの活
性炭について4点変えてクロマト精製を実施した。なお
B/Cを変える場合,精製に無関係なクロマト用シリカ
を混合してBのみを変え,Cはー定とした。また溶媒と
して最初トルエン,次にクロルベンゼン,最後はo−ジ
クロルベンゼンの順に用い,同一条件でC60とC70
を溶出精製した。その結果は図1に示した通りであり,
丸印は99%以上の高純度精製品を90%以上の高収率
で得たもの,×印は精製品の純度または収率のいずれか
が低いものをそれぞれ示した。図で分かるように最も良
好な成績が得られる範囲は2本の斜線内の部分であり,
斜線外の部分では分離不十分のため高純度品が得られな
いか,または高収率の得られない条件に対応している
(図1の矢印1)。Example 1 Of the wide range of commercially available activated carbons tested, as typical ones, three fullerene adsorption capacities A of 4.0, 40.0, and 150 mg / g were selected, and the column packing amount was selected. B
kg and crude fullerenes (C 60 about 80%, C 70 about 20%
Chromatographic purification was carried out by changing the ratio B / C of the loading amount Ckg of the mixture) of 4 points for each activated carbon. When B / C was changed, silica for chromatography unrelated to purification was mixed and only B was changed, and C was determined. Further, as the solvent, first, toluene, then chlorobenzene, and finally o-dichlorobenzene were used in this order, and C 60 and C 70 were used under the same conditions.
Was purified by elution. The result is as shown in Figure 1,
The circles indicate that 99% or more of high-purity purified product was obtained in a high yield of 90% or more, and the X indicates that the purity or yield of the purified product was low. As you can see in the figure, the range where the best results are obtained is the area within the two diagonal lines,
It corresponds to the condition where a high-purity product cannot be obtained or a high yield cannot be obtained due to insufficient separation in the part outside the diagonal line (arrow 1 in FIG. 1).
【0012】実施例2 クロマト用シリカとフェニルジメチルクロロシランを常
法で反応してフェニルジメチルシリカを作り,これに各
種濃度(1.0,5.0,および10%)のポリスチレ
ンのトルエン溶液を含浸し,減圧下でトルエンを除去,
乾燥した。それぞれの濃度に対する含浸率は5.0,2
1.5,および54.0%であった。これらの含浸シリ
カを環状炉に入れ,窒素気流下で常法に従い,温度30
0〜900℃で炭化賦活した。得られた活性炭被覆シリ
カのフラーレン吸着容量は,それぞれの含浸率に対応
し,7.8,35.0,および95.0mg/gであっ
た。これらの活性炭被覆シリカについて,実施例1と同
様にして粗フラーレンを精製し,図1と全く同じ結果を
得た(図1の矢印2)。Example 2 Chromatographic silica and phenyldimethylchlorosilane were reacted in a conventional manner to produce phenyldimethylsilica, which was impregnated with toluene solutions of polystyrene of various concentrations (1.0, 5.0, and 10%). And remove toluene under reduced pressure,
Dried. The impregnation rate for each concentration is 5.0, 2
1.5 and 54.0%. These impregnated silicas were placed in a ring furnace and the temperature was adjusted to 30
Carbonization was activated at 0 to 900 ° C. The fullerene adsorption capacities of the obtained activated carbon-coated silica were 7.8, 35.0, and 95.0 mg / g corresponding to the respective impregnation rates. Crude fullerenes were purified from these activated carbon-coated silicas in the same manner as in Example 1 and the same results as in FIG. 1 were obtained (arrow 2 in FIG. 1).
【0013】実施例3 フラーレン吸着容量が約100mg/gの市販活性炭
に,蔗糖の10%溶液を含浸し,減圧下で溶媒を除去,
乾燥し,含浸率30%の蔗糖含浸活性炭を得た。同様に
してデキストラン,エチルセルロース,ポリビニルアル
コール,およびポリスチレンのそれぞれ含浸活性炭を得
た。これらの含浸活性炭を実施例2と同条件で炭化賦活
し,フラーレン吸着容量約25〜80mg/gの改質活
性炭を得た。これらの改質活性炭について,実施例1と
同様に粗フラーレンの精製を行い,図1と全く同じ結果
を得た(図1の矢印3)。Example 3 Commercially available activated carbon having a fullerene adsorption capacity of about 100 mg / g was impregnated with a 10% sucrose solution, and the solvent was removed under reduced pressure.
It was dried to obtain sucrose-impregnated activated carbon having an impregnation rate of 30%. In the same manner, activated carbon impregnated with dextran, ethyl cellulose, polyvinyl alcohol, and polystyrene was obtained. These impregnated activated carbons were activated under the same conditions as in Example 2 to obtain modified activated carbons having a fullerene adsorption capacity of about 25 to 80 mg / g. Crude fullerenes were purified from these modified activated carbons in the same manner as in Example 1, and the same results as in FIG. 1 were obtained (arrow 3 in FIG. 1).
【0014】[0014]
【発明の効果】活性炭をカラム充填剤として粗フラーレ
ンを簡単なクロマト操作により精製する場合,使用する
活性炭のフラーレン吸着容量と,カラム中の充填量,お
よび粗フラーレンの負荷量の量的関係を所定の比に設定
することによって,常に高純度品が高収率で得られる。EFFECTS OF THE INVENTION When crude fullerenes are purified by a simple chromatographic operation using activated carbon as a column packing, the quantitative relationship between the fullerene adsorption capacity of the activated carbon to be used, the filling amount in the column, and the loading amount of crude fullerenes is determined. High purity products can always be obtained in high yields by setting the ratio to.
【0015】また,これに用いる活性炭も,市販シリカ
を単に混合して使用してもよいが,吸着容量を自由に制
御できる本発明の活性炭被覆シリカの方が便利である。As the activated carbon used for this purpose, commercially available silica may be simply mixed and used, but the activated carbon-coated silica of the present invention in which the adsorption capacity can be freely controlled is more convenient.
【図1】図1は粗フラーレンをカラムクロマト法で精製
する場合の条件範囲を示すもので,縦軸はカラム中に充
填した活性炭被覆シリカ(または活性炭)の量Bと粗フ
ラーレンの負荷量Cの比B/Cを,横軸は活性炭被覆シ
リカ(または活性炭)のフラーレン吸着容量Aを,した
がってB/C vs Aを示している。そして丸印はこ
の条件で精製したとき,高純度品が高収率で得られた結
果を,×印は純度か収率のいずれかが低い結果を,それ
ぞれ示している。すなわち2本の斜線内が好適範囲に相
当し,斜線外が不適範囲を表している。また,矢印と数
字は実施例1〜3に対応する。FIG. 1 shows the range of conditions for purifying crude fullerenes by column chromatography. The vertical axis represents the amount B of activated carbon-coated silica (or activated carbon) packed in the column and the loading C of the fullerenes. Ratio B / C, and the horizontal axis represents the fullerene adsorption capacity A of activated carbon-coated silica (or activated carbon), and thus B / C vs A. The circles show the results that high-purity products were obtained in high yield when purified under these conditions, and the x marks show the results that either purity or yield was low. That is, the inside of the two shaded lines corresponds to the suitable range, and the outside of the shaded lines represents the unsuitable range. The arrows and numbers correspond to those in Examples 1 to 3.
Claims (4)
から高純度フラーレンを取得するに当たり,カラム充填
剤として活性炭被覆シリカ(または活性炭)を用い,そ
のフラーレン吸着容量に応じて粗フラーレン負荷量を調
節することを特徴とするフラーレンの精製方法。1. When obtaining high-purity fullerene from a fullerene-containing raw material by column chromatography, activated carbon-coated silica (or activated carbon) is used as a column packing, and the fullerene loading amount is adjusted according to the fullerene adsorption capacity. A characteristic method for purifying fullerenes.
衡濃度が0.1mg/mlのとき,活性炭被覆シリカ
(または活性炭)のフラーレン吸着量をAmg/g,カ
ラムへの充填量をBkg,そして粗フラーレンの負荷量
をCkgとすれば,表1の関係を満足する請求項1のフ
ラーレン精製方法。 【表1】 2. In toluene, when the adsorption equilibrium concentration of fullerene is 0.1 mg / ml, the adsorption amount of fullerene on activated carbon-coated silica (or activated carbon) is Amg / g, the loading amount on the column is Bkg, and the crude fullerene is The method for purifying fullerenes according to claim 1, wherein the relationship of Table 1 is satisfied, where Ckg is the load amount of. [Table 1]
表面を被覆し,300℃以上の温度で不活性ガスまたは
酸化性ガス雰囲気下で炭化および賦活することによって
得られる請求項1の活性炭被覆シリカを使用するフラー
レン精製方法。3. The activated carbon coating according to claim 1, which is obtained by reacting or impregnating silica with an organic compound to coat the surface, and carbonizing and activating in an inert gas or oxidizing gas atmosphere at a temperature of 300 ° C. or higher. Fullerene purification method using silica.
または有機化合物を含浸後,300℃以上の温度で不活
性ガスまたは酸化性ガス雰囲気下で固定化して得られる
請求項1の活性炭を使用するフラーレン精製方法。4. The activated carbon according to claim 1, which is obtained by fixing existing activated carbon as it is or impregnated with various inorganic or organic compounds and then fixing it at a temperature of 300 ° C. or higher in an inert gas or oxidizing gas atmosphere. Fullerene purification method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6188699A JPH0826710A (en) | 1994-07-08 | 1994-07-08 | Method for refining fullerene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6188699A JPH0826710A (en) | 1994-07-08 | 1994-07-08 | Method for refining fullerene |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0826710A true JPH0826710A (en) | 1996-01-30 |
Family
ID=16228276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6188699A Withdrawn JPH0826710A (en) | 1994-07-08 | 1994-07-08 | Method for refining fullerene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0826710A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003040035A1 (en) * | 2001-11-08 | 2003-05-15 | Naoki Komatsu | Process for producing fullerenes |
WO2004071954A1 (en) * | 2003-02-12 | 2004-08-26 | Naoki Komatsu | Process for producing fullerene |
KR20050051960A (en) * | 2003-11-28 | 2005-06-02 | 주식회사 쉐프네커 풍정 | Back-mirror driving device |
JP2007217223A (en) * | 2006-02-16 | 2007-08-30 | Saitama Univ | Method for producing hydrophobic activated carbon |
JP2009531268A (en) * | 2006-03-31 | 2009-09-03 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Method for producing modified activated carbon |
-
1994
- 1994-07-08 JP JP6188699A patent/JPH0826710A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003040035A1 (en) * | 2001-11-08 | 2003-05-15 | Naoki Komatsu | Process for producing fullerenes |
WO2004071954A1 (en) * | 2003-02-12 | 2004-08-26 | Naoki Komatsu | Process for producing fullerene |
KR20050051960A (en) * | 2003-11-28 | 2005-06-02 | 주식회사 쉐프네커 풍정 | Back-mirror driving device |
JP2007217223A (en) * | 2006-02-16 | 2007-08-30 | Saitama Univ | Method for producing hydrophobic activated carbon |
JP2009531268A (en) * | 2006-03-31 | 2009-09-03 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Method for producing modified activated carbon |
US9394179B2 (en) | 2006-03-31 | 2016-07-19 | Philip Morris Usa Inc. | Method of making modified activated carbon |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5662876A (en) | Purification of fullerenes | |
US4225463A (en) | Porous carbon support materials useful in chromatography and their preparation | |
Chen et al. | Synthesis and chromatographic properties of a novel chiral stationary phase derived from heptakis (6-azido-6-deoxy-2, 3-di-O-phenylcarbamoylated)-β-cyclodextrin immobilized onto amino-functionalized silica gel via multiple urea linkages | |
Yan et al. | Fabrication of cellulose derivative coated spherical covalent organic frameworks as chiral stationary phases for high-performance liquid chromatographic enantioseparation | |
WO1989004810A1 (en) | Activated carbon and process for its production | |
US5310532A (en) | Purification of fullerenes | |
US5904852A (en) | Process for purifying fullerenes | |
Giesy et al. | Mass transfer rates of oxygen, nitrogen, and argon in carbon molecular sieves determined by pressure-swing frequency response | |
JPH0826710A (en) | Method for refining fullerene | |
RU2107026C1 (en) | Method of separating fullerenes | |
CN114471450B (en) | A preparation method of g-C3N4@SiO2 | |
EP0281951B1 (en) | Alkyl-phenylcarbamate derivative of polysaccharide | |
JPH066548B2 (en) | Optical resolution method of 4-hydroxycyclopentenone | |
CN104119459A (en) | Preparation method of cyclodextrin hybrid alkyl skeleton chiral stationary phase | |
Ali et al. | C18‐bound porous silica monolith particles as a low‐cost high‐performance liquid chromatography stationary phase with an excellent chromatographic performance | |
WO1998009913A1 (en) | Reversible covalent attachment of fullerenes to insoluble supports | |
JP3051782B2 (en) | Separating agents comprising alkoxy-substituted aromatic carbamate derivatives of cellulose | |
JPH07260762A (en) | Filler for high-speed liquid chromatography and manufacture thereof | |
RU2224714C2 (en) | Method of preparing fulleren c60 | |
Guo et al. | Static equilibrium studies on separation of dichlorobenzene isomers on binder-free hydrophobic adsorbent of MFI type zeolite | |
EP1148945B1 (en) | New hydrophobic polymer comprising fluorine moieties | |
Wang et al. | HPLC and SFC enantioseparation of (±)‐Corey lactone diol: Impact of the amylose tris‐(3, 5‐dimethylphenylcarbamate) coating amount on chiral preparation | |
RU2626635C1 (en) | Method for fulleren c60 purification from oxide impurities | |
JPH0637510B2 (en) | Nucleic acid separation method | |
CN113680336B (en) | Cellulose coated spherical covalent organic framework chiral stationary phase and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20011002 |