JPH08253776A - Method of removing clogging substance from heat exchanger for apparatus for treating waste liquid from cog desulfurization - Google Patents
Method of removing clogging substance from heat exchanger for apparatus for treating waste liquid from cog desulfurizationInfo
- Publication number
- JPH08253776A JPH08253776A JP7083234A JP8323495A JPH08253776A JP H08253776 A JPH08253776 A JP H08253776A JP 7083234 A JP7083234 A JP 7083234A JP 8323495 A JP8323495 A JP 8323495A JP H08253776 A JPH08253776 A JP H08253776A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- waste liquid
- cog
- desulfurization
- sulfur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treating Waste Gases (AREA)
- Industrial Gases (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、COG精製工程から排
出される脱硫廃液処理装置用熱交換器の閉塞除去方法に
関し、より具体的には、廃液供給側から連結配列された
熱交換器及びこれに続く反応塔からなるCOG精製工程
からの脱硫廃液処理装置用熱交換器の閉塞除去方法にお
いて、その閉塞時に開放洗浄を行うことなく、その熱交
換器中で生成する析出硫黄を溶融させることにより、こ
の析出硫黄による閉塞を除去する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing clogging of a heat exchanger for a desulfurization waste liquid treatment apparatus discharged from a COG refining process, and more specifically, a heat exchanger connected and arranged from the waste liquid supply side. In a method for removing clogging of a heat exchanger for a desulfurization waste liquid treatment device from a COG refining process consisting of a subsequent reaction column, melting precipitated sulfur produced in the heat exchanger without performing open washing at the time of clogging The present invention relates to a method for removing the blockage due to the precipitated sulfur.
【0002】[0002]
【従来の技術】コ−クス炉から得られるコ−クス炉ガス
(coke oven gass、本明細書中「CO
G」という)には、タ−ル蒸気、ナフタリン、アンモニ
ア、硫化水素、シアン化合物などの有用成分や有害成分
が多量に含まれている。このためコ−クス炉の各炭化室
から出た粗ガスは、一連の精製工程によりそれら成分を
分離、回収し、また無害化する処理・操作が行われる。
この精製工程は、それら成分の組成や量的割合その他各
種条件等如何により各種態様で実施されているが、図1
は、それら諸態様のうちの一例を説明するための模式図
である。2. Description of the Related Art Coke oven gas obtained from a coke oven, referred to herein as "CO"
"G") contains a large amount of useful components and harmful components such as tar vapor, naphthalene, ammonia, hydrogen sulfide, and cyan compounds. For this reason, the crude gas discharged from each carbonization chamber of the coke oven is subjected to a treatment / operation for separating and recovering those components and detoxifying them by a series of purification steps.
This purification step is carried out in various modes depending on the composition, the quantitative ratio of the components, various conditions, etc.
[Fig. 3] is a schematic diagram for explaining an example of those aspects.
【0003】図1中、その上方部の各種処理・操作用の
機器を結ぶ太い実線(矢印を含む)はCOG自体の流れ
を、その余の線は排液や副産物、或いは吸収液等の流れ
を示している。図1中、コ−クス炉からのCOGは導管
1からコンデンサ−2(例えば海水等による間接冷
却)、ダイレクトク−ラ−3(例えばガス液等による直
接冷却)で冷却されて水分及びタ−ルが除去されるが、
ここからの排液はタ−ル・ガス液デカンタ−4によりタ
−ル分を分離回収した後、例えば活性汚泥装置6、排水
三次処理装置7を経て十分に浄化され、排出される。な
お、5はタ−ルタンクである。In FIG. 1, a thick solid line (including an arrow) connecting the equipment for various treatments / operations in the upper part shows the flow of COG itself, and the remaining line shows the flow of drainage liquid, by-product, absorption liquid, etc. Is shown. In FIG. 1, COG from the coke oven is cooled from a conduit 1 by a condenser-2 (for example, indirect cooling by seawater) and a direct cooler-3 (for example, direct cooling by gas liquid) to obtain moisture and tar. Is removed,
The effluent discharged from here is separated and collected in a tar / gas liquid decanter-4, and then is thoroughly purified and discharged through, for example, an activated sludge device 6 and a drainage tertiary treatment device 7. In addition, 5 is a tar tank.
【0004】一方COGは、排送機8によってナフタリ
ンスクラバ−9に送られ、ここでナフタリンを除去、回
収した後、乾式電気集塵機11へ導入され、この乾式電
気集塵機11では残余のタ−ルミストが除去される。な
お10は、スクラバ−9からのナフタリン吸収油再生装
置である。引続き、COGは湿式脱硫装置Zへ導かれる
が、この湿式脱硫装置Zは、例えば1個又はそれ以上の
吸収塔12及び酸化塔13で構成されており、ここで上
方から循環散布される吸収液(脱硫液)に対してCOG
を下方部から導入して向流接触させ、主としてCOG中
のH2S 及びHCNを吸収、除去するものである。On the other hand, the COG is sent to the naphthalene scrubber 9 by the discharger 8, where the naphthalene is removed and recovered, and then introduced into the dry type electrostatic precipitator 11. In the dry type electrostatic precipitator 11, the remaining tar mist is collected. To be removed. In addition, 10 is a naphthalene absorption oil regeneration device from the scrubber-9. Subsequently, the COG is guided to the wet desulfurization unit Z, which is composed of, for example, one or more absorption towers 12 and oxidation towers 13, where the absorption liquid circulated and sprayed from above is used. COG for (desulfurization liquid)
Is introduced from below and brought into countercurrent contact to absorb and remove mainly H 2 S and HCN in COG.
【0005】次いで、COGはアンモニアスクラバ−1
4へ導かれる。ここでは硫酸液により脱アンモニアをさ
れ、このアンモニアは硫安分離装置15により硫安とし
て回収されるが、COG自体は、ファイナルク−ラ−1
6で冷却、脱水され、随伴されている硫安や酸ミスト等
を除去した後、乾式脱硫塔17で残余の最終的な脱H 2
S を行い、引続きベンゾ−ルスクラバ−18によりベ
ンゾ−ルが除去、回収される。このスクラバ−18を出
たCOGは、以降、燃料として利用され、或いは必要な
成分調整等を経て都市ガス等の原料として供給され、或
いはその中のメタンその他の炭化水素を水素へ転換し、
化学工業用の水素源として供給、利用される。なお図中
19は、スクラバ−18からのベンゾ−ル溶媒回収装置
である。Next, COG is an ammonia scrubber-1.
Guided to 4. Here, deammonification is performed with sulfuric acid solution.
This ammonia is converted to ammonium sulfate by the ammonium sulfate separation device 15.
The COG itself is collected by the final cooler-1.
Ammonium sulfate, acid mist, etc. that have been cooled and dehydrated in 6
After removing the residual hydrogen, the residual desulfurization is performed in the dry desulfurization tower 17. 2
S, followed by benzo-rubber scrubber-18
The nozzles are removed and collected. Exit this scrubber-18
COG will be used or required as fuel after that.
It is supplied as a raw material for city gas, etc.
Or convert methane and other hydrocarbons in it into hydrogen,
It is supplied and used as a hydrogen source for the chemical industry. In the figure
19 is a benzene solvent recovery device from the scrubber-18.
Is.
【0006】概略以上の諸精製工程のうち、湿式脱硫装
置ZにおけるH2S 及びHCNの吸収、除去操作は、通
常アルカリ吸収液を用いて実施されるが、この吸収液と
しては、その優れた触媒特性から、好ましくは1,4−
ナフトキノン−2−スルホン酸アンモニウム(ナフトキ
ノンスルホン酸アンモニウム)を含むアルカリ吸収液が
使用される。この場合、湿式脱硫装置Z中では下記式
(1)〜(6)で示される反応が進行してCOG中のア
ンモニアをも取り込み、H2S 及びHCNを吸収すると
ともに、併わせてCO2 の吸収反応も進行する。[0006] Of the various refining steps outlined above, the operation of absorbing and removing H 2 S and HCN in the wet desulfurization unit Z is usually carried out using an alkaline absorbing solution, which is excellent as the absorbing solution. From the catalytic properties, preferably 1,4-
An alkaline absorbing liquid containing ammonium naphthoquinone-2-sulfonate (ammonium naphthoquinone sulfonate) is used. In this case, in the wet desulfurization unit Z, the reactions represented by the following formulas (1) to (6) proceed to take in ammonia in COG, absorb H 2 S and HCN, and at the same time produce CO 2 The absorption reaction also progresses.
【0007】《吸収反応》 NH3 + H2O → NH4OH (1) NH4OH + H2S → NH4HS + H2O (2) NH4OH + HCN → NH4CN + H2O (3) NH4OH + CO2 → (NH4)HCO3 (4) 《水硫化アンモニウムの酸化反応》<Absorption reaction> NH 3 + H 2 O → NH 4 OH (1) NH 4 OH + H 2 S → NH 4 HS + H 2 O (2) NH 4 OH + HCN → NH 4 CN + H 2 O (3) NH 4 OH + CO 2 → (NH 4 ) HCO 3 (4) << Oxidation reaction of ammonium hydrosulfide >>
【化 1】 《触媒の酸化反応》[Chemical 1] <Catalyst oxidation reaction>
【化 2】 [Chemical 2]
【0008】ここで上記反応式(5)の反応によりS
(硫黄)が生じるが、この硫黄とNH4HSとがアンモ
ニアと下記式(7)のように反応して(NH4)2SX+1
となり、さらにこの(NH4)2SX+1がNH4 CNと下
記式(8)のように反応してNH4SCN(ロダン化ア
ンモニウム)になり、さらにこのロダン化反応で生じる
(NH4)2SXは、下記式(9)の反応により(NH4)
2SX+1を生成する。 《多硫化反応》 NH3 + NH4HS + SX → (NH4)2SX+1 (7) 《ロダン化反応》 (NH4)2SX+1 + NH4CN → (NH4)2SX + NH4SCN (8) 《多硫化再生反応》 (NH4)2SX + S → (NH4)2SX+1 (9)Here, by the reaction of the above reaction formula (5), S
(Sulfur) is generated, and this sulfur and NH 4 HS react with ammonia as shown in the following formula (7) to produce (NH 4 ) 2 S X + 1.
Further, this (NH 4 ) 2 S X + 1 reacts with NH 4 CN as shown in the following formula (8) to NH 4 SCN (ammonium rhodanide), which is further produced by this rhodanation reaction (NH 4 ) 2 S X is (NH 4 ) by the reaction of the following formula (9).
2 S X + 1 is generated. "Polysulfide reaction" NH 3 + NH 4 HS + S X → (NH 4) 2 S X + 1 (7) " rhodanide reaction" (NH 4) 2 S X + 1 + NH 4 CN → (NH 4) 2 S X + NH 4 SCN (8) << Polysulfide regeneration reaction >> (NH 4 ) 2 S X + S → (NH 4 ) 2 S X + 1 (9)
【0009】COG中のH2S とHCNを吸収し、これ
ら(1)〜(9)等の反応を経た脱硫液は吸収塔12の
底部から酸化再生用空気が導入される酸化塔13へ送ら
れ、ここでナフトキノンスルホン酸アンモニウム触媒及
び導入空気中の酸素の作用によりさらに反応して(NH
4)2SO4、(NH4)2S2O3、SX等を生成し、逐次吸
収塔12の上部に循環されるが、その脱硫液の一部は吸
収塔12の下部から(酸化塔13の前部で)逐次抜き出
される。また(4)の反応で吸収されたCO2は次式
(10)の反応により、酸化塔13での空気との接触で
除かれる。 2(NH4)HCO3 → (NH4)2CO3 + H2O + CO2 (10)The desulfurization liquid which has absorbed H 2 S and HCN in COG and has undergone the reactions (1) to (9) is sent from the bottom of the absorption tower 12 to the oxidation tower 13 where the air for oxidation regeneration is introduced. Where the naphthoquinone sulfonate ammonium catalyst and oxygen in the introduced air further react (NH
4 ) 2 SO 4 , (NH 4 ) 2 S 2 O 3 , S X, etc. are generated and sequentially circulated to the upper part of the absorption tower 12, but a part of the desulfurization liquid is discharged from the lower part of the absorption tower 12 (oxidation). Sequential withdrawal (at the front of tower 13). Further, the CO 2 absorbed in the reaction of (4) is removed by contact with air in the oxidation tower 13 by the reaction of the following formula (10). 2 (NH 4 ) HCO 3 → (NH 4 ) 2 CO 3 + H 2 O + CO 2 (10)
【0010】上記脱硫液(本明細書中、この脱硫液を適
宜「廃液」、「脱硫廃液」、「COG脱硫廃液」とい
う)中には、上述諸反応による生成物であるNH4 SC
N、(NH4)2SO4、(NH4)2SO3、(NH4)2S
2O3、(NH4)2CO3 及び硫黄等が含まれる。この脱
硫液は、上記抜出し後、脱硫液用の処理装置20で湿式
酸化により処理されて硫酸及び硫安となり、最終的に硫
安回収設備15に送られ硫安として回収される。In the above desulfurization liquid (in the present specification, this desulfurization liquid is appropriately referred to as "waste liquid", "desulfurization waste liquid", "COG desulfurization waste liquid"), NH 4 SC which is a product of the above-mentioned reactions.
N, (NH 4 ) 2 SO 4 , (NH 4 ) 2 SO 3 , (NH 4 ) 2 S
2 O 3 , (NH 4 ) 2 CO 3 and sulfur are included. After the desulfurization, the desulfurization liquid is treated by wet oxidation in the desulfurization liquid treatment device 20 to be sulfuric acid and ammonium sulfate, and finally sent to the ammonium sulfate recovery facility 15 to be recovered as ammonium sulfate.
【0011】図2は、上記脱硫廃液処理装置20の一態
様を示すものである。図2の態様の場合、脱硫廃液処理
装置20は廃液供給側から直列に配列された熱交換器
A、熱交換器B、熱交換器C及びこれに続く反応塔Rか
らなり、ここでの熱交換器はA〜Cの三個であるが、こ
の熱交換器の数は図2の態様のように三個とは限らず、
一個又は二個、或いは四個以上使用することができ、ま
た図示のように直列にではなく、並列に配置することも
できる。また、反応塔Rの数についても、そのように一
個とは限らず、二個以上で構成することもできる。FIG. 2 shows an embodiment of the desulfurization waste liquid treatment apparatus 20. In the case of the embodiment shown in FIG. 2, the desulfurization waste liquid treatment device 20 is composed of a heat exchanger A, a heat exchanger B, a heat exchanger C and a reaction tower R following the heat exchanger A, which are arranged in series from the waste liquid supply side. Although there are three exchangers A to C, the number of heat exchangers is not limited to three as in the embodiment of FIG.
One or two, or four or more can be used, and they can be arranged in parallel instead of in series as shown. Further, the number of the reaction towers R is not limited to one as described above, and may be two or more.
【0012】吸収塔12の下部から抜き出された脱硫廃
液は、脱硫廃液処理装置20における総発熱量が一定と
なるように希釈、調整された後、供給導管21により熱
交換器Aへ供給されるが、途中空気供給導管22から酸
化用空気が混入される。その後脱硫廃液は、熱交換器A
から、順次熱交換器B及び熱交換器Cを経て、さらに反
応塔Rの下部23に供給される。一方、反応塔Rの塔頂
からの酸化ガス(本明細書中、「排ガス」とも云う)
は、導管25により脱硫廃液の方向とは逆方向に熱交換
器C(すなわち反応塔側直近の熱交換器)へ導入された
後、導管26から熱交換器Bへ、また導管27から熱交
換器Aへと供給され、各熱交換器C、B及びAで順次間
接熱交換により脱硫廃液を加熱する。The desulfurization waste liquid extracted from the lower part of the absorption tower 12 is diluted and adjusted so that the total calorific value in the desulfurization waste liquid treatment device 20 becomes constant, and then supplied to the heat exchanger A by the supply conduit 21. However, the oxidizing air is mixed from the air supply conduit 22 on the way. After that, the desulfurization waste liquid is transferred to the heat exchanger A.
Then, it is sequentially supplied to the lower portion 23 of the reaction tower R via the heat exchanger B and the heat exchanger C. On the other hand, the oxidizing gas from the top of the reaction tower R (also referred to as "exhaust gas" in the present specification)
Is introduced into the heat exchanger C (that is, the heat exchanger closest to the reaction tower side) in the direction opposite to the direction of the desulfurization waste liquid by the conduit 25, and then from the conduit 26 to the heat exchanger B and from the conduit 27. It is supplied to the vessel A and the desulfurization waste liquid is heated by the indirect heat exchange in each of the heat exchangers C, B and A.
【0013】前述のとおり、脱硫廃液中にはNH4SC
N、(NH4)2SO4、(NH4)2SO3、(NH4)2S
2O3、(NH4)2CO3及び硫黄等のほか、これに液相
中に浮遊して有機物が含まれているが、これら成分は脱
硫廃液処理装置20において下記式(11)〜(14)
の反応により(NH4)2SO4及びH2SO4 に転換され
る。なお(NH4)2SO4 はそのままであり、他方有機
物は酸化される。 (NH4)2S2O3+2O2+H2O →(NH4)2SO4+H2SO4 (11) NH4SCN+2O2+2H2O →(NH4)2SO4+CO2 (12) (NH4)2CO3+H2SO4 →(NH4)2SO4+H2O+CO2 (13) S+3/2O2 + H2O → H2SO4 (14)As mentioned above, NH 4 SC is contained in the desulfurization waste liquid.
N, (NH 4 ) 2 SO 4 , (NH 4 ) 2 SO 3 , (NH 4 ) 2 S
In addition to 2 O 3 , (NH 4 ) 2 CO 3, sulfur, and the like, they also contain organic substances suspended in the liquid phase. These components are expressed by the following formulas (11) to ( 14)
Is converted to (NH 4 ) 2 SO 4 and H 2 SO 4 . Note that (NH 4 ) 2 SO 4 remains as it is, while organic substances are oxidized. (NH 4 ) 2 S 2 O 3 + 2O 2 + H 2 O → (NH 4 ) 2 SO 4 + H 2 SO 4 (11) NH 4 SCN + 2O 2 + 2H 2 O → (NH 4 ) 2 SO 4 + CO 2 (12) ( NH 4 ) 2 CO 3 + H 2 SO 4 → (NH 4 ) 2 SO 4 + H 2 O + CO 2 (13) S + 3 / 2O 2 + H 2 O → H 2 SO 4 (14)
【0014】上記式(11)〜(14)の反応は何れも
発熱反応であり、その反応促進上加熱されるが、この加
熱には主として熱交換器B、C及び反応塔R中における
上記式(11)〜(14)の反応による発生熱が利用さ
れる。例えばこの装置の一操作例では、式(11)の反
応すなわち(NH4)2S2O3の酸化反応は熱交換器B及
びCで進行し(なお、この酸化反応は熱交換器Aでも起
こるが、これは僅かである)、式(12)の反応すなわ
ちNH4SCN の酸化反応は熱交換器C及び反応塔R中
で進行する(後述、図5(a)参照)。The reactions of the above formulas (11) to (14) are all exothermic reactions, and they are heated to accelerate the reaction. For this heating, the above formulas in the heat exchangers B, C and the reaction tower R are mainly used. The heat generated by the reactions of (11) to (14) is used. For example, in one operation example of this apparatus, the reaction of the formula (11), that is, the oxidation reaction of (NH 4 ) 2 S 2 O 3 proceeds in the heat exchangers B and C (this oxidation reaction also occurs in the heat exchanger A). The reaction of the formula (12), that is, the oxidation reaction of NH 4 SCN proceeds in the heat exchanger C and the reaction column R (see FIG. 5A, which will be described later).
【0015】このため、これらの各箇所での上記反応促
進上の加熱は、熱交換器B及びC中での反応により発
生した熱それ自体及び反応塔R中での反応により発生
した熱を利用して行われるが、これら〜、特にで
の反応による熱を利用するのため(なお、脱硫廃液は、
での発生熱により、既に反応塔Rへ入る前にその分加
熱され、昇温している)、反応塔Rで発生した排ガスを
その頂部から導管25により熱交換器Cへ供給し、以降
順次B及びAへと供給する。Therefore, the heating for promoting the reaction at each of these points utilizes the heat generated by the reaction in the heat exchangers B and C itself and the heat generated by the reaction in the reaction tower R. However, in order to utilize the heat from the reaction in these
Already heated by the heat generated in the reaction tower R by that amount and heated up), the exhaust gas generated in the reaction tower R is supplied from the top to the heat exchanger C through the conduit 25, and thereafter sequentially. Supply to B and A.
【0016】この場合、熱交換器Cからの排出ガスの一
部は導管26から分岐された導管29によりバイパス
(ホットバイパス)されている。このホットバイパス
は、主として排ガスによる熱交換器Bでの加熱の程度を
調節することにより、反応塔Rでの反応温度を調節する
ためのものであり、その調整・制御はホットバイパス弁
30によって行われる。なお図示のとおり、ここでホッ
トバイパスされた排ガスは熱交換器Aからの排出ガス
(導管28)と合流される。In this case, a part of the exhaust gas from the heat exchanger C is bypassed (hot bypass) by the conduit 29 branched from the conduit 26. This hot bypass is for adjusting the reaction temperature in the reaction tower R mainly by adjusting the degree of heating in the heat exchanger B by the exhaust gas, and the adjustment / control is performed by the hot bypass valve 30. Be seen. As shown in the figure, the hot-bypassed exhaust gas is combined with the exhaust gas (conduit 28) from the heat exchanger A.
【0017】また、上記ホットバイパスは、そのように
熱交換器Cからの排出ガスについて行うのに代えて、反
応器R又は熱交換器Bからの排出ガスについて行うこと
も可能である。また、図2の態様では熱交換器はA〜C
の三個であるが、この熱交換器を例えば一個使用する場
合にも、同じく反応塔の塔頂からの排ガスは、導管によ
り脱硫廃液の方向とは逆方向にその熱交換器へ導入され
るが、この場合のホットバイパスは、その導管から分岐
された導管により行うことができる。Further, the hot bypass can be performed on the exhaust gas from the reactor R or the heat exchanger B instead of performing the exhaust gas from the heat exchanger C as described above. Further, in the embodiment of FIG. 2, the heat exchangers A to C are used.
However, when using one heat exchanger, for example, the exhaust gas from the top of the reaction tower is also introduced into the heat exchanger through the conduit in the direction opposite to the direction of the desulfurization waste liquid. However, the hot bypass in this case can be performed by a conduit branched from the conduit.
【0018】また、脱硫廃液処理装置20を以上のよう
に操作するに際し、その操作上の主な制御ポイントとし
ては、脱硫廃液処理装置20における総発熱量が一定
となるように希釈、調整すること(これは熱交換器及び
反応塔における発熱量に直接関連する)、空気/廃液
比すなわち脱硫廃液に対する反応用O2 比の制御及び
ホットバイパス量の制御の三点であるが、総発熱量を調
整するのはの廃液濃度の調整により行われる。When the desulfurization waste liquid treatment apparatus 20 is operated as described above, the main control point in the operation is to dilute and adjust the total calorific value of the desulfurization waste liquid treatment apparatus 20 to be constant. (This is directly related to the heat generation amount in the heat exchanger and the reaction tower), the air / waste liquid ratio, that is, the control of the reaction O 2 ratio to the desulfurization waste liquid, and the hot bypass amount control. The adjustment is performed by adjusting the concentration of the waste liquid.
【0019】しかし、この装置の操作における問題点と
しては、その稼動中に析出硫黄により熱交換器に閉塞が
起こることである。下記式(15)のとおり、S2O3 2-
の酸化反応では、中間生成物として硫黄を生成し、この
硫黄が熱交換器で固体として析出する(例えば図2の態
様の場合、運転条件如何にもよるが、熱交換器Aのほ
か、熱交換器Bでも熱交換器Cでも析出する)。 2S2O3 2- + 1/2O2 → SO4 2- + SO3 2- + 2S (15)However, a problem in the operation of this device is that the heat exchanger is clogged by the deposited sulfur during its operation. As shown in the following formula (15), S 2 O 3 2-
In the above oxidation reaction, sulfur is produced as an intermediate product, and this sulfur is deposited as a solid in the heat exchanger (for example, in the case of the embodiment of FIG. 2, depending on the operating conditions, the heat exchanger A, heat It deposits in both exchanger B and heat exchanger C). 2S 2 O 3 2- + 1 / 2O 2 → SO 4 2- + SO 3 2- + 2S (15)
【0020】この硫黄の析出を回避するには、熱交換器
中で上記式(15)による硫黄の生成反応そのものが可
及的に起こらないよう操作する必要があり、その操作の
例は供給空気量を絞ることにより脱硫廃液に対するO2
の濃度を低減させ〔例えば廃液に対する空気比(廃液中
の成分を酸化するに必要な理論空気量に対する比)を減
らすことにより〕、これにより反応開始温度を高くし、
熱交換器でのS2O3 2-の酸化反応を抑制するよう制御す
ること等である。In order to avoid the precipitation of sulfur, it is necessary to operate in the heat exchanger so that the sulfur-producing reaction itself according to the above formula (15) does not occur as much as possible. O 2 to the desulfurization waste liquid by squeezing the amount
By decreasing the concentration of [for example, by reducing the ratio of air to waste liquid (the ratio to the theoretical amount of air required to oxidize the components in the waste liquid)], thereby increasing the reaction initiation temperature,
For example, control is performed so as to suppress the oxidation reaction of S 2 O 3 2− in the heat exchanger.
【0021】図3は、上記抑制、制御の態様を説明する
ための模式図であり、図中横軸は、左方すなわち熱交換
器から右方すなわち反応器までにおける反応位置を示し
ている〔これを図2の態様の場合について云えば、熱交
換器A(横軸の左方)から反応器R(横軸の右方)まで
における反応位置を示している〕。FIG. 3 is a schematic diagram for explaining the mode of suppression and control described above. In the figure, the horizontal axis indicates the reaction position from the left, that is, the heat exchanger to the right, that is, from the reactor [. In the case of the embodiment of FIG. 2, this shows the reaction position from the heat exchanger A (left side of the horizontal axis) to the reactor R (right side of the horizontal axis).
【0022】図3のとおり、O2 濃度が高いと反応開始
温度が低く、それだけ早期に硫黄の生成、析出が始まる
が、この硫黄の析出は横軸の左方(例えば、熱交換器A
及び/又はB)で起こり、その析出量は時間の経過とと
もに増加してくる。そこでこの時、導管22(図2の態
様の場合)からの空気量を絞ると反応開始温度が上がる
が、この上昇反応開始温度が硫黄の溶融温度(119
℃)を超える温度となるように供給空気量を絞ることに
より、横軸の左方(例えば熱交換器A、B)における硫
黄の生成反応自体をなくすることにより、硫黄の析出を
抑制するものである。As shown in FIG. 3, when the O 2 concentration is high, the reaction initiation temperature is low, and the generation and precipitation of sulfur start earlier, but this sulfur precipitation is on the left side of the horizontal axis (for example, heat exchanger A
And / or B), and the amount of precipitation increases with the passage of time. Therefore, at this time, if the amount of air from the conduit 22 (in the case of the embodiment of FIG. 2) is reduced, the reaction start temperature rises, but this rising reaction start temperature is the melting temperature of sulfur (119
(C)) to suppress the precipitation of sulfur by eliminating the sulfur production reaction itself on the left side of the horizontal axis (for example, heat exchangers A and B) by reducing the supply air amount so that the temperature exceeds Is.
【0023】しかし本発明者によれば、以上のような態
様の廃液処理装置について前記操作態様によって現実に
運転をし、上記のような制御を続けているうち、熱交換
器において、差圧(供給廃液流について、熱交換器への
入口と出口における圧力差。図2の場合、例えば熱交換
器Bの入口と出口との圧力差)が異常に上昇することが
観察され、しかもこの原因が熱交換器中に析出した硫黄
に起因する通路閉塞によることが明らかになった。However, according to the present inventor, the waste liquid treatment apparatus of the above-mentioned mode is actually operated according to the above-mentioned operation mode, and while the control as described above is continued, the differential pressure ( Regarding the supply waste liquid flow, the pressure difference between the inlet and the outlet of the heat exchanger.In the case of Fig. 2, it is observed that the pressure difference between the inlet and the outlet of the heat exchanger B) rises abnormally, and the cause is It was revealed that it was due to the passage blockage due to the sulfur deposited in the heat exchanger.
【0024】そこで、さらに熱交換器における上記差圧
の上昇、硫黄生成の原因について追求、究明をしたとこ
ろ、その脱硫廃液中のその組成比そのものに変動を来
し、脱硫廃液の主要成分である(NH4)2S2O3 とN
H4SCNの比率が変化していることが分かった。その
組成比の変動は脱硫装置Z、またそれ以前の過程、操作
における何らかの要因によるもの(比率上昇の原因は、
恐らくは原料石炭の性状変化によるものと推測される)
と解せざるを得ないが、何れにせよ有効な何らかの対策
を講じる必要がある。Therefore, when the cause of the above-mentioned increase of the differential pressure and the production of sulfur in the heat exchanger was further investigated and investigated, the composition ratio itself in the desulfurization waste liquor was changed and was the main component of the desulfurization waste liquor. (NH 4 ) 2 S 2 O 3 and N
It was found that the ratio of H 4 SCN was changing. The fluctuation of the composition ratio is due to some factor in the desulfurization unit Z, the process before that, and the operation (the cause of the ratio increase is
Probably due to changes in the properties of the raw coal)
I have to understand that, but it is necessary to take some effective measures anyway.
【0025】その対策としては、最も原始的な手法とし
て、その都度装置全体を停止して当該熱交換器を開放し
その閉塞の原因である析出硫黄の洗浄を行うことが挙げ
られるが、これではその解体、洗浄補修後、再び組み立
てる等の煩鎖な作業を要するばかりでなく、定常運転に
至るまでの新たな起動操作等を必要とし、さらには熱効
率上も著しくマイナスとなってしまう。As a countermeasure, the most primitive method is to stop the entire apparatus each time to open the heat exchanger and wash the deposited sulfur which is the cause of the blockage. After dismantling, cleaning and repairing, not only complicated work such as reassembling is required, but also a new starting operation is required until steady operation, and the thermal efficiency is significantly reduced.
【0026】[0026]
【発明が解決しようとする課題】そこで本発明では、C
OG廃液処理装置の熱交換器における前述差圧の上昇、
硫黄の析出によるそのような問題点につき、この熱交換
器での硫黄の生成、析出によるそのような欠点を解決す
る手法として、前述その差圧発生時点で装置システム全
体を停止することなく、その操作自体に工夫をすること
により、析出硫黄を有効に排除することができるように
したものである。Therefore, in the present invention, C
Rise of the above-mentioned differential pressure in the heat exchanger of the OG waste liquid treatment device,
Regarding such a problem due to the precipitation of sulfur, as a method for solving such a defect due to the generation and precipitation of sulfur in this heat exchanger, without stopping the entire system of the apparatus at the time when the differential pressure occurs, By devising the operation itself, the deposited sulfur can be effectively eliminated.
【0027】すなわち本発明は、COG精製工程からの
脱硫廃液の処理装置用熱交換器における析出硫黄による
閉塞を除去するに当たり、該装置全体を停止することな
く、反応塔又は最終熱交換器からの排ガス用ホットバイ
パス弁の開度を、通常運転におけるホットバイパス弁の
操作目的(=反応塔Rでの反応温度の調節)を超えて小
さくする(=ホットバイパス量を少なくする)ことによ
り、硫黄閉塞物を溶解させることによって前述のような
煩鎖な洗浄操作等自体を回避することができ、また操作
効率及び熱効率を維持することができるCOG精製工程
からの廃液処理装置用熱交換器の閉塞除去方法を提供す
ることを目的とする。That is, according to the present invention, in removing the blockage of the desulfurization waste liquid from the COG refining process due to the precipitated sulfur in the heat exchanger for the treatment apparatus, the apparatus can be operated from the reaction tower or the final heat exchanger without stopping the entire apparatus. Sulfur blockage by reducing the opening degree of the exhaust gas hot bypass valve beyond the purpose of operating the hot bypass valve in normal operation (= adjusting the reaction temperature in the reaction tower R) (= reducing the hot bypass amount) By dissolving the substance, it is possible to avoid the above-mentioned troublesome washing operation itself, and it is possible to maintain the operation efficiency and the heat efficiency. The blockage removal of the heat exchanger for the waste liquid treatment device from the COG purification step. The purpose is to provide a method.
【0028】[0028]
【課題を解決するための手段】本発明は、COG精製工
程からの脱硫廃液を一つ又はそれ以上の熱交換器及びこ
れに続く反応塔に供給する一方、反応塔の排ガスを熱交
換器へ向流供給するとともに、反応塔又は熱交換器から
の排ガスの一部をホットバイパスさせるようにしてなる
COGの脱硫廃液処理装置における熱交換器の閉塞除去
方法において、該熱交換器における差圧上昇時において
該排ガスのホットバイパス量を、通常運転におけるホッ
トバイパス量を超えて小さくし、これによって熱交換器
内の脱硫廃液温度を上昇させることにより硫黄閉塞物を
溶融させることを特徴とするCOGの脱硫廃液処理装置
用熱交換器の閉塞除去方法を提供するものである。The present invention is directed to supplying desulfurization waste liquor from a COG refining process to one or more heat exchangers and subsequent reaction towers, while the exhaust gas of the reaction towers is sent to the heat exchangers. In the method for removing blockage of a heat exchanger in a COG desulfurization waste liquid treatment apparatus, which is configured to perform hot bypass of a part of exhaust gas from a reaction tower or a heat exchanger while supplying countercurrent, a differential pressure increase in the heat exchanger. At this time, the hot bypass amount of the exhaust gas is made smaller than the hot bypass amount in the normal operation, thereby increasing the temperature of the desulfurization waste liquid in the heat exchanger, thereby melting the sulfur clogging material. Provided is a method for removing clogging of a heat exchanger for a desulfurization waste liquid treatment device.
【0029】前記熱交換器における差圧上昇は通常長時
間にわたって少しずつ進行して行くが、上記「差圧上昇
時」とは、その差圧上昇を検知した後、差圧上昇により
運転を継続できなくなるまでの間の適宜の時点を意味
し、本明細書中「差圧上昇時」とはこの意味で使用して
いる。また、上記「該排ガスのホットバイパス量を、通
常運転におけるホットバイパス量を超えて小さくし」と
は、該ホットバイパス量を、それ本来の操作目的すなわ
ち反応塔(図2で云えばR)での反応温度調節のために
通常採られる量を超えて絞ること、より具体的には例え
ばその弁を少しずつ閉方向に操作(=開度を小さくする
操作)して行き、熱交換器内の廃液の温度が硫黄の融点
をこえる程度に操作すること(この絞り操作には、その
弁を全閉とすること、すなわち閉操作を含む)を意味す
る。Although the differential pressure increase in the heat exchanger usually progresses little by little over a long period of time, the "during differential pressure increase" means that the differential pressure increase is detected and then the operation is continued due to the differential pressure increase. It means an appropriate point in time until it becomes impossible, and in this specification, "at the time of increasing the differential pressure" is used in this meaning. Further, the above-mentioned "to make the hot bypass amount of the exhaust gas smaller than the hot bypass amount in the normal operation" means that the hot bypass amount is the original operation purpose, that is, the reaction tower (R in FIG. 2). To reduce the reaction temperature of the heat exchanger, which is usually used for controlling the reaction temperature, and more specifically, for example, by gradually operating the valve in the closing direction (= operating to reduce the opening), It means that the temperature of the waste liquid is operated to exceed the melting point of sulfur (this throttling operation includes fully closing the valve, that is, closing operation).
【0030】上記本発明を、その一例として、図2に示
すような態様のCOG脱硫廃液処理装置について云え
ば、熱交換器Bでの差圧上昇時に導管26から分岐した
ホットバイパス導管29に設けられたホットバイパス弁
30に本発明による絞り操作(含:閉操作、以下同じ)
を加えることになるが、このホットバイパス弁30に
絞り操作を実施することにより、熱交換器Bへの排ガス
の供給量を増やし、これによって熱交換器B内の温度
を高めることにより閉塞物である固形硫黄(析出硫黄)
を溶融させる。すなわちこのようにホットバイパス弁3
0を絞ると、その分熱交換器Bへの排ガスの通過量が増
加する。この増加排ガスにより熱交換器B中における
温度を上昇させ、これによって熱交換器B中の固形硫
黄を溶融させることにより、その固形硫黄に起因する
閉塞を解消させることができる。As an example of the COG desulfurization waste liquid treatment apparatus of the embodiment shown in FIG. 2, the present invention is provided in a hot bypass conduit 29 branched from the conduit 26 when the differential pressure in the heat exchanger B rises. Throttle operation according to the present invention to the hot bypass valve 30 (including: closing operation, the same applies hereinafter)
The hot bypass valve 30 is throttled to increase the amount of exhaust gas supplied to the heat exchanger B, thereby increasing the temperature in the heat exchanger B, thereby increasing the amount of blockage. Certain solid sulfur (precipitated sulfur)
To melt. That is, the hot bypass valve 3
When 0 is reduced, the amount of exhaust gas passing through the heat exchanger B is increased accordingly. By increasing the temperature in the heat exchanger B by this increased exhaust gas and thereby melting the solid sulfur in the heat exchanger B, the blockage due to the solid sulfur can be eliminated.
【0031】[0031]
【実施例】以下、本発明の実施例を説明するが、本発明
がこの実施例に限定されないことは勿論である。図4
は、図2に示す態様の装置における現実の一具体的操作
例であり、表1は、この操作例における平常運転時(昇
温操作前)及び差圧上昇時(昇温操作時)における各部
位の温度バランスの変化を示したものである。EXAMPLES Examples of the present invention will be described below, but it goes without saying that the present invention is not limited to these examples. FIG.
2 is an example of one actual operation in the apparatus of the embodiment shown in FIG. 2, and Table 1 shows each of the operation examples during normal operation (before temperature raising operation) and during differential pressure increase (when temperature raising operation). It shows a change in temperature balance of a part.
【0032】図4中、横軸は時間(h)、縦軸は、それ
ぞれ下方から酸化ガス中のO2 濃度(モル%)、熱
交換器Bでの差圧(kg/cm2 )及び熱交換器A、
B、Cにおけるその出口温度(廃液の温度)を示してい
る。図4のとおり、熱交換器Bにおける差圧上昇時(図
中Xとして示す時点)において、ホットバイパス導管2
9に設けられた弁30を通常運転時における場合の絞り
度を超えて絞ったところ、熱交換器Bの温度は上昇し
(程度の差はあるが、熱交換器Aについても同様であ
る)、熱交換器Bの差圧は一時的には上昇するが、その
後急激に下がり、平常の差圧まで回復した。In FIG. 4, the horizontal axis represents time (h), and the vertical axis represents the O 2 concentration (mol%) in the oxidizing gas, the differential pressure (kg / cm 2 ) in the heat exchanger B, and the heat from the bottom. Exchanger A,
The outlet temperatures (temperature of the waste liquid) in B and C are shown. As shown in FIG. 4, when the differential pressure in the heat exchanger B rises (at the time indicated by X in the figure), the hot bypass conduit 2
When the valve 30 provided in No. 9 is throttled beyond the throttling degree in the case of normal operation, the temperature of the heat exchanger B rises (although there is a degree difference, the same applies to the heat exchanger A). The differential pressure of the heat exchanger B temporarily increased, but then dropped sharply and recovered to the normal differential pressure.
【0033】[0033]
【表 1】 [Table 1]
【0034】また、この差圧低下とほぼ同時期に酸化ガ
ス中のO2 濃度が減少したが、これは熱交換器内に詰っ
ていた固形硫黄が溶融し、流動しだす結果、熱交換器チ
ュ−ブ内の流れがよくなり、差圧が低下し、これと同時
に溶融した硫黄が熱交換器チュ−ブ内で流れてくる空気
と接触するようになり、滞積していた硫黄の酸化分解反
応が起こったためである。この時点で熱交換器B中で管
閉塞に関与していた析出硫黄が溶融され、その閉塞を解
消したものである。At approximately the same time as the decrease in the differential pressure, the O 2 concentration in the oxidizing gas decreased. This was because the solid sulfur that had been clogged in the heat exchanger melted and began to flow, resulting in a heat exchanger tug. -The flow in the tube improves and the differential pressure decreases, and at the same time, the molten sulfur comes into contact with the air flowing in the heat exchanger tube, and the oxidative decomposition of accumulated sulfur is carried out. This is because a reaction has occurred. At this point, the deposited sulfur, which was involved in the tube blockage in the heat exchanger B, was melted and the blockage was eliminated.
【0035】その後、図4中Yの時点で本発明によるホ
ットバイパス弁30の絞り操作を止めて元の状態に戻
し、以降昇温操作前の状態すなわち平常運転を続けた。
このように、ホットバイパスの絞り操作により管路閉塞
の原因である析出硫黄を溶解させ、その硫黄閉塞物をき
わめて有効に除去することができる。また、上記のとお
り差圧上昇時に本発明を適用した後、本装置の定期補修
において当該熱交換器Bを開放し検査した結果、この熱
交換器Bに腐食、減肉等の何らの損傷も認められなかっ
た。After that, at the time of Y in FIG. 4, the throttle operation of the hot bypass valve 30 according to the present invention was stopped and returned to the original state, and thereafter the state before the temperature raising operation, that is, the normal operation was continued.
In this way, the precipitated sulfur, which is the cause of the blockage of the pipeline, can be dissolved by the squeezing operation of the hot bypass, and the blockage of the sulfur can be extremely effectively removed. Further, as described above, after applying the present invention when the differential pressure increases, the heat exchanger B is opened and inspected in the regular repair of the present device, and as a result, the heat exchanger B is free from any damage such as corrosion and thinning. I was not able to admit.
【0036】さらに、図5は、ヒ−トバランス解析によ
り明らかになった、平常運転時の場合及び本実施例のよ
うにホットバイパス弁30の閉操作を実施した場合にお
ける各熱交換器A、B、C及び反応塔Rにおける熱交換
量と発熱量の関係を示している。このうち、図5(a)
は平常運転時の場合を示し、図5(b)は、本発明によ
るホットバイパス弁の絞り操作を実施した場合(前記図
4の一具体的操作例に対応する)を示している。なお、
図中“S2O3発熱量”は式(11)に示す反応による発
熱量に、また“SCN発熱量”は式(12)に示す反応
による発熱量に相当するものであ。Further, FIG. 5 shows the heat exchangers A in the case of normal operation and in the case of performing the closing operation of the hot bypass valve 30 as in this embodiment, which is clarified by the heat balance analysis. The relationship between the heat exchange amount and the heat generation amount in B and C and the reaction tower R is shown. Of these, Fig. 5 (a)
Shows a case of normal operation, and FIG. 5 (b) shows a case where the throttle operation of the hot bypass valve according to the present invention is performed (corresponding to one specific operation example of FIG. 4). In addition,
In the figure, "S 2 O 3 calorific value" corresponds to the calorific value due to the reaction shown in formula (11), and "SCN calorific value" corresponds to the calorific value due to the reaction shown in formula (12).
【0037】図5(a)のとおり、平常運転時には、前
記式(15)で示される(NH4)2S2O3の酸化反応は
熱交換器B、Cで進行する(なお一部熱交換器Aでも起
こるが、これは僅かである)。これに対して、例えば熱
交換器Bでの差圧上昇時において本発明によるホットバ
イパス弁30の絞り操作を実施すると、図5(b)のと
おり(NH4)2S2O3の酸化反応は熱交換器A及び熱交
換器Bへ大幅にシフトする。As shown in FIG. 5A, during normal operation, the oxidation reaction of (NH 4 ) 2 S 2 O 3 represented by the above formula (15) proceeds in the heat exchangers B and C (partially It also occurs in exchanger A, but this is small). On the other hand, for example, when the hot bypass valve 30 according to the present invention is throttled when the differential pressure is increased in the heat exchanger B, the oxidation reaction of (NH 4 ) 2 S 2 O 3 is performed as shown in FIG. 5B. Shifts significantly to heat exchanger A and heat exchanger B.
【0038】本発明(例えば図2に示す態様の処理装置
についての一操作例)では、熱交換器A〜Cにおいて差
圧上昇が発生するその時点以降の適宜な時点で、図4の
ようなホットバイパス弁30の絞り操作を実施するが、
この時図5(b)に示すように(NH4)2S2O3の酸化
反応が進行する。しかしこの酸化反応は、式(15)の
とおり硫黄析出を伴い、閉塞を起こすことになるので、
常時ホットバイパスを絞り方向で運転することはできな
いが、本発明によれば、熱交換器の差圧上昇時におい
て、そのホットバイパスの絞り操作を実施することによ
り析出硫黄による閉塞を解消することができるものであ
る。In the present invention (for example, one operation example of the processing apparatus shown in FIG. 2), as shown in FIG. 4, at an appropriate time after the time when the differential pressure increase occurs in the heat exchangers A to C. Although the throttle operation of the hot bypass valve 30 is performed,
At this time, as shown in FIG. 5B, the oxidation reaction of (NH 4 ) 2 S 2 O 3 proceeds. However, this oxidation reaction is accompanied by the precipitation of sulfur as shown in the formula (15) and causes the blockage.
Although the hot bypass cannot always be operated in the throttling direction, according to the present invention, when the differential pressure of the heat exchanger rises, the hot bypass throttling operation can be performed to eliminate the blockage due to the precipitated sulfur. It is possible.
【0039】[0039]
【発明の効果】以上のとおり、本発明に係る閉塞除去法
によれば、脱硫廃液処理装置用の熱交換器における析出
硫黄に起因する差圧上昇時において、この装置を停止し
てその開放洗浄を行うことなく、その閉塞をきわめて有
効に除去することができる。また、本発明の方法は、熱
交換器の差圧上昇時において、その都度適用することに
より、その差圧上昇を解消することができ、しかも熱交
換器中に腐食、減肉等の損傷を生じることがない等、優
れた効果が得られる。As described above, according to the blockage removing method of the present invention, when the differential pressure increases due to the deposited sulfur in the heat exchanger for the desulfurization waste liquid treatment apparatus, the apparatus is stopped and the open cleaning is performed. The occlusion can be removed very effectively without performing. Further, the method of the present invention, when the differential pressure of the heat exchanger is increased, by applying each time, it is possible to eliminate the increase of the differential pressure, and further, in the heat exchanger, damage such as corrosion and wall thinning. An excellent effect such as no occurrence is obtained.
【図1】COG精製工程の一例を説明するための模式
図。FIG. 1 is a schematic diagram for explaining an example of a COG purification step.
【図2】本発明を適用する脱硫廃液処理装置の一態様を
示す図。FIG. 2 is a diagram showing an embodiment of a desulfurization waste liquid treatment apparatus to which the present invention is applied.
【図3】熱交換器及びこれに続く反応塔における析出硫
黄の除去態様を説明するための模式図。FIG. 3 is a schematic diagram for explaining an aspect of removing deposited sulfur in a heat exchanger and a reaction tower subsequent to the heat exchanger.
【図4】本発明に係る具体的操作例を示す図。FIG. 4 is a diagram showing a specific operation example according to the present invention.
【図5】平常運転時及びホットバイパス弁の閉操作を実
施した場合における各熱交換器及び反応塔での熱交換量
と発熱量の関係を示す図。FIG. 5 is a diagram showing a relationship between a heat exchange amount and a heat generation amount in each heat exchanger and a reaction tower during normal operation and when a hot bypass valve is closed.
1 COG用導管 2 コンデンサ− 3 ダイレクトク−ラ− 4 タ−ル・ガス液デカンタ− 9 ナフタリンスクラバ− 10 ナフタリン吸収油再生装置 11 乾式電気集塵機 Z 湿式脱硫装置 12 吸収塔 13 酸化塔 14 アンモニアスクラバ− 15 硫安分離装置 17 乾式脱硫塔 18 ベンゾ−ルスクラバ− 20 脱硫廃液処理装置 21 COG供給導管 22 空気供給導管 23 反応塔Rの下部 24〜27 導管 29 ホットバイパス 30 ホットバイパス弁 A〜C 熱交換器 R 反応塔 1 COG conduit 2 Condenser 3 Direct cooler 4 Tar gas liquid decanter 9 Naphthalene scrubber 10 Naphthalene absorption oil regenerator 11 Dry electrostatic precipitator Z Wet desulfurization device 12 Absorption tower 13 Oxidation tower 14 Ammonia scrubber 15 Ammonium Sulfate Separator 17 Dry Desulfurization Tower 18 Benzo-L-Scruber 20 Desulfurization Waste Liquid Treatment Device 21 COG Supply Pipeline 22 Air Supply Pipeline 23 Lower part of Reaction Tower R 24-27 Pipeline 29 Hot Bypass 30 Hot Bypass Valve A to C Heat Exchanger R Reaction tower
Claims (2)
それ以上の熱交換器及びこれに続く反応塔に供給する一
方、反応塔の排ガスを熱交換器へ向流供給するととも
に、反応塔又は熱交換器からの排ガスの一部をホットバ
イパスさせるようにしてなるCOGの脱硫廃液処理装置
における熱交換器の閉塞除去方法において、該熱交換器
における差圧上昇時において該排ガスのホットバイパス
量を、通常運転におけるホットバイパス量を超えて小さ
くし、これによって熱交換器内の脱硫廃液温度を上昇さ
せることにより硫黄閉塞物を溶融させることを特徴とす
るCOGの脱硫廃液処理装置用熱交換器の閉塞除去方
法。1. A desulfurization waste liquor from a COG refining process is supplied to one or more heat exchangers and a reaction tower subsequent thereto, while the exhaust gas of the reaction tower is countercurrently supplied to the heat exchanger and the reaction tower is also supplied. Alternatively, in the method for removing clogging of a heat exchanger in a COG desulfurization waste liquid treatment apparatus which hot-bypasses part of the exhaust gas from the heat exchanger, the hot bypass amount of the exhaust gas when the differential pressure in the heat exchanger rises. Is smaller than the hot bypass amount in the normal operation, and thereby the temperature of the desulfurization waste liquid in the heat exchanger is raised to melt the sulfur blockage, thereby heat exchanger for desulfurization waste liquid treatment device of COG. Blockage removal method.
配列された三個の熱交換器及びこれに続く反応塔からな
り、且つ反応器側直近の熱交換器からの排ガスの一部を
ホットバイパスさせるようにしてなるCOGの脱硫廃液
処理装置である請求項1記載COGの脱硫廃液処理装置
用熱交換器の閉塞除去方法。2. The COG desulfurization waste liquid treatment apparatus comprises three heat exchangers arranged in series and a reaction tower following the heat exchanger, and a part of exhaust gas from the heat exchanger in the immediate vicinity of the reactor side. The method for removing clogging of a heat exchanger for a COG desulfurization waste liquid treatment device according to claim 1, wherein the COG desulfurization waste liquid treatment device is a hot bypass device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08323495A JP3611629B2 (en) | 1995-03-15 | 1995-03-15 | Clogging removal method for heat exchanger for COG desulfurization waste liquid treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08323495A JP3611629B2 (en) | 1995-03-15 | 1995-03-15 | Clogging removal method for heat exchanger for COG desulfurization waste liquid treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08253776A true JPH08253776A (en) | 1996-10-01 |
JP3611629B2 JP3611629B2 (en) | 2005-01-19 |
Family
ID=13796642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08323495A Expired - Fee Related JP3611629B2 (en) | 1995-03-15 | 1995-03-15 | Clogging removal method for heat exchanger for COG desulfurization waste liquid treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3611629B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007182468A (en) * | 2006-01-05 | 2007-07-19 | Hitachi Ltd | Gas purification system and gas purification method |
JP2018165342A (en) * | 2017-03-28 | 2018-10-25 | 三菱ケミカル株式会社 | Recovery method for recovering at least one of sulfur compound and nitrogen compound in gas |
-
1995
- 1995-03-15 JP JP08323495A patent/JP3611629B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007182468A (en) * | 2006-01-05 | 2007-07-19 | Hitachi Ltd | Gas purification system and gas purification method |
JP4594239B2 (en) * | 2006-01-05 | 2010-12-08 | 株式会社日立製作所 | Gas purification system and gas purification method |
JP2018165342A (en) * | 2017-03-28 | 2018-10-25 | 三菱ケミカル株式会社 | Recovery method for recovering at least one of sulfur compound and nitrogen compound in gas |
Also Published As
Publication number | Publication date |
---|---|
JP3611629B2 (en) | 2005-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4427234B2 (en) | Wet gas purification method and system | |
EP1392415B1 (en) | Process for producing ammonium thiosulphate | |
CN109485018B (en) | Purification and sulfur recovery process for coal-to-methanol synthesis gas | |
JP3924703B2 (en) | Method and apparatus for treating hydrogen sulfide-containing gas including a step of removing crystallized sulfur by cooling | |
KR20020051011A (en) | Apparatus and method for purifying Coke oven gas | |
CN107261789B (en) | Ammonia desulphurization system and method for high-sulfur flue gas | |
JP3831435B2 (en) | Gas purification equipment | |
JPH08253776A (en) | Method of removing clogging substance from heat exchanger for apparatus for treating waste liquid from cog desulfurization | |
CN209702677U (en) | Coke-stove gas sulfurous acid ammonium salt process deamination produces sulphur ammonium system | |
US5215728A (en) | Method and apparatus for removal of h2s from a process gas, including thiosulfate and/or cyanide salt decomposition | |
CA2493286A1 (en) | Method for isolating hydrogen sulphide from coke oven gas with the subsequent recovery of elemental sulphur in a claus plant | |
KR20010013905A (en) | Method for desulfurizing off-gases | |
CN109517630A (en) | Coke-stove gas sulfurous acid ammonium salt process deamination produces thiamine process and system | |
CN205700143U (en) | A kind of low concentration hydrogen sulphide acid tail gas processing means of improvement | |
EA026172B1 (en) | Staged combustion of combustible sulphur-containing effluents with recovery of the sulphur in the claus process | |
CN116920570A (en) | Selective separation of CO 2 Is desulphurized liquid and high concentration H 2 S desulfurization method and device | |
JP4043648B2 (en) | Coke oven gas desulfurization liquid regeneration method and waste air treatment method and coke oven gas desulfurization equipment | |
GB2163141A (en) | Method for removing and recovering sulphur in elemental form from gases containing sulphur dioxide or sulphur dioxide and hydrogen sulphide | |
KR100405522B1 (en) | How to exclude carbon dioxide capture in coke gas purification | |
US8062619B2 (en) | Process and device for desulfurization of a gas, comprising a stage for elimination of sulfur by cooling a gas stream | |
CN105329859A (en) | Treatment process for sulfur-containing tail gas | |
WO2019132209A1 (en) | Method for purifying acidic gas containing hydrogen sulfide and apparatus therefor | |
JPH0693274A (en) | Treatment of waste liquor from desulfurization and decynization of coke oven gas | |
JPS61251502A (en) | Treatment of waste sulfuric acid | |
JPS6119567B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041019 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041020 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071029 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081029 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091029 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101029 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |