Nothing Special   »   [go: up one dir, main page]

JPH08243367A - Production of polyimide composite membrane - Google Patents

Production of polyimide composite membrane

Info

Publication number
JPH08243367A
JPH08243367A JP5247495A JP5247495A JPH08243367A JP H08243367 A JPH08243367 A JP H08243367A JP 5247495 A JP5247495 A JP 5247495A JP 5247495 A JP5247495 A JP 5247495A JP H08243367 A JPH08243367 A JP H08243367A
Authority
JP
Japan
Prior art keywords
dope
hollow fiber
polyimide
polyisoimide
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5247495A
Other languages
Japanese (ja)
Inventor
Masayoshi Takatake
正義 高武
Hirotomo Nagata
寛知 永田
Takanori Anazawa
孝典 穴澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP5247495A priority Critical patent/JPH08243367A/en
Publication of JPH08243367A publication Critical patent/JPH08243367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: To produce a hollow fiber composite membrane having a dense layer by co-extruding simultaneously a polyamic acid or polyisoimide dope forming a dense layer and a polymer dope forming a porous supporting layer into hollow fiber by using a multi-circular nozzle, then heating the obtained hollow fiber membrane or bringing the membrane into contact with a catalyst to convert the polyamic acid and the polyisoimide to polyimide. CONSTITUTION: A polyamic acid or a polyisoimide being a precursor of polyimide is excellent in fabrication property, especially in solubility to various kinds of solvents. Taking notice this property, the hollow fiber composite membrane is produced by co-extruding simultaneously the polyamic acid or polyisoimide dope forming the dense layer and the polymer dope forming the porous supporting layer into hollow fiber having a multilayer structure by using the multi-circular nozzle, coagurating the dope, and heating the obtained hollow fiber membrane or bringing the membrane into contact with the catalyst to convert the polyamic acid and the polyisoimide into polyimide. In such a case, the obtained composite membrane is substantially insoluble in the solvent and excellent in solvent resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気体−気体及び液体−気
体分離等に適用される分離膜として高透過性及び高分離
性能並びに耐溶剤性と耐熱性と耐久性を兼ね備えた中空
糸複合膜の製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a hollow fiber composite membrane having high permeability, high separation performance, solvent resistance, heat resistance and durability as a separation membrane applied to gas-gas and liquid-gas separation and the like. The present invention relates to a manufacturing method of.

【0002】膜による物質の分離は、他の分離方法と比
較し、エネルギー的に有利で、装置が小型軽量、機構が
簡単でメンテナンスフリー等の特徴を有する為、各種産
業分野に活発に応用されており、本発明により得られる
中空糸複合膜は、例えば、空気の酸素/窒素分離、プラ
ットフォーミング法のオフガスからの水素の分離回収、
アンモニア合成時の水素の分離回収、火力発電やゴミ焼
却の廃ガスからの二酸化炭素の回収や窒素酸化物や硫黄
酸化物の除去、油田のオフガスからの二酸化炭素の回
収、天然ガスから硫化水素、二酸化炭素等の酸性ガスの
除去やヘリウムの分離、空気及び有機蒸気の除湿、さら
には水とアルコール分離、エステル化反応系からの水の
除去等の揮発性物質混合液体のパーベーパレーション分
離、液体に溶解している気体の除去、液体中への特定気
体の溶解等に利用される。むろん本発明はこれら用途に
限定されるものでは無い。
The separation of substances by a membrane is more advantageous in terms of energy than other separation methods, and has the features that the device is small and lightweight, the mechanism is simple, and maintenance-free. Therefore, it is actively applied to various industrial fields. The hollow fiber composite membrane obtained by the present invention is, for example, oxygen / nitrogen separation of air, separation and recovery of hydrogen from off-gas of the platforming method,
Separation and recovery of hydrogen during ammonia synthesis, recovery of carbon dioxide from waste gas from thermal power generation and waste incineration, removal of nitrogen oxides and sulfur oxides, recovery of carbon dioxide from off-gas in oil fields, hydrogen sulfide from natural gas, Pervaporation separation of volatile mixed liquids such as removal of acidic gases such as carbon dioxide, separation of helium, dehumidification of air and organic vapors, separation of water and alcohol, removal of water from esterification reaction system, liquid It is used to remove the gas dissolved in the liquid, dissolve a specific gas in the liquid, and so on. Of course, the present invention is not limited to these applications.

【0003】[0003]

【従来の技術】分離膜の基本要求性能は(1)分離の目
的とする物質と他の成分との分離性能、(2)物質透過
性能、(3)膜の強度、耐熱、耐久、耐溶剤性である。
膜の物質透過性能は必要膜面積及び膜モジュール、装置
の大きさ、即ちイニシャルコストを主に支配する特性で
あり、物質透過性能の高い素材の開発及び分離活性層
(緻密層と記す場合もある)の薄膜化により工業的に実
用可能な性能が実現される。一方膜の物質分離性能は緻
密な膜の場合本質的に膜素材固有の特性であり、主に分
離物質の収率を支配する特性であり、即ちランニングコ
ストを支配する特性である。一般に膜の物質分離特性と
透過特性は相反の関係にあり、これら両特性を満足する
分離膜の製造法について盛んに研究されている。特に緻
密層と多孔層が異なる素材から形成されているいわゆる
複合膜は、分離膜として要求される各種特性をバランス
良く共有させる事が可能であり、且つその優れた量産性
等により現在最も盛んに研究されている。
2. Description of the Related Art The basic required performance of a separation membrane is (1) separation performance between a target substance and other components for separation, (2) substance permeation performance, (3) strength of membrane, heat resistance, durability, solvent resistance. It is sex.
The material permeation performance of the membrane is a characteristic that mainly governs the required membrane area, the size of the membrane module and the device, that is, the initial cost, and the development of materials with high material permeation performance and the separation active layer (sometimes referred to as a dense layer) The industrially practicable performance is realized by thinning the film. On the other hand, the substance separation performance of the membrane is a characteristic inherent to the membrane material in the case of a dense membrane, and is a characteristic that mainly controls the yield of the separated substance, that is, a characteristic that controls the running cost. Generally, the material separation property and the permeation property of a membrane are in a trade-off relationship, and a method for producing a separation film satisfying both these properties has been actively studied. In particular, the so-called composite membrane, in which the dense layer and the porous layer are made of different materials, can share various characteristics required as a separation membrane in a well-balanced manner, and due to its excellent mass productivity, it is currently most actively used. Being researched.

【0004】例えば特開昭49−62380号公報に
は、共押出により同種又は異種のポリマーからなる薄い
緻密層と多孔層とを有する逆浸透膜を製造する方法が開
示されている。また、ガス分離技術の進展開((株)東
レリサーチセンター),PP39(1990年7月25
日発行)には、この製造方法のガス分離用膜の製造への
適用が記述されている。
For example, JP-A-49-62380 discloses a method for producing a reverse osmosis membrane having a thin dense layer of the same or different polymers and a porous layer by coextrusion. In addition, the development of gas separation technology (Toray Research Center, Inc.), PP39 (July 25, 1990)
(Published daily) describes the application of this production method to the production of a membrane for gas separation.

【0005】特開昭62−191019号公報には、セ
ルロースアセテート、セルローストリアセテート、ニト
ロセルロース等のセルロースエステル系樹脂、ポリアク
リルニトリル、ポリビニルアルコール、ポリ酢酸ビニル
等のビニル系樹脂、ポリアミド系樹脂、ポリエステル系
樹脂等の樹脂濃度が30〜60重量%である種々の濃度
の複数の樹脂溶液を使用し、同心円状開口した紡糸用口
金の内側から順次濃度を高くした樹脂溶液を同時に押し
出し、複数の層を有する中空糸分離膜を製造する方法が
開示されている。
JP-A-62-191019 discloses that cellulose ester resins such as cellulose acetate, cellulose triacetate and nitrocellulose, vinyl resins such as polyacrylonitrile, polyvinyl alcohol and polyvinyl acetate, polyamide resins and polyesters. A plurality of resin solutions having various concentrations such as a series resin having a resin concentration of 30 to 60% by weight are used, and the resin solutions having higher concentrations are simultaneously extruded from the inside of the concentric opening spinneret to form a plurality of layers. Disclosed is a method for producing a hollow fiber separation membrane having

【0006】特開平1−99616号公報には、同心円
状の開口部を有する湿式紡糸用ノズルの外部円環開口部
から濃度0.1〜20重量%の低濃度ポリイミド溶液
と、内部円環開口部から濃度10〜50重量%で且つ低
濃度ポリイミド溶液より少なくとも1重量%以上高い高
濃度ポリイミド溶液とを同時に押し出す事により、再現
性よくポリイミド中空糸分離膜を製造する事が開示され
ている。
JP-A-1-99616 discloses a low-concentration polyimide solution having a concentration of 0.1 to 20% by weight from an outer ring opening of a nozzle for wet spinning having a concentric ring opening, and an inner ring opening. It is disclosed that a polyimide hollow fiber separation membrane is produced with good reproducibility by simultaneously extruding a high-concentration polyimide solution having a concentration of 10 to 50% by weight and a concentration of at least 1% by weight or more higher than that of a low-concentration polyimide solution.

【0007】特開平2−169019号公報には同心円
状の開口部を有する湿式紡糸用ノズルから異なる2種の
芳香族ポリイミド溶液を、外部円形開口部へ供給するポ
リイミドについては濃度を7〜25重量%とし、内部円
形開口部に供給するポリイミドについては外部に供給す
るポリイミドより濃度を低くし、且つ5〜25重量%と
して、同時に押し出し湿式紡糸を行う事により均一な表
皮層(緻密層)と多孔層とが一体に形成されている非対
称性の外層と、多孔層のみからなる内層とが同心円状に
一体に形成されている2層構造の中空糸膜を容易に再現
性良く製造する方法が開示されている。
In Japanese Patent Laid-Open No. 2-169019, two kinds of aromatic polyimide solutions, which are different from a wet spinning nozzle having a concentric circular opening, are supplied to an outer circular opening at a concentration of 7 to 25 weight. %, The concentration of the polyimide supplied to the internal circular opening is lower than that of the polyimide supplied to the outside, and the concentration is 5 to 25% by weight. At the same time, the extrusion wet spinning is performed to obtain a uniform skin layer (dense layer) and porosity. Disclosed is a method for easily and reproducibly producing a hollow fiber membrane having a two-layer structure in which an asymmetric outer layer in which a layer is integrally formed and an inner layer made of only a porous layer are integrally formed in a concentric pattern. Has been done.

【0008】特開平4−277019号公報には複合膜
製造方法として公知の共押出法により製造された特定の
ポリアミド樹脂又は特定のポリイミド樹脂を分離層とす
る気体分離用複合膜が開示されている。
Japanese Unexamined Patent Publication (Kokai) No. 4-277019 discloses a gas separation composite membrane having a separation layer of a specific polyamide resin or a specific polyimide resin produced by a known coextrusion method as a method for producing a composite membrane. .

【0009】[0009]

【発明が解決しようとする課題】近年、前述のごとく気
体の分離性と透過性のバランスに優れ且つ、強度、耐久
性、耐熱性に優れた素材であるポリイミドを緻密層に適
用した気体分離用複合膜の研究が盛んに行われている。
しかしながら前述した先行技術の複合膜に適用可能なポ
リイミドは溶剤に可溶である事が必須の条件であり、従
って適用できるポリイミドに大きな制限があった。また
当然の事ながら製造された複合膜の耐溶剤性に自ずと限
界があった。
In recent years, as described above, for separating gases, polyimide, which is a material excellent in balance between gas separation and permeability and also excellent in strength, durability and heat resistance, is applied to a dense layer. Research on composite membranes is being actively conducted.
However, it is essential that the polyimide applicable to the above-mentioned composite film of the prior art is soluble in a solvent, and therefore, there is a large limitation on the applicable polyimide. Further, as a matter of course, there was a limit to the solvent resistance of the produced composite film.

【0010】[0010]

【課題を解決するための手段】本発明は従来の公知の中
空糸複合膜の製造法における前述の欠点を解決すべく鋭
意研究の結果、ポリイミドの前駆体であるポリアミド酸
体又はポリイソイミド体が成形加工性、特に各種溶剤へ
の可溶解性に極めて優れている事に着目し、該前駆体で
緻密層形成用の紡糸ドープを調製し、これを多孔層を形
成するに適した特定の重合体のドープと共に、同時に共
押出を行い、凝固させた後、加熱処理等を行い、該前駆
体をポリイミド化しポリイミドの緻密層を形成させるこ
とにより、優れた中空糸複合膜が製造できることを見い
だし本発明を完成するに至った。即ち本発明は、多重円
環ノズルを用い、緻密層を形成するポリアミド酸又はポ
リイソイミドのドープ(a)と多孔質支持層を形成する
重合体のドープ(b)とを、同時に多層構造の中空糸状
に共押出し、凝固液と接触させ凝固させた後、得られた
中空糸膜を加熱もしくは触媒と接触させ、該ポリアミド
酸又はポリイソイミドをポリイミド化することを特徴と
する、ポリイミドからなる緻密層を有する中空糸複合膜
の製造方法に関する。
Means for Solving the Problems The present invention has been earnestly studied to solve the above-mentioned drawbacks in the conventional known method for producing a hollow fiber composite membrane, and as a result, a polyamic acid or polyisoimide which is a precursor of polyimide was molded. Focusing on the fact that it is extremely excellent in processability, particularly in solubility in various solvents, a spinning dope for forming a dense layer is prepared from the precursor, and a specific polymer suitable for forming a porous layer is prepared. It was found that an excellent hollow fiber composite membrane can be produced by simultaneously co-extruding with the dope, coagulating, coagulating, heat-treating, etc. to polyimid the precursor to form a dense layer of polyimide. Has been completed. That is, the present invention uses a multi-ring nozzle to simultaneously form a polyamic acid or polyisoimide dope (a) forming a dense layer and a polymer dope (b) forming a porous support layer into a hollow fiber having a multilayer structure. Coextrusion, after contacting with a coagulating liquid to coagulate, the resulting hollow fiber membrane is heated or contacted with a catalyst to polyimidize the polyamic acid or polyisoimide, having a dense layer made of polyimide. The present invention relates to a method for manufacturing a hollow fiber composite membrane.

【0011】本発明で製造されるポリイミド中空糸複合
膜は、緻密層を有する高分子層と、高分子層を支持する
多孔質支持層からなる複合膜であり、高分子層はポリイ
ミド樹脂から形成されている。高分子層は、分離対象物
質の分離活性層となる、実質的に連通孔を有さない緻密
層と多孔質構造部を有する非対称膜構造のものが、緻密
層をより薄く製造できる点から好ましいが、紡糸ドープ
のポリマー濃度、溶剤組成、紡糸条件等を適宜調整する
事により該高分子層が緻密層のみから形成されたいわゆ
る均質膜構造のものも製造できる。本発明では特に、実
質的に溶剤に不溶の緻密層を有し、非対称膜構造の高分
子層と多孔質支持層からなる、耐溶剤性に優れた複合膜
を効率的に製造することが出来る。以下に本発明の製造
方法について詳しく説明する。
The polyimide hollow fiber composite membrane produced by the present invention is a composite membrane comprising a polymer layer having a dense layer and a porous support layer supporting the polymer layer, and the polymer layer is formed of a polyimide resin. Has been done. The polymer layer is preferably an asymmetric membrane structure having a dense layer having substantially no communication holes and a porous structure portion, which serves as a separation active layer of the substance to be separated, from the viewpoint that the dense layer can be manufactured thinner. However, by appropriately adjusting the polymer concentration of the spinning dope, the solvent composition, the spinning conditions, etc., a so-called homogeneous membrane structure in which the polymer layer is formed only from a dense layer can be produced. In the present invention, in particular, a composite membrane having a dense layer substantially insoluble in a solvent and comprising a polymer layer having an asymmetric membrane structure and a porous support layer and having excellent solvent resistance can be efficiently produced. . The manufacturing method of the present invention will be described in detail below.

【0012】本発明に用いる多重円環ノズルは公知のも
のが使用でき、例えば特開平1−99616号や特開昭
62−191019号等に記載されたノズルが挙げられ
る。好ましいノズルの模式図を図1に示す。図中”1”
は主に中空糸の形状を保つ為の気体又は液体(以下芯材
と称する)を流出するスリット(芯材吐出口)であり、
図中”2”、”3”はドープ(a)又は(b)を流出す
るスリット(ドープ吐出口)である。
Known multi-annular nozzles can be used in the present invention. Examples thereof include nozzles described in JP-A-1-99616 and JP-A-62-191019. A schematic diagram of a preferred nozzle is shown in FIG. "1" in the figure
Is a slit (core material discharge port) that mainly discharges a gas or liquid (hereinafter referred to as a core material) for maintaining the shape of the hollow fiber,
In the figure, “2” and “3” are slits (dope discharge ports) for flowing out the dope (a) or (b).

【0013】本発明の製造法において用いるドープ
(a)とは、加熱もしくは触媒との接触によりポリイミ
ドを生成する、ポリアミド酸又はポリイソイミド(以下
これらをまとめてポリイミド前駆体と称する場合もあ
る)が溶剤に溶解したものであり、ドープ(a)は、緻
密層を形成する。ポリアミド酸又はポリイソイミドは有
機溶剤に可溶で、凝固液中で固化し製膜可能で有ればよ
く、好ましくは水溶性の各種有機溶剤に実質的に溶解す
る物である。更に好ましくはこれら溶剤可溶特性と併せ
て、加熱により実質的に溶剤不溶のポリイミドを生成す
るポリアミド酸又はポリイソイミドであり、最も好まし
くは加熱により溶剤不溶のポリイミドを生成するポリイ
ソイミドである。
The dope (a) used in the production method of the present invention is a polyamic acid or polyisoimide (which may be collectively referred to as a polyimide precursor hereinafter) that produces a polyimide by heating or contact with a catalyst. The dope (a) forms a dense layer. The polyamic acid or polyisoimide has only to be soluble in an organic solvent and can be solidified in a coagulating liquid to form a film, and preferably a substance which is substantially dissolved in various water-soluble organic solvents. Polyamic acid or polyisoimide that produces a solvent-insoluble polyimide by heating in combination with these solvent-soluble properties is more preferable, and polyisoimide that produces a solvent-insoluble polyimide by heating is more preferable.

【0014】本発明のポリイミド前駆体であるポリアミ
ド酸は一般にN,N−ジメチルアセトアミド、N−メチ
ルピロリドン、N,N−ジメチルホルムアミド等のアミ
ド系溶媒を反応溶剤として用い、これにまずジアミン成
分を溶解させ、次いでジアミン成分と等モル量のテトラ
カルボン酸二無水物を加え、室温又は必要に応じて50
℃程度に加熱し数時間攪拌し、等モル量のジアミン成分
とテトラカルボン酸二無水物成分を縮重合する事により
得られる。又この反応溶液に必要に応じて安息香酸、ピ
リジン等の反応助剤を加える事もできる。
The polyamic acid which is the polyimide precursor of the present invention generally uses an amide-based solvent such as N, N-dimethylacetamide, N-methylpyrrolidone, N, N-dimethylformamide as a reaction solvent. Dissolve, and then add tetracarboxylic acid dianhydride in an equimolar amount to the diamine component, and add at room temperature or, if necessary, 50
It can be obtained by heating to about 0 ° C. and stirring for several hours, and polycondensing an equimolar amount of a diamine component and a tetracarboxylic dianhydride component. If necessary, a reaction aid such as benzoic acid or pyridine can be added to this reaction solution.

【0015】本発明のポリイミド前駆体であるポリイソ
イミドとは、下記(1)式で示される繰り返し単位及び
/又は下記(1)式の立体異性体構造を繰り返し単位と
して実質的に有する製膜可能な重合度を有する溶剤可溶
性のポリマーである。
The polyisoimide, which is the polyimide precursor of the present invention, can be formed into a film having substantially a repeating unit represented by the following formula (1) and / or a stereoisomer structure of the following formula (1) as a repeating unit. It is a solvent-soluble polymer having a degree of polymerization.

【0016】[0016]

【化1】 Embedded image

【0017】(式中、R、Zは有機基であり、芳香族基
である事が好ましい。) ポリイソイミドはポリアミド酸の反応溶液に更にトリエ
チルアミン、トリフルオロ酢酸無水物、エチルクロロホ
ルメート、N,N’−ジシクロヘキシルカルボジイミド
等の脱水閉環剤を添加し、数時間攪拌し該ポリアミド酸
を脱水閉環する事により得られる。
(In the formula, R and Z are organic groups, preferably aromatic groups.) Polyisoimide is further added to a reaction solution of polyamic acid with triethylamine, trifluoroacetic anhydride, ethyl chloroformate, N, It can be obtained by adding a dehydration ring-closing agent such as N'-dicyclohexylcarbodiimide and stirring the mixture for several hours to dehydrate the polyamide acid.

【0018】本発明に記載のポリアミド酸又はポリイソ
イミドの重合に使用できるテトラカルボン酸二無水物成
分とジアミン成分は膜の用途に応じて適宜最適な組み合
わせを選択すればよく、以下の例が挙げられる。テトラ
カルボン酸二無水物として例えば4,4’−(ヘキサフ
ルオロイソプロピリデン)ジフタル酸二無水物(以下6
FDAと略記する)、ピロメリット酸二無水物(以下P
MDAと略記する)、3,3’,4,4’−ビフェニル
テトラカルボン酸二無水物、3,3’,4,4’−ベン
ゾフェノンテトラカルボン酸二無水物、3,3’,4,
4’−ビフェニルスルフォンテトラカルボン酸二無水
物、3,3’,4,4’−ジフェニルエーテルテトラカ
ルボン酸二無水物、ナフタレン−1,2,4,5−テト
ラカルボン酸二無水物、3,4,9,10−ペリレンテ
トラカルボン酸二無水物、ビス(ジカルボキシフェニ
ル)メタン酸二無水物、ビス(ジカルボキシフェニル)
エタン酸二無水物、ビス(ジカルボキシフェニル)プロ
パン酸二無水物、アントラセンテトラカルボン酸二無水
物、アゾベンゼンテトラカルボン酸二無水物等の芳香族
テトラカルボン酸二無水物や、シクロブタンテトラカル
ボン酸二無水物、シクロヘキサンテトラカルボン酸二無
水物等の脂環族テトラカルボン酸二無水物や、チオフェ
ンテトラカルボン酸二無水物、フランテトラカルボン酸
二無水物、ピリジンテトラカルボン酸二無水物等の複素
環族テトラカルボン酸二無水物等の群から選ばれた一種
以上の成分を好適に挙げる事ができる。
The tetracarboxylic dianhydride component and the diamine component that can be used in the polymerization of the polyamic acid or polyisoimide according to the present invention may be selected in an optimum combination depending on the intended use of the membrane, and the following examples are given. . As the tetracarboxylic acid dianhydride, for example, 4,4 ′-(hexafluoroisopropylidene) diphthalic acid dianhydride (hereinafter, referred to as 6
Abbreviated as FDA), pyromellitic dianhydride (hereinafter P
Abbreviated as MDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4.
4'-biphenylsulfone tetracarboxylic dianhydride, 3,3 ', 4,4'-diphenyl ether tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic dianhydride, 3,4 , 9,10-Perylenetetracarboxylic dianhydride, bis (dicarboxyphenyl) methanoic dianhydride, bis (dicarboxyphenyl)
Aromatic tetracarboxylic dianhydrides such as ethanoic dianhydride, bis (dicarboxyphenyl) propanoic dianhydride, anthracene tetracarboxylic dianhydride, azobenzene tetracarboxylic dianhydride, and cyclobutane tetracarboxylic dianhydride. Anhydrides, alicyclic tetracarboxylic dianhydrides such as cyclohexanetetracarboxylic dianhydride, and heterocycles such as thiophenetetracarboxylic dianhydride, furantetracarboxylic dianhydride, pyridinetetracarboxylic dianhydride Preferable examples include one or more components selected from the group consisting of group tetracarboxylic dianhydride and the like.

【0019】ジアミン成分として例えば、m−フェニレ
ンジアミン等のフェニレンジアミン、又はこのベンゼン
環骨格の水素の一部をアルキル基、水酸基、カルボキシ
ル基、ニトロ基、アルコキシ基、ハロゲン等で置換した
例えば2,4−ジアミノトルエン、2,5−ジメチル−
1,4−フェニレンジアミン、2,4,6−トリメチル
−1,3−フェニレンジアミン、3,5−ジアミノ安息
香酸、2,4−ジアミノフェノール、2−クロロ−1,
5−フェニレンジアミン、2−メトキシ−1,4−フェ
ニレンジアミン、2−クロロ−5−メチル−1,4−フ
ェニレンジアミン、3−トリフルオロメチル−1,5−
フェニレンジアミン等又はこれらの各種異性体や、1,
5−ナフタレンジアミン、9,9−ビス(4−アミノフ
ェニル)フルオレン、9,10−ビス(4−アミノフェ
ニル)アントラセン、2,6−ジアミノアントラキノ
ン、1,5−ジアミノアントラキノン、3,3’−ジメ
チルナフチジンや、二個もしくは二個以上のベンゼン環
をエーテル基、チオエーテル基、カルボニル基、スルフ
ォン基、スルフィド基、メチレン基、イソプロピリデン
基、ヘキサフルオロイソプロピリデン基、アミノ基、ア
ミド基等で結合したジアミン成分又はこれらのベンゼン
環水素の一部をアルキル基、アリール基、アルコキシ
基、ハロゲン、カルボキシル基等で置換した、例えば
4,4’−ジアミノジフェニルエーテル、3,4’−ジ
アミノジフェニルエーテル、4,4’−ジアミノベンゾ
フェノン、4,4’−ジアミノジフェニルスルフォン、
4,4’−ジアミノ−2,2’−ジメチルジフェニルス
ルフォン、4,4’−ジアミノ−3,3’−ジメチルジ
フェニルスルフォン、4,4’−ジアミノジフェニルス
ルフィド、4,4’−ジアミノジフェニルメタン、4,
4’−ジアミノ−3,3’−ジメチルジフェニルメタ
ン、4,4’−ジアミノ−3,3’,5,5’−テトラ
メチルジフェニルメタン、4,4’−ジアミノ−3,
3’−ジメチル−5,5’−ジエチルジフェニルメタ
ン、4,4’−ジアミノ−3,3’,5,5’−テトラ
エチルジフェニルメタン、4,4’−ジアミノ−3,
3’−ジクロロジフェニルメタン、
As the diamine component, for example, phenylenediamine such as m-phenylenediamine, or a part of hydrogen of the benzene ring skeleton is substituted with an alkyl group, a hydroxyl group, a carboxyl group, a nitro group, an alkoxy group, a halogen or the like. 4-diaminotoluene, 2,5-dimethyl-
1,4-phenylenediamine, 2,4,6-trimethyl-1,3-phenylenediamine, 3,5-diaminobenzoic acid, 2,4-diaminophenol, 2-chloro-1,
5-phenylenediamine, 2-methoxy-1,4-phenylenediamine, 2-chloro-5-methyl-1,4-phenylenediamine, 3-trifluoromethyl-1,5-
Phenylenediamine, etc. or various isomers of these,
5-naphthalenediamine, 9,9-bis (4-aminophenyl) fluorene, 9,10-bis (4-aminophenyl) anthracene, 2,6-diaminoanthraquinone, 1,5-diaminoanthraquinone, 3,3'- Dimethylnaphthidine or two or more benzene rings with ether group, thioether group, carbonyl group, sulfone group, sulfide group, methylene group, isopropylidene group, hexafluoroisopropylidene group, amino group, amide group, etc. For example, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, or 4 in which a part of the bonded diamine component or hydrogen of these benzene rings is substituted with an alkyl group, an aryl group, an alkoxy group, a halogen, a carboxyl group, or the like. , 4'-diaminobenzophenone, 4,4'-diamino Phenyl sulfone,
4,4'-diamino-2,2'-dimethyldiphenyl sulfone, 4,4'-diamino-3,3'-dimethyldiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenylmethane, 4 ,
4'-diamino-3,3'-dimethyldiphenylmethane, 4,4'-diamino-3,3 ', 5,5'-tetramethyldiphenylmethane, 4,4'-diamino-3,
3'-dimethyl-5,5'-diethyldiphenylmethane, 4,4'-diamino-3,3 ', 5,5'-tetraethyldiphenylmethane, 4,4'-diamino-3,
3'-dichlorodiphenylmethane,

【0020】2,2−ビス(4−アミノフェニル)プロ
パン、2,2−ビス(4−アミノ−3,5−ジエチルフ
ェニル)プロパン、2,2−ビス(4−アミノ−3,5
−ジメチルフェニル)プロパン、2,2−ビス(4−ア
ミノ−3−メチル−5−エチルフェニル)プロパン、
2,2−ビス(4−アミノ−3−メチルフェニル)プロ
パン、2,2−ビス(4−アミノフェニル)ヘキサフル
オロプロパン、2,2−ビス(3−アミノフェニル)ヘ
キサフルオロプロパン、4,4’−ジアミノベンズアニ
リド、O−トルイジンスルフォン、ジベンゾチオフェン
−3,7−ジアミン−5,5’−ジオキシド、3,6−
ジアミノカルバゾール、2,7−ジアミノフルオレン、
ビス[4−(4−アミノフェノキシ)フェニル]スルフ
ォン、ビス[4−(3−アミノフェノキシ)フェニル]
スルフォン、4,4’−ビス(4−アミノフェノキシ)
ビフェニル、2,2−ビス[4−(4−アミノフェノキ
シ)フェニル]ヘキサフルオロプロパン、1,4−ビス
(4−アミノフェノキシ)ベンゼン、1,3−ビス(4
−アミノフェノキシ)ベンゼン、2,2−ビス[4−
(4−アミノフェノキシ)フェニル]プロパン、2,2
−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサ
フルオロプロパン、2,2−ビス(3−アミノ−4−メ
チルフェニル)ヘキサフルオロプロパン、2,2−ビス
[4−(4−アミノフェノキシ)フェニル]ヘキサフル
オロプロパン等や、ベンジジン及びベンジジン骨格の水
素をアルキル基、ハロゲン、アルコキシ基、トリフルオ
ロメチル基等で置換した例えば、2,2’,6,6’−
トリメチルベンジジン、3,3’−ジメチルベンジジ
ン、3,3’−ジメトキシベンジジン、2,2’−ジク
ロロ−5,5’−ジメトキシベンジジン、3,3’,
5,5’−トリメチルベンジジン、3,3’−ジヒドロ
キシベンジジン、3,3−ジアミノ−4,4’−ジヒド
ロキシビフェニル、2,2’−ビス(トリフルオロメチ
ル)ベンジジン等の群から選ばれた一種以上の成分が使
用可能である。
2,2-bis (4-aminophenyl) propane, 2,2-bis (4-amino-3,5-diethylphenyl) propane, 2,2-bis (4-amino-3,5)
-Dimethylphenyl) propane, 2,2-bis (4-amino-3-methyl-5-ethylphenyl) propane,
2,2-bis (4-amino-3-methylphenyl) propane, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2-bis (3-aminophenyl) hexafluoropropane, 4,4 '-Diaminobenzanilide, O-toluidine sulfone, dibenzothiophene-3,7-diamine-5,5'-dioxide, 3,6-
Diaminocarbazole, 2,7-diaminofluorene,
Bis [4- (4-aminophenoxy) phenyl] sulfone, Bis [4- (3-aminophenoxy) phenyl]
Sulfone, 4,4'-bis (4-aminophenoxy)
Biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4
-Aminophenoxy) benzene, 2,2-bis [4-
(4-Aminophenoxy) phenyl] propane, 2,2
-Bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl ] Hexafluoropropane or the like, or hydrogen in a benzidine or benzidine skeleton substituted with an alkyl group, a halogen, an alkoxy group, a trifluoromethyl group, or the like, for example, 2,2 ′, 6,6′-
Trimethylbenzidine, 3,3'-dimethylbenzidine, 3,3'-dimethoxybenzidine, 2,2'-dichloro-5,5'-dimethoxybenzidine, 3,3 ',
One selected from the group of 5,5'-trimethylbenzidine, 3,3'-dihydroxybenzidine, 3,3-diamino-4,4'-dihydroxybiphenyl, 2,2'-bis (trifluoromethyl) benzidine, etc. The above components can be used.

【0021】好ましくは、4,4’−(ヘキサフルオロ
イソプロピリデン)ジフタル酸二無水物(6FDA)及
び/又はピロメリット酸二無水物(PMDA)から選ば
れる酸二無水物成分と、3,6−ジアミノカルバゾー
ル、2,7−ジアミノフルオレン、メタフェニレンジア
ミン、1,5−ナフタレンジアミン、2,2−ビス(3
−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプ
ロパン、3,3’−ジアミノ−4,4’−ジヒドロキシ
ビフェニル、2,4−ジアミノトルエン、2,6−ジア
ミノトルエン、2,2−ビス[4−(4−アミノフェノ
キシ)フェニル]プロパン、2,2−ビス[3,5−ジ
ブロモ−4−(4−アミノフェノキシ)フェニル]プロ
パン、2,4−ジアミノフェノール、3,5−ジアミノ
安息香酸からなる群から選ばれた一種以上のジアミン成
分から重合された、加熱により溶剤不溶のポリイミドを
生成するポリアミド酸又はポリイソイミドである。特に
好ましくは重合体が、加熱により特に気体選択性に優れ
たポリイミドの緻密層を形成する事ができるポリイソイ
ミド体であるが、これはポリイソイミド体のイミド体へ
の異性化時に水等の低分子物質が生成しない為であると
推定されるが、むろんこれは本発明をなんら制限するも
のでは無い。
Preferably, an acid dianhydride component selected from 4,4 '-(hexafluoroisopropylidene) diphthalic acid dianhydride (6FDA) and / or pyromellitic dianhydride (PMDA) and 3,6 -Diaminocarbazole, 2,7-diaminofluorene, metaphenylenediamine, 1,5-naphthalenediamine, 2,2-bis (3
-Amino-4-hydroxyphenyl) hexafluoropropane, 3,3'-diamino-4,4'-dihydroxybiphenyl, 2,4-diaminotoluene, 2,6-diaminotoluene, 2,2-bis [4- ( 4-aminophenoxy) phenyl] propane, 2,2-bis [3,5-dibromo-4- (4-aminophenoxy) phenyl] propane, 2,4-diaminophenol, 3,5-diaminobenzoic acid It is a polyamic acid or polyisoimide polymerized from one or more diamine components selected from the above, which produces a solvent-insoluble polyimide upon heating. Particularly preferably, the polymer is a polyisoimide body capable of forming a dense layer of polyimide which is particularly excellent in gas selectivity by heating, but this is a low molecular weight substance such as water during isomerization of the polyisoimide body to an imide body. Is not generated, but this does not limit the present invention.

【0022】ポリアミド酸又はポリイソイミドの紡糸用
ドープ(a)はテトラカルボン酸無水物とジアミンとを
適当な溶媒中で重合させたポリアミド酸又はポリイソイ
ミドの溶液そのものを直接使用してもよく、また一旦ポ
リアミド酸又はポリイソイミドを反応溶媒より固形物と
して落とし再度適切な有機溶媒に再溶解させて調製して
も良い。ドープ(a)のポリマー固形物の濃度は5重量
%〜35重量%である事が好ましく、更に好ましくは1
5重量%〜30重量%である。ドープ(a)の溶液粘度
は湿式紡糸可能であれば特に制限はない。
The polyamic acid or polyisoimide spinning dope (a) may be prepared by directly polymerizing a solution of polyamic acid or polyisoimide obtained by polymerizing tetracarboxylic acid anhydride and diamine in a suitable solvent, or once using polyamide. The acid or polyisoimide may be prepared by dropping the acid or polyisoimide as a solid from the reaction solvent and re-dissolving it in an appropriate organic solvent. The concentration of the polymer solid of the dope (a) is preferably 5% by weight to 35% by weight, and more preferably 1
It is 5% by weight to 30% by weight. The solution viscosity of the dope (a) is not particularly limited as long as wet spinning is possible.

【0023】本発明の製造方法において用いるドープ
(b)とは、中空糸複合膜の多孔質支持層を形成する為
の紡糸用ドープであり、実質的に互いに連通した細孔を
有する多孔質支持層を形成でき、且つポリイミド前駆体
を加熱もしくは触媒との接触により形成されるポリイミ
ドからなる緻密層を有する高分子層と十分に接着し、十
分な機械的強度と、ポリイミド前駆体の加熱もしくは触
媒との接触によるポリイミド化に耐える十分な耐熱性、
耐薬品性を有する樹脂を、溶剤に溶解したものである。
The dope (b) used in the production method of the present invention is a spinning dope for forming a porous support layer of a hollow fiber composite membrane, and is a porous support having pores that are substantially in communication with each other. A layer that can be formed and that sufficiently adheres to a polymer layer having a dense layer of polyimide formed by heating or contacting a polyimide precursor with a catalyst, and having sufficient mechanical strength and heating or a catalyst of the polyimide precursor. Sufficient heat resistance to withstand polyimidization by contact with
A resin having chemical resistance is dissolved in a solvent.

【0024】このような樹脂として、ドープ調製用の溶
剤に可溶なポリアミド樹脂、ポリエーテルイミド樹脂、
ポリスルフォン樹脂、ポリアミドイミド樹脂又は、ポリ
ベンゾイミダゾール、ポリベンゾオキサゾール、ポリイ
ミド樹脂等のポリヘテロ環化合物又はその前駆体の一種
以上の樹脂を用いる事ができる。中でもポリエーテルイ
ミド樹脂、ポリスルフォン樹脂、ポリイミド樹脂、ポリ
ベンゾイミダゾール樹脂から選ばれる一種以上の樹脂が
特にドープの調整が容易であり好ましく、このうち、ポ
リエーテルイミド及び/又はポリスルフォン樹脂と、ポ
リイミド樹脂との混合体は、ドープ調製の容易さと併せ
て、多孔質支持層に要求される各種特性、特に耐熱性と
緻密層を有する高分子層との接着性に優れた多孔質支持
層を形成する事が出来さらに好ましい。
As such a resin, a polyamide resin, a polyetherimide resin, which is soluble in a solvent for preparing a dope,
One or more resins of polysulfone resin, polyamide-imide resin, polyheterocyclic compound such as polybenzimidazole, polybenzoxazole, polyimide resin, or a precursor thereof can be used. Among them, one or more resins selected from polyetherimide resins, polysulfone resins, polyimide resins, and polybenzimidazole resins are particularly preferred because the dope can be easily adjusted. Among them, polyetherimide and / or polysulfone resins and polyimide A mixture with a resin forms a porous support layer with various properties required for a porous support layer, particularly heat resistance and excellent adhesiveness with a polymer layer having a dense layer, in addition to easy dope preparation. It is possible and more preferable.

【0025】ここでいうポリエーテルイミド樹脂とはエ
ーテル結合とイミド結合とを有する繰り返し単位で構成
された製膜可能な分子量を有する実質的に非結晶性のポ
リマーである。またここでいうポリスルフォン樹脂とは
パラフェニレンユニット及び/又はパラビフェニレンユ
ニットがスルフォン基とエーテル基及び/又はイソプロ
ピリデン基で結合された繰り返し単位で構成された製膜
可能な分子量有する実質的に非結晶性のポリマーであ
り、一般にはポリスルフォン、ポリエーテルスルフォ
ン、ポリアリルスルフォン又はポリフェニルスルフォン
として上市されている。
The polyetherimide resin as used herein is a substantially non-crystalline polymer having a molecular weight capable of forming a film and composed of repeating units having an ether bond and an imide bond. Further, the polysulfone resin as used herein is a substantially non-polymerizable molecular weight having a paraphenylene unit and / or parabiphenylene unit composed of a repeating unit in which a sulfone group and an ether group and / or an isopropylidene group are bonded. It is a crystalline polymer and is generally marketed as polysulfone, polyether sulfone, polyallyl sulfone or polyphenyl sulfone.

【0026】本発明に記載の多孔質支持層を形成するポ
リイミド樹脂は溶剤可溶性でも溶剤不溶性でも良い。溶
剤不溶性のポリイミド多孔質支持層の形成は、溶剤可溶
性の該ポリイミド前駆体のドープ、例えば、ポリイソイ
ミド、ポリアミド酸又はポリイミドのドープを使用し、
共押出し固化製膜の後に、加熱処理、触媒との接触、紫
外線の照射等により溶剤不溶のポリイミドの多孔質支持
層を生成する事ができる。ドープ(b)のポリマー固形
物の濃度は10重量%〜35重量%である事が好まし
く、更に好ましくは20重量%〜30重量%である。ド
ープ(b)の溶液粘度は湿式紡糸可能であれば特に制限
はない。
The polyimide resin forming the porous support layer according to the present invention may be solvent-soluble or solvent-insoluble. The formation of the solvent-insoluble polyimide porous support layer, the dope of the solvent-soluble polyimide precursor, for example, polyisoimide, using a polyamic acid or polyimide dope,
After coextrusion and solidification film formation, a solvent-insoluble polyimide porous support layer can be formed by heat treatment, contact with a catalyst, irradiation with ultraviolet rays, or the like. The concentration of the polymer solid of the dope (b) is preferably 10% by weight to 35% by weight, more preferably 20% by weight to 30% by weight. The solution viscosity of the dope (b) is not particularly limited as long as wet spinning is possible.

【0027】本発明の中空糸複合膜の製造方法におい
て、紡糸用ドープ(a)及び(b)に使用できる溶剤は
前記ポリアミド酸、ポリイソイミド、又は多孔質支持層
を形成する各樹脂を可溶し、且つ後述の凝固液と相溶性
を有する溶剤を適宜選択して使用できる。これらの溶剤
はドープ(a)、(b)とも同じものを使用しても良い
し、異なるものを使用しても良い。ポリアミド酸又はポ
リイソイミドは溶剤可溶性に優れるので、広範な溶剤の
中から中空糸複合膜の緻密層を形成するのに最適な溶剤
系を選択できるという利点がある。
In the method for producing a hollow fiber composite membrane of the present invention, the solvent that can be used for the spinning dopes (a) and (b) is soluble in the polyamic acid, polyisoimide, or each resin forming the porous support layer. Moreover, a solvent having compatibility with the coagulation liquid described below can be appropriately selected and used. These solvents may be the same as or different from the dopes (a) and (b). Since polyamic acid or polyisoimide is excellent in solvent solubility, there is an advantage that an optimum solvent system for forming a dense layer of a hollow fiber composite membrane can be selected from a wide range of solvents.

【0028】本発明のドープ(a)及び/又は(b)に
使用できる有機溶剤として例えば、ジクロロメタン、ク
ロロホルム、トリクロロエタン等のハロゲン化アルキル
や、m−クロロフェノール、m−クレゾール等のフェノ
ール類や、アセトン、メチルエチルケトン等のケトン類
や、N,N-ジメチルアセトアミド、N−メチルアセトア
ミド、N,N-ジメチルホルムアミド、N,N-ジエチルホ
ルムアミド、2-ピロリドン、N-メチルピロリドン、ヘ
キサメチルホスホロトリアミド等のアミド系溶剤や、ジ
メチルスルフォキシド、スルフォラン等の硫黄系溶剤
や、その他、ピリジン、ジオキサン、テトラヒドロフラ
ン、γ−ブチルラクトン、ポリリン酸、アセトニトリル
等の一種以上の溶剤が好適に挙げられる。好ましくは
N,N-ジメチルアセトアミド、N−メチルアセトアミ
ド、N,N-ジメチルホルムアミド、N,N-ジエチルホル
ムアミド、2-ピロリドン、N-メチルピロリドン、ヘキ
サメチルホスホロトリアミド等の水溶性の溶剤である。
Examples of the organic solvent which can be used in the dope (a) and / or (b) of the present invention include alkyl halides such as dichloromethane, chloroform and trichloroethane, phenols such as m-chlorophenol and m-cresol, Ketones such as acetone and methyl ethyl ketone, N, N-dimethylacetamide, N-methylacetamide, N, N-dimethylformamide, N, N-diethylformamide, 2-pyrrolidone, N-methylpyrrolidone, hexamethylphosphorotriamide, etc. The amide-based solvent, the sulfur-based solvent such as dimethyl sulfoxide and sulfolane, and one or more solvents such as pyridine, dioxane, tetrahydrofuran, γ-butyl lactone, polyphosphoric acid, and acetonitrile are preferable. Preferred are water-soluble solvents such as N, N-dimethylacetamide, N-methylacetamide, N, N-dimethylformamide, N, N-diethylformamide, 2-pyrrolidone, N-methylpyrrolidone and hexamethylphosphorotriamide. .

【0029】紡糸用ドープの安定性や粘度調節や生成さ
れる複合膜の気体選択透過性の改善等を目的として、必
要に応じて上記溶剤にポリエチレングリコール、ポリプ
ロピレングリコール、ポリビニルアルコール、ポリビニ
ルピロリドン等の該溶剤に可溶の低分子物質や、キシレ
ン、酢酸等の重合体の貧溶剤や、エチレングリコール、
グリセリン等の水溶性多価アルコール類や、塩化リチウ
ム、臭化リチウム、塩化カリウム等の無機塩類等を適宜
添加することができる。
For the purpose of adjusting the stability and viscosity of the dope for spinning and improving the gas selective permeability of the produced composite membrane, the above solvent may be added to the above-mentioned solvent, if necessary, such as polyethylene glycol, polypropylene glycol, polyvinyl alcohol or polyvinylpyrrolidone. Low molecular weight substances soluble in the solvent, poor solvents for polymers such as xylene and acetic acid, ethylene glycol,
Water-soluble polyhydric alcohols such as glycerin, inorganic salts such as lithium chloride, lithium bromide, potassium chloride and the like can be appropriately added.

【0030】本発明の製造方法は、第一段階として、芯
材を多重円環ノズルの芯材吐出口から流しながら、ドー
プ(a)及び(b)を多重円環ノズルのドープ吐出口か
ら、それぞれ中空糸状に同時に押し出し(共押出)、こ
の押し出した多層構造の中空糸状体を凝固液に接触さ
せ、凝固させる。
In the first step of the production method of the present invention, the dopes (a) and (b) are discharged from the dope discharge port of the multiple ring nozzle while flowing the core material from the core material discharge port of the multiple ring nozzle. They are simultaneously extruded into hollow fibers (co-extrusion), and the extruded hollow fibers having a multilayer structure are brought into contact with a coagulating liquid to coagulate.

【0031】本発明の製造方法は、ドープ液の組成、濃
度、及び温度、凝固液の組成、内管流体の組成、紡糸ド
ラフト等を適切に選ぶ事により緻密層は、中空糸の内側
表面及び/又は外側表面にも形成可能である。また、多
重円環ノズルの多重度により、複数のドープ(a)及び
(b)を押し出し、多層構造の中空糸膜を得る事もでき
るが、以下便宜上、二層構造の中空糸膜の製造方法につ
いて説明する。
In the production method of the present invention, the dense layer is formed on the inner surface of the hollow fiber by appropriately selecting the composition, concentration, and temperature of the dope solution, the composition of the coagulating solution, the composition of the inner tube fluid, the spinning draft, and the like. It can also be formed on the outer surface. It is also possible to obtain a multi-layered hollow fiber membrane by extruding a plurality of dopes (a) and (b) depending on the multiplicity of the multi-annular nozzle. Will be described.

【0032】例えば、中空糸の外側表面に緻密層を有す
る複合膜の場合、図1記載のノズルの最外層のドープ吐
出口からドープ(a)を、内側のドープ吐出口からドー
プ(b)を、同時に一旦気相中に押し出し、次いで凝固
液中に浸せきし固化させ製膜する、いわゆる公知の乾湿
式法(特開昭62−191019、特開平1−9961
6等)を適用する事ができる。このような膜はその量産
性に優れ、且つ得られる複合膜の気体の透過選択特性が
高く好ましい。また中空糸複合膜の寸法は、ノズルの寸
法、ドープの押し出し量、紡糸ドラフト等を適宜調整す
ることにより、実用用途に適した外径、内径等に適宜調
整できる。
For example, in the case of a composite membrane having a dense layer on the outer surface of the hollow fiber, the dope (a) is discharged from the dope discharge port of the outermost layer of the nozzle shown in FIG. 1 and the dope (b) is discharged from the inner dope discharge port. At the same time, it is extruded into the gas phase at the same time, then immersed in a coagulating liquid to solidify to form a film, so-called known dry-wet method (JP-A-62-191019, JP-A-1-9961).
6 etc.) can be applied. Such a membrane is preferable because of its excellent mass productivity and high gas permeation selectivity of the obtained composite membrane. Further, the dimensions of the hollow fiber composite membrane can be appropriately adjusted to the outer diameter, the inner diameter and the like suitable for practical use by appropriately adjusting the dimensions of the nozzle, the dope extrusion amount, the spinning draft and the like.

【0033】芯材として流し出す流体は気体でも液体で
もよく、例えば窒素、空気等の気体や、水、エタノー
ル、ノルマルプロパノール、イソプロパノール、グリセ
リン等の一種以上の液体が使用できる。
The fluid discharged as the core material may be a gas or a liquid, and for example, a gas such as nitrogen or air, or one or more liquids such as water, ethanol, normal propanol, isopropanol, glycerin or the like can be used.

【0034】ドープを押し出す雰囲気としては、例えば
空気、窒素等の気相雰囲気であっても、溶剤等の液相雰
囲気であってもよく、気相雰囲気の場合、気流、温度、
湿度等の制御を、液相雰囲気の場合、温度等の制御を適
宜必要に応じて実施できる。
The atmosphere for extruding the dope may be, for example, a gas phase atmosphere of air, nitrogen or the like, or a liquid phase atmosphere of a solvent or the like. In the case of the gas phase atmosphere, air flow, temperature,
In the case of a liquid phase atmosphere, control of humidity and the like can be appropriately performed as necessary, such as control of temperature and the like.

【0035】凝固液はドープ用溶剤に可溶している重合
体、即ち前記ポリアミド酸やポリイソイミドや中空糸複
合膜の多孔質支持層を形成する各種重合体を凝固するの
に十分な貧溶剤であればよく、例えば、水、メタノー
ル、エタノール、ノルマルプロパノール、イソプロパノ
ールの一種以上の液体が使用できる。好ましくは水又は
水と他の有機溶剤の混合液体である。
The coagulation liquid is a poor solvent sufficient to coagulate the polymer soluble in the dope solvent, that is, the polyamic acid, polyisoimide, and various polymers forming the porous support layer of the hollow fiber composite membrane. Any liquid may be used, and for example, one or more liquids of water, methanol, ethanol, normal propanol, and isopropanol can be used. Preferred is water or a mixed liquid of water and another organic solvent.

【0036】更に、本発明の製造方法の第二段階とし
て、凝固して得られた、ポリイミド前駆体からなる緻密
層を有する高分子層と多孔質支持層からなる中空糸複合
膜を、加熱処理もしくは触媒と接触させ、該前駆体をポ
リイミド化することにより、ポリイミド前駆体からなる
緻密層を、ポリイミドからなる緻密層に変化させる。こ
こで該前駆体の緻密層は該前駆体のイミド化後に後述の
ポリイミドの緻密層の特徴を示せばよく、一般的に本発
明に記載の該前駆体の熱ポリイミド化により緻密度は向
上する。
Further, as a second step of the production method of the present invention, a hollow fiber composite membrane comprising a porous support layer and a polymer layer having a dense layer of a polyimide precursor obtained by solidification is heat treated. Alternatively, the precursor is brought into contact with a catalyst to be polyimidized to change the dense layer made of the polyimide precursor into a dense layer made of polyimide. Here, the dense layer of the precursor may show the features of the dense layer of polyimide described below after imidization of the precursor, and the density is generally improved by thermal polyimidization of the precursor described in the present invention. .

【0037】中空糸複合膜の加熱処理条件は、ポリアミ
ド酸またはポリイソイミドであるポリイミド前駆体から
なる緻密層が実質的にポリイミドに変化する条件であ
り、且つ多孔層を形成する重合体の多孔質構造が加熱に
より破壊されない条件であれば良い。好ましくは減圧下
又は不活性ガス雰囲気で150℃〜400℃、より好ま
しくは200℃〜350℃で、10分〜360分間、よ
り好ましくは30分〜300分の加熱処理である。ここ
で言う減圧下とは中空糸複合膜を形成する各樹脂が酸化
劣化を起こさない程度で有れば良く、好ましくは200
トール以下、さらに好ましくは5トール以下の真空雰囲
気である。また、本発明に使用できる不活性ガスとして
窒素、ヘリウム、アルゴン等が好適に挙げられる。
The heat treatment conditions for the hollow fiber composite membrane are such that the dense layer made of the polyimide precursor, which is polyamic acid or polyisoimide, is substantially converted into polyimide, and the porous structure of the polymer forming the porous layer is used. It suffices if the condition is not destroyed by heating. The heat treatment is preferably under reduced pressure or in an inert gas atmosphere at 150 ° C. to 400 ° C., more preferably 200 ° C. to 350 ° C., for 10 minutes to 360 minutes, more preferably 30 minutes to 300 minutes. The term "under reduced pressure" as used herein means that each resin forming the hollow fiber composite membrane does not cause oxidative deterioration, and is preferably 200.
A vacuum atmosphere of not more than torr, more preferably not more than 5 torr. Suitable examples of the inert gas usable in the present invention include nitrogen, helium and argon.

【0038】加熱処理は、紡糸ドープの凝固により得ら
れた中空糸複合膜を、そのまま連続的に加熱処理するこ
ともできるし、適当な長さにそろえた中空糸複合膜の束
の状態でも良く、またモジュール化の後に行っても良
い。
In the heat treatment, the hollow fiber composite membrane obtained by coagulation of the spinning dope can be continuously heat treated as it is, or a bundle of hollow fiber composite membranes having an appropriate length can be used. Alternatively, it may be performed after modularization.

【0039】また、ポリイソイミドから相当するポリイ
ミドへの異性化は加熱のみによらず必要に応じて、トリ
エチルアミン、トリフルオロ酢酸、1,8−ジアザビシ
クロ[5,4,0]−7−ウンデセン等の触媒と該前駆
体を接触させる等の方法によっても実施できる。該触媒
の接触方法も特に制限は無く、例えば、触媒量のトリエ
チルアミンをアセトン、メチルエチルケトン等の適当な
溶剤に溶解させた溶液中にポリイソイミドからなる緻密
層が該溶液と接触するように中空糸膜を数時間〜数十時
間浸せきする等の方法によりポリイソイミドをポリイミ
ド化する事もできる。このような処理も、紡糸ドープの
凝固により得られた中空糸複合膜を、そのまま連続的に
処理することもできるし、適当な長さにそろえた中空糸
複合膜の束の状態でも良く、またモジュール化の後に行
っても良い。
The isomerization of the polyisoimide to the corresponding polyimide is not limited to heating but may be a catalyst such as triethylamine, trifluoroacetic acid, 1,8-diazabicyclo [5,4,0] -7-undecene, if necessary. Can also be carried out by a method of bringing the precursor into contact with The method of contacting the catalyst is not particularly limited, and for example, a hollow fiber membrane is formed so that a dense layer made of polyisoimide is brought into contact with the solution in a solution in which a catalytic amount of triethylamine is dissolved in an appropriate solvent such as acetone or methyl ethyl ketone. The polyisoimide can be polyimidized by a method of immersing it for several hours to several tens of hours. In such a treatment, the hollow fiber composite membrane obtained by coagulation of the spinning dope may be continuously treated as it is, or may be in the state of a bundle of hollow fiber composite membranes having an appropriate length. It may be done after modularization.

【0040】ポリイミド前駆体のポリイミドへの変化
は、これらの赤外吸収スペクトルの変化により容易に確
認できる。例えばポリイソイミド体から相当するポリイ
ミドへの変化はポリイソイミド体に特徴的な約1810
cm-1近傍と約920cm-1近傍の吸収ピークが消失
し、代わりに約1780cm-1近傍のポリイミドに特徴
的な吸収ピークが出現する事により容易に確認できる。
またポリアミド酸体から相当するポリイミドへの変化
は、3250cm-1近傍と1650cm-1近傍のポリア
ミド酸由来の吸収ピークの消失と、代わりに出現する1
780cm-1近傍のポリイミドに特徴的な吸収ピークに
より容易に確認できる。
The change of the polyimide precursor into polyimide can be easily confirmed by the change of these infrared absorption spectra. For example, the change from the polyisoimide form to the corresponding polyimide is about 1810 which is characteristic of the polyisoimide form.
cm -1 absorption peak near about 920 cm -1 vicinity disappeared, characteristic absorption peaks at about 1780 cm -1 vicinity of polyimide in place can be easily confirmed by appearance.
The change to a polyimide corresponding polyamide acid product emerges and disappearance of the absorption peak derived from polyamic acid 3250Cm -1 vicinity and 1650 cm -1 vicinity, instead 1
It can be easily confirmed by the absorption peak characteristic of polyimide near 780 cm -1 .

【0041】また得られた複合膜に残存する有機溶剤は
実質的に除去されることが好ましく、除去は例えば温水
洗浄及び/又は残留溶剤を可溶する低沸点溶剤で洗浄及
び置換した後に真空加熱乾燥を行う等の公知の方法で実
施できる。残留有機溶剤特にドープ用溶剤の除去はポリ
イミド化の為の加熱処理行程の前に行う事が好ましい。
Further, it is preferable that the organic solvent remaining in the obtained composite membrane is substantially removed. For example, the organic solvent is removed by washing with warm water and / or washing with a low-boiling solvent capable of dissolving the residual solvent and replacing with vacuum heating. It can be carried out by a known method such as drying. It is preferable to remove the residual organic solvent, especially the dope solvent, before the heat treatment step for polyimidization.

【0042】本発明で製造されるポリイミド中空糸複合
膜は、前述のように、ポリイミドからなる緻密層を有す
る複合膜である。本発明に記述ポリイミドからなる緻密
層とは酸素、窒素、水素等の非凝集性気体の膜透過の機
構が高々クヌーセン流れ律速となる孔径以下の連通孔し
か実質的に存在せず、且つその連通孔開孔率が面積比で
1×10ー3以下、好ましくは1×10ー4以下、さらに好
ましくは1×10ー6以下であり、最も好ましくは連通孔
が実質的に存在せず気体の膜透過機構が溶解−拡散律速
となる緻密な薄膜層であり、その厚さは薄いほど好まし
く、厚くとも2μm以下であり、好ましくは1μm以下
であり、更に好ましくは0.5μm以下であり、最も好
ましくは0.1μm以下である緻密な薄膜層をいう。緻
密層に存在する連通孔径が高々クヌーセン流れとなる孔
径以下である事は、例えば膜を透過する酸素と窒素の透
過速度の比が誤差の範囲内で0.935以上となる事に
より容易に確認できる。また緻密層の連通孔の開孔率が
1×10ー3以下である事は、必要に応じて該緻密層表面
をシリコーン等で連通孔の目止め又は厚くとも2μm以
下の薄膜コートティングした膜の気体の透過機構の律速
が、ポリイミドへの気体の溶解拡散律速となることで確
認できる。これは、気体として例えば酸素と窒素を使用
した場合、必要に応じてシリコーン等の気体の透過能が
極めて高い素材でコーティング等の処理を実施した実用
可能な薄い膜厚域でのポリイミド緻密層の酸素/窒素の
分離係数がポリイミド素材の固有値の低くとも約8割以
上の値を示すことで容易に確認できる。
The polyimide hollow fiber composite membrane produced by the present invention is a composite membrane having a dense layer made of polyimide as described above. The dense layer made of polyimide described in the present invention means that the mechanism of membrane permeation of oxygen, nitrogen, hydrogen, etc., such as oxygen, nitrogen, hydrogen, etc., has at most only the communicating pores having a pore diameter equal to or smaller than the Knudsen flow rate-determining mechanism, and the communication thereof. 1 × 10 -3 or less at AnaHiraki porosity area ratio, preferably 1 × 10 -4 or less, further preferably 1 × 10 -6 or less, and most preferably the communication hole is a gas substantially absent It is a dense thin film layer in which the membrane permeation mechanism is dissolution-diffusion limited, and the thinner the thickness, the more preferable, the thickness is 2 μm or less, the thickness is preferably 1 μm or less, more preferably 0.5 μm or less, and the most preferable. It means a dense thin film layer having a thickness of preferably 0.1 μm or less. The fact that the diameter of the communicating pores existing in the dense layer is at most equal to or smaller than the diameter of the Knudsen flow is easily confirmed by, for example, the ratio of the permeation rates of oxygen and nitrogen passing through the membrane being 0.935 or more within the error range. it can. Further, the open area ratio of the communication holes of the dense layer is 1 × 10 −3 or less means that the surface of the dense layer is covered with a silicone or the like as necessary to seal the communication holes or a thin film having a thickness of 2 μm or less at most. It can be confirmed that the rate-determining rate of the gas permeation mechanism is that of gas diffusion and diffusion into polyimide. This is because when, for example, oxygen and nitrogen are used as the gas, a polyimide dense layer in a practically thin film thickness range where a treatment such as coating is carried out with a material having extremely high gas permeability such as silicone, if necessary. It can be easily confirmed by showing that the oxygen / nitrogen separation coefficient is about 80% or more even if the characteristic value of the polyimide material is low.

【0043】本発明はまたノズル寸法、ドープの押し出
し量、紡糸ドラフト等を適宜調整する事により、各種実
用用途に最適な寸法を有する中空糸複合膜を提供する。
例えば、中空糸の内部加圧方式で空気中の酸素と窒素の
分離用途に実用する場合、膜強度、耐久性、圧縮空気の
圧力損失、糸占有断面積(モジュールの大きさ)等の制
限要素により、中空糸内径が130μm〜400μmで
あり、外径が200μm〜800μmであり、主に中空
糸膜の物理的強度を受け持つ多孔層の膜厚が30μm〜
300μmである好ましい中空糸複合膜を提供する。
The present invention also provides a hollow fiber composite membrane having optimum dimensions for various practical applications by appropriately adjusting the nozzle size, the dope extrusion amount, the spinning draft, and the like.
For example, when the hollow fiber internal pressurization method is used for separation of oxygen and nitrogen in the air, limiting factors such as membrane strength, durability, compressed air pressure loss, and yarn occupied cross-sectional area (module size) The hollow fiber inner diameter is 130 μm to 400 μm, the outer diameter is 200 μm to 800 μm, and the thickness of the porous layer mainly responsible for the physical strength of the hollow fiber membrane is 30 μm to
A preferred hollow fiber composite membrane that is 300 μm is provided.

【0044】本発明の複合膜には、複合膜の緻密層にわ
ずかに発生したピンホール(微細孔)を塞ぐために、シ
リコーンやポリアセチレン等の気体透過性の高い素材で
緻密層表面をコーティング又は目止め処理を行っても良
いし、更に気体の選択性をさらに高めるために該緻密層
に塩素、フッ素ガスによる表面処理やプラズマ処理を施
しても良い。
In the composite film of the present invention, in order to close pinholes (fine holes) slightly generated in the dense layer of the composite film, the surface of the dense layer is coated or coated with a material having a high gas permeability such as silicone or polyacetylene. Stopping treatment may be performed, or the dense layer may be subjected to surface treatment with chlorine or fluorine gas or plasma treatment in order to further enhance gas selectivity.

【0045】[0045]

【実施例】本発明を以下実施例によりさらに詳しく説明
する。 [参考例1] <ポリアミド酸の重合>窒素雰囲気下、室温で、2,
2’−ビス[3,5−ジブロモ−4−(4−アミノフェ
ノキシ)フェニル]プロパン0.3モルをモレキュラー
シーブ3Aで脱水処理したジメチルアセトアミド(以下
DMACと略記する)1800gに溶解させ、次いでP
MDA0.3モルを添加し、室温で3時間攪拌した後D
MACをさらに400ml入れ希釈した。次いで安息香
酸0.4モルを添加し完全に溶解させた後にピリジン0.
4モルを添加しさらに3時間攪拌した。得られた粘調な
液体にイソプロパノールを加えポリアミド酸の固形物を
濾過分離し約100℃の真空オーブン中で十分乾燥しポ
リアミド酸固形物を得た。得られた固形物の約10重量
%のDMAC溶液をガラス板上に流延し60℃で3時
間、さらに100℃で4時間真空乾燥を行い緻密なフィ
ルムを得た。このフィルムは3250cmー1近傍と16
50cm-1近傍のポリアミド酸体由来の吸収スペクトル
を有しおり、この固形物がポリアミド酸体である事が確
認された。ついでこのフィルムを240℃で約5時間、
真空オーブン中で熱処理を行ったところ、上記赤外吸収
帯が消滅し、1780cm-1近傍のイミドカルボニル由
来の吸収帯が出現した。また、熱処理したフィルムはD
MAC、N−メチルピロリドン(以下NMPと略記す
る)等の各種溶剤に不溶体であった。
The present invention will be described in more detail with reference to the following examples. Reference Example 1 <Polymerization of Polyamic Acid> At room temperature under a nitrogen atmosphere, 2.
0.3 mol of 2'-bis [3,5-dibromo-4- (4-aminophenoxy) phenyl] propane was dissolved in 1800 g of dimethylacetamide (hereinafter abbreviated as DMAC) dehydrated with molecular sieve 3A, and then P
After adding 0.3 mol of MDA and stirring at room temperature for 3 hours, D
An additional 400 ml of MAC was added and diluted. Then, 0.4 mol of benzoic acid was added and completely dissolved, and then pyridine was added to 0.4 mol.
4 mol was added and further stirred for 3 hours. Isopropanol was added to the obtained viscous liquid, the polyamic acid solid was separated by filtration, and sufficiently dried in a vacuum oven at about 100 ° C. to obtain a polyamic acid solid. A DMAC solution containing about 10% by weight of the obtained solid matter was cast on a glass plate and vacuum dried at 60 ° C. for 3 hours and further at 100 ° C. for 4 hours to obtain a dense film. This film has 3250 cm -1 and 16
It had an absorption spectrum derived from a polyamic acid body in the vicinity of 50 cm -1, and it was confirmed that this solid substance was a polyamic acid body. Then, this film at 240 ℃ for about 5 hours,
When heat treatment was performed in a vacuum oven, the infrared absorption band disappeared and an absorption band derived from imidecarbonyl near 1780 cm -1 appeared. The heat-treated film is D
It was insoluble in various solvents such as MAC and N-methylpyrrolidone (hereinafter abbreviated as NMP).

【0046】[参考例2] <ポリイソイミドの重合>窒素雰囲気下、室温で、3,
3’−ジアミノ−4,4’−ジヒドロキシビフェニル
0.15モルと2,7−ジアミノフルオレン0.15モル
をモレキュラーシーブ3Aで脱水処理したNMP溶液8
00gに溶解させ、次いでPMDAを0.24モルと6
FDAWP0.06モル加え溶解させ、室温で4時間攪
拌した後これに無水フタル酸0.33モルを加え2時間
攪拌溶解させた。次いでNMP溶液800gを加え希釈
した。この溶液にトリエチルアミンを0.4モル加え攪
拌した。ついでこの反応容器を氷水中で冷却しつつ、溶
液を攪拌しながらトリフルオロ酢酸無水物0.6モルを
ゆっくり滴下し、さらに4時間攪拌した。得られた粘調
な液体を多量のイソプロパノールに落とし、濾過し固形
物を分離した。さらに多量のイソプロパノールで十分に
洗浄した後、約100℃の真空オーブン中で十分乾燥し
ポリイソイミドの固形物を得た。得られたポリイソイミ
ドの10wt%NMP溶液をガラス板上に流延し、60℃
で3時間さらに100℃で4時間真空乾燥を行い緻密な
フィルムを得た。赤外吸収スペクトルで約1810cm
ー1近傍にイソイミド特有の吸収ピークを確認した。つい
でこのフィルムを240℃で約5時間、真空オーブン中
で熱処理を行ったところ、上記赤外吸収帯が消滅し、代
わりに1780cm-1近傍のイミドカルボニル由来の吸
収帯が出現した。また熱処理したフィルムはDMAC、
NMP等の各種溶剤には不溶体であった。
[Reference Example 2] <Polyisoimide polymerization> At room temperature under a nitrogen atmosphere,
NMP solution 8 in which 0.15 mol of 3'-diamino-4,4'-dihydroxybiphenyl and 0.15 mol of 2,7-diaminofluorene were dehydrated with molecular sieve 3A
Dissolve in 00 g, then add 0.26 mol of PMDA and 6
FDAWP (0.06 mol) was added and dissolved, and the mixture was stirred at room temperature for 4 hours, and then phthalic anhydride (0.33 mol) was added and the mixture was stirred and dissolved for 2 hours. Next, 800 g of NMP solution was added and diluted. To this solution, 0.4 mol of triethylamine was added and stirred. Then, while cooling the reaction vessel in ice water, 0.6 mol of trifluoroacetic anhydride was slowly added dropwise while stirring the solution, and the mixture was further stirred for 4 hours. The resulting viscous liquid was dropped into a large amount of isopropanol and filtered to separate solids. After sufficiently washing with a large amount of isopropanol, it was thoroughly dried in a vacuum oven at about 100 ° C. to obtain a solid polyisoimide. A 10 wt% NMP solution of the obtained polyisoimide was cast on a glass plate and heated at 60 ° C.
After vacuum drying for 3 hours at 100 ° C. for 4 hours, a dense film was obtained. Approximately 1810 cm in infrared absorption spectrum
Over it was confirmed isoimide specific absorption peak in the near 1. Then, when this film was heat-treated at 240 ° C. for about 5 hours in a vacuum oven, the infrared absorption band disappeared, and instead, an absorption band derived from imidecarbonyl near 1780 cm −1 appeared. Also, the heat-treated film is DMAC,
It was insoluble in various solvents such as NMP.

【0047】[参考例3] <ポリベンゾイミダゾールの合成>窒素雰囲気下、16
0℃に加熱保温したポリリン酸1100gに3,3’,
4,4−テトラアミノビフェニル0.3モルを溶解さ
せ、次いでイソフタル酸0.2モルと2,2−ビス(4
−カルボキシフェニル)ヘキサフルオロプロパン0.9
モルを溶解させ、200℃に昇温し15時間攪拌した。
得られた粘調な反応溶液を水に投入し、析出したポリマ
ーを濾過分離しさらに水でよく洗浄し、次いでメタノー
ルでポリマー固形物に残存する水を十分に置換し真空乾
燥を行いポリマー固形物を得た。これがポリベンゾイミ
ダゾールである事の確認は、この固形物の約10重量%
のDMAC溶液をガラス板上に流延し60℃で3時間、
さらに220℃で5時間真空乾燥を行い得た緻密なフィ
ルムの1620cm-1近傍のイミダゾール由来の吸収ス
ペクトルの存在により確認した。
Reference Example 3 <Synthesis of polybenzimidazole> 16 in a nitrogen atmosphere
1,3Og of polyphosphoric acid heated and kept at 0 ° C for 3,3 ',
0.3 mol of 4,4-tetraaminobiphenyl was dissolved, followed by 0.2 mol of isophthalic acid and 2,2-bis (4
-Carboxyphenyl) hexafluoropropane 0.9
The mol was dissolved, the temperature was raised to 200 ° C., and the mixture was stirred for 15 hours.
The viscous reaction solution obtained was poured into water, and the precipitated polymer was separated by filtration, washed well with water, and then the remaining water in the polymer solid was sufficiently replaced with methanol to perform vacuum drying to obtain the polymer solid. Got Confirmation that this is polybenzimidazole is about 10% by weight of this solid
The DMAC solution of is cast on a glass plate at 60 ° C. for 3 hours,
Further, it was confirmed by the existence of an absorption spectrum derived from imidazole in the vicinity of 1620 cm −1 of a dense film obtained by vacuum drying at 220 ° C. for 5 hours.

【0048】[実施例1]参考例1で得たポリアミド酸
を、窒素雰囲気下DMACに約70℃で25重量%溶解
し、濾過濾過孔径20μmのステンレスフィルターで濾
過し減圧脱泡を行い紡糸用ドープ(a)を得た。また、
マトリイミド5218[チバガイギー社:可溶性ポリイ
ミド]/ウルテム1000[GEプラスチックス社:ポ
リエーテルイミド]/DMAC=12/16/72重量
%の組成で溶解し濾過孔径20μmのステンレスフィル
ターによりろ過し、減圧脱泡を行い紡糸用ドープ(b)
を得た。これらのドープ液を、円環外径よりφ1.8−
φ1.5−φ1.1−φ0.4−φ0.2[mm]の多重円
環ノズルを使用し、中心部円管より水をを流しつつ、内
側の円環より複合膜の多孔質支持層を形成させる為のド
ープ(b)を約3g/minの吐出量で、外側の円環よ
り約50℃に加温したポリアミド酸のドープ液(a)を
約0.6g/minの吐出量で同時に空気雰囲気中に吐
出した後、連続して5℃に調整したイソプロピルアルコ
ール/水の約50/50の凝固液中に導入凝固させ、連
続して約20m/minの巻き取り速度でボビンに巻き
取った。得られた中空糸を約50℃の流水中へ浸漬し十
分に洗浄した後、軽く乾燥を行い、さらにエタノールで
十分に置換洗浄し、約120℃で十分な真空乾燥を行っ
た。ついで真空中で250℃で5時間熱処理を行いポリ
アミド酸体をポリイミド化した。得られた中空糸複合膜
は、内径約210μm、外径約440μm、中空糸断面の
顕微鏡観察により中空糸内側多孔質支持層厚さ/中空糸
外側ポリイド層厚さの比が約5:1であり、中空糸外表
面に緻密層を有する中空糸複合膜であった。得られた中
空糸複合膜の各気体透過特性をそれぞれ純ガスを使用し
25℃雰囲気、ΔP=約2[kg/cm2]でASTM
D1434に準じて圧力法で測定した。結果を第1表
に示す。
[Example 1] The polyamic acid obtained in Reference Example 1 was dissolved in DMAC in a nitrogen atmosphere at about 70 ° C in an amount of 25% by weight, filtered through a stainless steel filter having a filtration filtration pore size of 20 µm, and defoamed under reduced pressure for spinning. A dope (a) was obtained. Also,
Matriimide 5218 [Ciba Geigy: Soluble Polyimide] / Ultem 1000 [GE Plastics: Polyetherimide] / DMAC = 12/16/72 wt% dissolved in a composition and filtered through a stainless filter having a filtration pore size of 20 μm, and degassed under reduced pressure. Dope for spinning (b)
I got From the outer diameter of the ring, use these dope solutions φ1.8-
Using a multi-annular nozzle of φ1.5-φ1.1-φ0.4-φ0.2 [mm], while allowing water to flow from the central circular tube, the porous support layer of the composite membrane from the inner circular ring At a rate of about 3 g / min for forming dope, and at a rate of about 0.6 g / min for the dope solution (a) of polyamic acid heated to about 50 ° C. from the outer ring. At the same time, after discharging into the air atmosphere, it is continuously introduced into the coagulating liquid of isopropyl alcohol / water of about 50/50 adjusted to 5 ° C. and coagulated, and continuously wound on the bobbin at a winding speed of about 20 m / min. I took it. The obtained hollow fiber was immersed in running water of about 50 ° C., thoroughly washed, lightly dried, further sufficiently replaced with ethanol for washing, and sufficiently vacuum dried at about 120 ° C. Then, heat treatment was performed in vacuum at 250 ° C. for 5 hours to polyimidize the polyamic acid body. The obtained hollow fiber composite membrane had an inner diameter of about 210 μm, an outer diameter of about 440 μm, and a ratio of the hollow fiber inner side porous support layer thickness / hollow fiber outer side porous layer thickness of about 5: 1 by microscopic observation of the hollow fiber cross section. It was a hollow fiber composite membrane having a dense layer on the outer surface of the hollow fiber. The gas permeation characteristics of the obtained hollow fiber composite membrane were measured by ASTM in pure gas using 25 ° C. atmosphere and ΔP = about 2 [kg / cm 2 ].
It was measured by the pressure method according to D1434. The results are shown in Table 1.

【0049】[実施例2]紡糸ドープ(b)の組成をマ
トリイミド5218/ウルテム1000/レーデルA−
100(テイジンアモコ社:ポリエーテルスルフォン)
/DMAC=12/8/8/72重量%とした以外実施
例1と同様の方法で中空糸の外表面にポリイミドの緻密
層を有する中空糸複合膜を得た。得られた中空糸膜の各
気体透過特性をそれぞれ純ガスを使用し25℃雰囲気、
ΔP=約2[kg/cm2]でASTM D1434に
準じて圧力法で測定した。結果を第1表に示す [実施例3]参考例2で得たポリイソイミドを窒素雰囲
気下NMPに約70℃で25重量%溶解し、濾過濾過孔
径20μmのステンレスフィルターでろ過し、減圧脱泡
を行い紡糸用ドープ(a)を得た。またマトリイミド5
218/ウルテム1000/NMP=12/16/72
重量%の溶液を、濾過濾過孔径20μmのステンレスフ
ィルターによりろ過し、減圧脱泡を行い紡糸用ドープ
(b)を得た。上記紡糸用ドープ(a)、(b)を用い
た以外、実施例1と同様の方法で中空糸の外表面にポリ
イミドの緻密層を有する中空糸複合膜を得た。得られた
中空糸膜の各気体透過特性をそれぞれ純ガスを使用し2
5℃雰囲気、ΔP=約2[kg/cm2]でASTM
D1434に準じて圧力法で測定した。結果を第1表に
示す [実施例4]参考例2と同様の方法で得たポリイソイミ
ドを窒素雰囲気下NMPに約70℃で25重量%溶解
し、濾過濾過孔径20μmのステンレスフィルターでろ
過し、減圧脱泡を行い紡糸用ドープ(a)を得た。また
マトリイミド5218/レーデルA−100/NMP=
12/15/73重量%の溶液を濾過孔径20μmのス
テンレスフィルターにより濾過し、減圧脱泡を行い紡糸
用ドープ(b)を得た。上記紡糸用ドープ(a)、
(b)を用いた以外、実施例1と同様の方法で中空糸の
外表面にポリイミドからなる緻密層を有する中空糸複合
膜を得た。得られた中空糸膜の各気体透過特性をそれぞ
れ純ガスを使用し25℃雰囲気、ΔP=約2[kg/c
2]でASTM D1434に準じて圧力法で測定し
た。結果を第1表に示す [実施例5]紡糸用ドープ(b)組成がマトリイミド5
218/NMP=25/75重量%であり、熱処理温度
を350℃で行った以外、実施例2と同様の方法で中空
糸の外表面にポリイドの緻密層を有する中空糸複合膜を
得た。得られた中空糸膜の各気体透過特性をそれぞれ純
ガスを使用し25℃雰囲気、ΔP=約2[kg/c
2]でASTM D1434に準じて圧力法で測定し
た。結果を第1表に示す。
Example 2 The composition of the spinning dope (b) was changed to Matriimide 5218 / Ultem 1000 / Radel A-.
100 (Teijin Amoco: Polyethersulfone)
A hollow fiber composite membrane having a dense layer of polyimide on the outer surface of the hollow fiber was obtained by the same method as in Example 1 except that / DMAC = 12/8/8/72% by weight. The gas permeation characteristics of the obtained hollow fiber membrane were measured by using pure gas in an atmosphere of 25 ° C.,
It was measured by the pressure method according to ASTM D1434 at ΔP = about 2 [kg / cm 2 ]. The results are shown in Table 1. [Example 3] The polyisoimide obtained in Reference Example 2 was dissolved in NMP at 25% by weight in NMP at about 70 ° C under a nitrogen atmosphere, and filtered with a stainless filter having a filtration and filtration pore size of 20 µm to defoam under reduced pressure. A spinning dope (a) was obtained. Also Matriimide 5
218 / Ultem 1000 / NMP = 12/16/72
The weight% solution was filtered through a stainless steel filter having a filtration and filtration pore size of 20 μm, and defoamed under reduced pressure to obtain a spinning dope (b). A hollow fiber composite membrane having a dense layer of polyimide on the outer surface of the hollow fiber was obtained in the same manner as in Example 1 except that the above spinning dopes (a) and (b) were used. The gas permeation characteristics of the obtained hollow fiber membrane were measured using pure gas.
ASTM in 5 ° C atmosphere, ΔP = about 2 [kg / cm 2 ]
It was measured by the pressure method according to D1434. The results are shown in Table 1. [Example 4] Polyisoimide obtained by the same method as in Reference Example 2 was dissolved in NMP at 25% by weight in NMP at about 70 ° C under a nitrogen atmosphere, and filtered with a stainless filter having a filtration pore size of 20 µm. Defoaming under reduced pressure was performed to obtain a dope for spinning (a). Also, Matriimide 5218 / Radel A-100 / NMP =
A 12/15/73 wt% solution was filtered through a stainless filter having a filtration pore size of 20 μm, and defoaming under reduced pressure was carried out to obtain a spinning dope (b). The spinning dope (a),
A hollow fiber composite membrane having a dense layer made of polyimide on the outer surface of the hollow fiber was obtained in the same manner as in Example 1 except that (b) was used. The gas permeation characteristics of the obtained hollow fiber membrane were measured by using pure gas in an atmosphere of 25 ° C. and ΔP = about 2 [kg / c
m 2 ] and measured by the pressure method according to ASTM D1434. The results are shown in Table 1. [Example 5] The composition of the spinning dope (b) was Matriimide 5
218 / NMP = 25/75 wt%, and a hollow fiber composite membrane having a dense layer of polyid on the outer surface of the hollow fiber was obtained by the same method as in Example 2 except that the heat treatment temperature was 350 ° C. The gas permeation characteristics of the obtained hollow fiber membrane were measured by using pure gas in an atmosphere of 25 ° C. and ΔP = about 2 [kg / c
m 2 ] and measured by the pressure method according to ASTM D1434. The results are shown in Table 1.

【0050】[実施例6]紡糸用ドープ(b)の組成
を、参考例3で合成したポリベンゾイミダゾール/ウル
テム1000/DMAC=17/8/75重量%に調製
し、ポリイミド化の熱処理温度を290℃で行った以
外、実施例2と同様の方法で中空糸の外表面にポリイド
の緻密層を有する中空糸複合を得た。得られた中空糸膜
の各気体透過特性をそれぞれ純ガスを使用し25℃雰囲
気、ΔP=約2[kg/cm2]でASTM D143
4に準じて圧力法で測定した。結果を第1表に示す
Example 6 The composition of the spinning dope (b) was adjusted to the polybenzimidazole / Ultem 1000 / DMAC = 17/8/75 wt% synthesized in Reference Example 3, and the heat treatment temperature for the polyimidization was adjusted. A hollow fiber composite having a dense layer of polyid on the outer surface of the hollow fiber was obtained in the same manner as in Example 2 except that the operation was performed at 290 ° C. The gas permeation characteristics of the obtained hollow fiber membrane were measured according to ASTM D143 using pure gas in an atmosphere of 25 ° C. and ΔP = approximately 2 [kg / cm 2 ].
The pressure method was used according to 4. The results are shown in Table 1.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【発明の効果】本発明によると、従来に無い実質的に溶
剤に不溶の耐溶剤性に優れた複合膜を製造できる。また
製造可能なポリイミドの種類の幅が広がるため、優れた
気体透過選択特性を有する複合膜を提供することができ
る。また本発明の製造方法によれば、このような中空糸
複合膜を工業生産水準で提供できる。
According to the present invention, it is possible to produce a composite film which has not been heretofore practically insoluble in a solvent and has excellent solvent resistance. Moreover, since the range of types of polyimide that can be manufactured is widened, it is possible to provide a composite membrane having excellent gas permeation selection characteristics. Further, according to the production method of the present invention, such a hollow fiber composite membrane can be provided at an industrial production level.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1図は本発明を実施するための多層押し出し
ノズルの模式図で、Aはノズル断面図、Bはノズル吐出
口の形状である。
FIG. 1 is a schematic view of a multi-layer extrusion nozzle for carrying out the present invention, in which A is a sectional view of the nozzle and B is the shape of a nozzle discharge port.

【符号の説明】[Explanation of symbols]

1 芯材吐出口 2 ドープ吐出口 3 ドープ吐出口 1 Core material discharge port 2 Dope discharge port 3 Dope discharge port

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 多重円環ノズルを用い、緻密層を形成す
るポリアミド酸又はポリイソイミドのドープ(a)と多
孔質支持層を形成する重合体のドープ(b)とを、同時
に多層構造の中空糸状に共押出し、凝固液と接触させ凝
固させた後、得られた中空糸膜を加熱もしくは触媒と接
触させ、該ポリアミド酸又はポリイソイミドをポリイミ
ド化することを特徴とする、ポリイミドからなる緻密層
を有する中空糸複合膜の製造方法。
1. A multifilamentary nozzle is used to simultaneously form a polyamic acid or polyisoimide dope (a) for forming a dense layer and a polymer dope (b) for forming a porous support layer at the same time as a hollow fiber having a multilayer structure. Coextrusion, after contacting with a coagulating liquid to coagulate, the resulting hollow fiber membrane is heated or contacted with a catalyst to polyimidize the polyamic acid or polyisoimide, having a dense layer made of polyimide. Method for producing hollow fiber composite membrane.
【請求項2】 ポリイミド化が加熱処理によるものであ
る請求項1記載の製造方法。
2. The manufacturing method according to claim 1, wherein the polyimidization is performed by heat treatment.
【請求項3】 ドープ(a)が、加熱により溶剤不溶の
ポリイミドを生成するポリイソイミド又はポリアミド酸
のドープである事を特徴とする請求項2記載の製造方
法。
3. The method according to claim 2, wherein the dope (a) is a dope of polyisoimide or polyamic acid that produces a solvent-insoluble polyimide by heating.
【請求項4】 ドープ(a)がポリイソイミドのドープ
である請求項3記載の中空糸複合膜の製造方法。
4. The method for producing a hollow fiber composite membrane according to claim 3, wherein the dope (a) is a polyisoimide dope.
【請求項5】 加熱を減圧下又は不活性ガスの雰囲気下
で、150℃〜400℃で行うことを特徴とする請求項
2、3又は4に記載の製造方法。
5. The production method according to claim 2, 3 or 4, wherein heating is performed at 150 ° C. to 400 ° C. under reduced pressure or in an atmosphere of an inert gas.
【請求項6】 加熱を10〜360分間行うことを特徴
とする請求項5記載の製造方法。
6. The manufacturing method according to claim 5, wherein heating is performed for 10 to 360 minutes.
【請求項7】 重合体のドープ(b)が、ポリエーテル
イミド樹脂、ポリスルフォン樹脂、ポリイミド樹脂、ポ
リベンゾイミダゾール樹脂から選ばれる一種以上の樹脂
である事を特徴とする請求項1〜6のいずれか1項に記
載の製造方法。
7. The polymer dope (b) is one or more resins selected from a polyetherimide resin, a polysulfone resin, a polyimide resin, and a polybenzimidazole resin. The manufacturing method according to any one of items.
【請求項8】 重合体のドープ(b)が、ポリエーテル
イミド樹脂及び/又はポルスルフォン樹脂と、ポリイミ
ド樹脂との混合体のドープであることを特徴とする請求
項7記載の製造方法。
8. The method according to claim 7, wherein the polymer dope (b) is a dope of a mixture of a polyetherimide resin and / or a polysulfone resin and a polyimide resin.
JP5247495A 1995-03-13 1995-03-13 Production of polyimide composite membrane Pending JPH08243367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5247495A JPH08243367A (en) 1995-03-13 1995-03-13 Production of polyimide composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5247495A JPH08243367A (en) 1995-03-13 1995-03-13 Production of polyimide composite membrane

Publications (1)

Publication Number Publication Date
JPH08243367A true JPH08243367A (en) 1996-09-24

Family

ID=12915726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5247495A Pending JPH08243367A (en) 1995-03-13 1995-03-13 Production of polyimide composite membrane

Country Status (1)

Country Link
JP (1) JPH08243367A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036327A1 (en) * 2000-11-03 2002-05-10 Gkss-Forschungszentrum Device for producing a polymer membrane
KR100359333B1 (en) * 2000-01-17 2002-10-31 한국과학기술연구원 A process of preparing for the non-symmetric polyimide membrane
WO2009142434A3 (en) * 2008-05-19 2010-03-04 한양대학교 산학협력단 Hollow fiber, dope solution composition for forming a hollow fiber, and method for manufacturing a hollow fiber using the same
WO2009142433A3 (en) * 2008-05-19 2010-03-04 한양대학교 산학협력단 Hollow fiber, dope solution composition for forming a hollow fiber, and method for manufacturing a hollow fiber using the same
JP2011509174A (en) * 2008-01-03 2011-03-24 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Hollow fiber membrane, method for producing the same, and use thereof
US8163071B2 (en) 2008-05-19 2012-04-24 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Hollow fiber, dope composition for forming hollow fiber, and method of preparing hollow fiber using the same
US8821617B2 (en) 2008-02-28 2014-09-02 Industry-University Cooperation Foundation, Hanyang University Polyimide-co-polybenzoxazole copolymer, preparation method thereof, and gas separation membrane comprising the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359333B1 (en) * 2000-01-17 2002-10-31 한국과학기술연구원 A process of preparing for the non-symmetric polyimide membrane
WO2002036327A1 (en) * 2000-11-03 2002-05-10 Gkss-Forschungszentrum Device for producing a polymer membrane
JP2011509174A (en) * 2008-01-03 2011-03-24 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Hollow fiber membrane, method for producing the same, and use thereof
US8821617B2 (en) 2008-02-28 2014-09-02 Industry-University Cooperation Foundation, Hanyang University Polyimide-co-polybenzoxazole copolymer, preparation method thereof, and gas separation membrane comprising the same
WO2009142434A3 (en) * 2008-05-19 2010-03-04 한양대학교 산학협력단 Hollow fiber, dope solution composition for forming a hollow fiber, and method for manufacturing a hollow fiber using the same
WO2009142433A3 (en) * 2008-05-19 2010-03-04 한양대학교 산학협력단 Hollow fiber, dope solution composition for forming a hollow fiber, and method for manufacturing a hollow fiber using the same
CN102099512A (en) * 2008-05-19 2011-06-15 汉阳大学校产学协力团 Hollow fiber, dope solution composition for forming a hollow fiber, and method for manufacturing a hollow fiber using the same
US8163071B2 (en) 2008-05-19 2012-04-24 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Hollow fiber, dope composition for forming hollow fiber, and method of preparing hollow fiber using the same
RU2461671C9 (en) * 2008-05-19 2013-02-27 ИЮКФ-ХИЮ (Индастри-Юниверсити Кооперейшн Фаундейшн Ханиянг Юниверсити) Hollow fiber, composition of spin dope moulding hollow fiber and method for producing hollow fiber using this composition

Similar Documents

Publication Publication Date Title
EP0820805B1 (en) Use of a polyhydrazidoimide membrane for the seperation of air
US8337598B2 (en) Photo-crosslinked gas selective membranes as part of thin film composite hollow fiber membranes
CA2711688C (en) Method of making a crosslinked fiber membrane from a high molecular weight, monoesterified polyimide polymer
JP4249138B2 (en) Polyimide blends for gas separation membranes
US5141642A (en) Aromatic polyimide double layered hollow filamentary membrane and process for producing same
EP0489418B1 (en) Novel multicomponent fluid separation membranes
JP2588806B2 (en) Gas separation hollow fiber membrane and method for producing the same
CA2711694C (en) Method of making a high molecular weight, monoesterified polyimide polymer
US20120157743A1 (en) Membrane system for natural gas upgrading
JPH07121343B2 (en) Gas separation hollow fiber membrane and method for producing the same
EP2335815A1 (en) Asymmetric gas separation membrane, and gas separation method
WO2011163293A2 (en) Process of making asymmetric polybenzoxazole membranes
CN110382097B (en) Asymmetric membrane
JP2671072B2 (en) Gas separation membrane manufacturing method
JPH08243367A (en) Production of polyimide composite membrane
JP5359957B2 (en) Polyimide gas separation membrane and gas separation method
JPH0924260A (en) Poly(imidazopyrrolone-imide) compolymer separation membrane and its production
JPH08198964A (en) Gas separation membrane of polyimide
JPH0970523A (en) Polyimide separation membrane and production of polyimide hollow fiber membrane
JP5114912B2 (en) Asymmetric membrane, gas separation membrane, and gas separation method formed of Si atom-containing polyimide
JP2003038942A (en) Separation membrane
JP2022152519A (en) Asymmetric hollow fiber gas separation membrane
JPH08290046A (en) Polyimidazopyprolone hollow fiber composite membrane and production thereof
JPS6238207A (en) Manufacture of polyimide hollow yarn
JPH0693985B2 (en) Manufacturing method of polyimide two-layer hollow fiber membrane