Nothing Special   »   [go: up one dir, main page]

JPH08242564A - Binder structure of rotary electric machine - Google Patents

Binder structure of rotary electric machine

Info

Publication number
JPH08242564A
JPH08242564A JP7041522A JP4152295A JPH08242564A JP H08242564 A JPH08242564 A JP H08242564A JP 7041522 A JP7041522 A JP 7041522A JP 4152295 A JP4152295 A JP 4152295A JP H08242564 A JPH08242564 A JP H08242564A
Authority
JP
Japan
Prior art keywords
rotor
yoke
binder
electric machine
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7041522A
Other languages
Japanese (ja)
Inventor
Osamu Muto
修 武藤
Isao Takahashi
勲 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sawafuji Electric Co Ltd
Original Assignee
Sawafuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sawafuji Electric Co Ltd filed Critical Sawafuji Electric Co Ltd
Priority to JP7041522A priority Critical patent/JPH08242564A/en
Publication of JPH08242564A publication Critical patent/JPH08242564A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE: To strengthen the centrifugal force resisting strength of a rotor by winding a binder of high-strength fibrous members having a small specific gravity around the outer peripheral surface of the rotor. CONSTITUTION: A binder 10 of a fibrous members having a low specific gravity and high tensile strength is wound around a yoke 5. Fibers, such as carbon fibers, glass fibers, aramid fibers, etc., having small specific gravities and high strengths are used for the fibrous members of the binder 10 and, at the time of winding the binder 10 around the yoke 5, the fibrous members are impregnated with a synthetic resin after the fibrous members are wound around the yoke 5 and the resin is cured. Since the light binder 10 in which no strong stress is generated by its own centrifugal force is wound around the yoke 5, the binder 10 can resist to the centrifugal force of the yoke 5 provided with permanent magnets 6 and strengthens the centrifugal force resisting strength of a rotor. In other words, a rotary electric machine can be operated at a higher rotating speed because of the high tensile strength of the binder 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転電機のバインド構
造、特に永久磁石を備えたロータが高速回転するとき、
その遠心力によるロータの形状変形を簡易な構造で防止
するようにした回転電機のバインド構造に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a binding structure for a rotating electric machine, particularly when a rotor equipped with a permanent magnet rotates at high speed.
The present invention relates to a binding structure for a rotating electric machine, which is configured to prevent the shape deformation of a rotor due to the centrifugal force with a simple structure.

【0002】[0002]

【従来の技術】モータや発電機の回転電気機械、例えば
直流機または同期機など、界磁コイルに電流を流して磁
界を作る方式のものでは、界磁電流を大きくすると効率
が低下してしまうため、又永久磁石で磁界を作る方式の
ものでは、これまでエネルギー密度の大きな磁石が無か
ったため、鉄など磁気抵抗の小さい材料を用いて磁気回
路を構成するが、磁界が交番する部分ではこの鉄の部分
に鉄損が発生し、効率が低下してしまう。
2. Description of the Related Art In a rotating electric machine such as a motor or a generator, such as a DC machine or a synchronous machine, a system in which a current is passed through a field coil to generate a magnetic field, the efficiency decreases when the field current is increased. Therefore, in the method of generating a magnetic field with a permanent magnet, there has been no magnet with a large energy density so far, so a magnetic circuit is constructed using a material with a low magnetic resistance such as iron. Iron loss occurs in the area of, and the efficiency decreases.

【0003】これを防ぐため、磁界が交番する部分につ
いては相互に絶縁した薄い鉄板を積層して用いたり、そ
の材料も珪素鋼板など鉄損の少ない材料を使用してい
る。近年、特にエネルギー密度の高い磁石が開発され、
大きな空隙を持つ回転機でも大きな磁界が作り得るよう
になってきており、鉄心(コア)が無い、いわゆるコア
レス回転機が注目を浴びる傾向となってきている。
In order to prevent this, thin iron plates insulated from each other are used in layers where magnetic fields alternate, and a material having a small iron loss such as a silicon steel plate is used. In recent years, magnets with a particularly high energy density have been developed,
A rotating machine having a large air gap can generate a large magnetic field, and a so-called coreless rotating machine having no iron core tends to attract attention.

【0004】従来のコアレス回転機、例えばフラットモ
ータでは永久磁石を備えたロータの耐遠心力強度を上げ
る手段として、非磁性体のステンレス製リングで止める
ことが多い。
In a conventional coreless rotating machine, for example, a flat motor, a non-magnetic stainless steel ring is often used as a means for increasing the centrifugal resistance strength of a rotor provided with a permanent magnet.

【0005】しかしながら、従来のコアレス回転機は、
小容量のものであり、あまり高速で使用されることがな
かったため、ロータの遠心力に対する強度が、特に問題
とされることはなかった。
However, the conventional coreless rotating machine is
Since it has a small capacity and is not used at a high speed, the strength of the rotor against the centrifugal force has not been a particular problem.

【0006】[0006]

【発明が解決しようとする課題】しかしながらコアレス
回転機が大容量大型化するにつれ、その大容量性を保持
しつつコアレス回転機の小型軽量化が要請される。コア
レス回転機の高出力、高密度化を達成するためには、ロ
ータの周速が音速に近い範囲まで使う必要があり、つま
りコアレス回転機の高速回転化が要請され、ロータの耐
遠心力強度の補強が必要となる。
However, as the capacity and size of the coreless rotating machine increase, it is required to reduce the size and weight of the coreless rotating machine while maintaining its large capacity. In order to achieve high output and high density of the coreless rotating machine, it is necessary to use the peripheral speed of the rotor within a range close to the sonic speed, that is, high speed rotation of the coreless rotating machine is required, and the strength of the rotor against centrifugal force is high. Will need to be reinforced.

【0007】従来のステンレスなどの金属製リングでは
その比重が大きいため、ロータが高速回転すると自身の
自重による遠心力が大きくなり、永久磁石の遠心力を分
担する割合が小さくなる。このため金属製リングの厚さ
を厚くしても、その重量が増えるためその強度は増えな
い。
Since a conventional metal ring made of stainless steel or the like has a large specific gravity, when the rotor rotates at a high speed, the centrifugal force due to its own weight becomes large, and the ratio of the centrifugal force to the permanent magnet is reduced. Therefore, even if the thickness of the metal ring is increased, its weight does not increase and its strength does not increase.

【0008】本発明は、上記の点に鑑みなされたもので
あり、金属製リングに替え、比重が低く、自己の遠心力
による応力が小さく、より高速回転に耐えられる高強度
繊維部材を用い、ロータの耐遠心力強度を補強できる回
転電機のバインド構造を提供することを目的としてい
る。
The present invention has been made in view of the above points, and uses a high-strength fiber member, which has a low specific gravity, a small stress due to its own centrifugal force, and can withstand higher speed rotation, instead of a metal ring. An object of the present invention is to provide a binding structure for a rotating electric machine that can reinforce the centrifugal strength of the rotor.

【0009】[0009]

【課題を解決するための手段】上記の目的を解決するた
めに、本発明の回転電機のバインド構造は空隙を隔て、
極性を異にして相対向した複数の永久磁石が配設され、
円筒ケース内を回転自在に軸支されたロータと、当該ロ
ータの空隙に配設されたステータコイルとを備えた回転
電機のバインド構造において、当該ロータの外周面を比
重が小さい高強度繊維部材のバインドで巻装したことを
特徴としている。
In order to solve the above-mentioned object, the binding structure for a rotating electric machine according to the present invention separates a gap,
A plurality of permanent magnets of opposite polarities are arranged,
In a binding structure of a rotating electric machine including a rotor rotatably supported in a cylindrical case and a stator coil arranged in a gap of the rotor, an outer peripheral surface of the rotor is made of a high-strength fiber member having a small specific gravity. It is characterized by being bound and bound.

【0010】そして上記ロータは、シャフトと、当該シ
ャフトに固着されると共に、内部に円筒状空間が形成さ
れた円柱状のヨークとを備え、かつ極性を異にして相対
向して設けられた複数の永久磁石を当該ヨークの上記円
筒状空間の両内壁円周面に設けられてなることを特徴と
する構造のもの、或いはシャフトと、極性を異にして順
に複数個の永久磁石を固着した円板状のフラット型ロー
タとを備え、かつ当該シャフトに、当該円板状のフラッ
ト型ロータを、空隙を隔てて2枚配設すると共に、空隙
を隔てて配設された当該2枚のフラット型ロータの各永
久磁石が異なる極性で相対向して固着されてなることを
特徴とするものが用いられる。
The rotor includes a shaft and a cylindrical yoke fixed to the shaft and having a cylindrical space formed therein, and a plurality of rotors having different polarities and facing each other. Of the structure wherein the permanent magnets are provided on both inner circumferential surfaces of the cylindrical space of the yoke, or a circle in which a plurality of permanent magnets having different polarities are sequentially fixed to the shaft. A plate-shaped flat type rotor, and the disc-shaped flat type rotor is disposed on the shaft with two gaps, and the two flat type rotors are disposed with a gap. A permanent magnet is used in which the permanent magnets of the rotor are oppositely fixed to each other with different polarities.

【0011】[0011]

【作用】バインドの比重が小さいので、高速回転となっ
ても自己の遠心力による応力が小さく、より高速回転に
耐えられ、ロータの耐遠心力強度を補強できる。
Since the specific gravity of the bind is small, the stress caused by its own centrifugal force is small even at high speed rotation, and it is possible to endure higher speed rotation and reinforce the centrifugal resistance strength of the rotor.

【0012】[0012]

【実施例】図1は本発明に係るコアレス回転機の一実施
例断面図、図2は図1のA−A断面図を示している。
1 is a sectional view of an embodiment of a coreless rotating machine according to the present invention, and FIG. 2 is a sectional view taken along line AA of FIG.

【0013】図1,図2において、ブラケット1のそれ
ぞれにはベアリング2が嵌め込まれ、シャフト3が両側
のブラケット1で回転自在に軸支されている。シャフト
3には、内部に円筒状空間4が形成された円柱状のヨー
ク5が固着され、ロータを構成し、シャフト3の回転と
共に当該円柱状のヨーク5が一体的に回転するようにな
っている。
In FIGS. 1 and 2, a bearing 2 is fitted in each bracket 1, and a shaft 3 is rotatably supported by the brackets 1 on both sides. A cylindrical yoke 5 having a cylindrical space 4 formed therein is fixed to the shaft 3 to form a rotor, and the cylindrical yoke 5 rotates integrally with the rotation of the shaft 3. There is.

【0014】当該ヨーク5の上記円筒状空間4の両内壁
円周面4−1,4−2には、極性を異にした形態で相対
向して複数の永久磁石6,7が設けられている。これら
の永久磁石6,7はエネルギー密度の高い、例えばネオ
ジムNd,鉄Fe,ホウ素Bを含んだ合金の磁性材でな
る磁石が用いられる。
A plurality of permanent magnets 6 and 7 are provided on the inner peripheral surfaces 4-1 and 4-2 of the cylindrical space 4 of the yoke 5 so as to face each other in different polarities. There is. As the permanent magnets 6 and 7, magnets having a high energy density, for example, made of a magnetic material of an alloy containing neodymium Nd, iron Fe, and boron B are used.

【0015】これらの相対向して設けられた複数の永久
磁石6,7で形成される円筒空隙には、リッツ線で形成
された図3図示の円筒状のステータコイル8、すなわち
電機子巻線が配設されている。当該ステータコイル8の
一方側のエンドコイルがブラケット1に固定され、ステ
ータコイル8全体がブラケット1に固定された構造とな
っている。なお、9は円筒のケースである。
In the cylindrical gap formed by the plurality of permanent magnets 6 and 7 provided facing each other, a cylindrical stator coil 8 shown in FIG. Is provided. The end coil on one side of the stator coil 8 is fixed to the bracket 1, and the entire stator coil 8 is fixed to the bracket 1. In addition, 9 is a cylindrical case.

【0016】当該ステータコイル8は、直径が0.1m
m程度の細いエナメル線等を10本から数10本より合
わせた絶縁電線のリッツ線を巻回し、図4に示された亀
の甲型に成形したU,V,W各相の複数のコイル8−1
を円筒形状に形成し、絶縁ワニスや合成樹脂材でモール
ドして固形化される。
The stator coil 8 has a diameter of 0.1 m.
A plurality of coils for insulated U-, V-, and W-phase coils formed by winding a litz wire, which is an insulated electric wire consisting of 10 to several tens of thin enameled wires of about m in length, and formed into a tortoise shell shape shown in FIG. 1
Is formed into a cylindrical shape, and is solidified by molding with an insulating varnish or a synthetic resin material.

【0017】ヨーク5の外周面には、低比重で引張り強
度の高い繊維部材のバインド10が巻装されている。こ
のバインド10の繊維部材には、例えば炭素繊維、ガラ
ス繊維、アラミド繊維等の比重が小さく高強度を有する
ものが使用され、その巻装に当たっては、これらの繊維
部材をヨーク5の外周面に巻き、合成樹脂材を含浸し、
硬化処理を行う。
On the outer peripheral surface of the yoke 5, a bind 10 made of a fiber member having a low specific gravity and a high tensile strength is wound. As the fiber member of the bind 10, for example, carbon fiber, glass fiber, aramid fiber, or the like having a small specific gravity and high strength is used. For winding the fiber member, the fiber member is wound around the outer peripheral surface of the yoke 5. , Impregnated with synthetic resin material,
Curing process is performed.

【0018】このように処理されたバインド10をヨー
ク5の外周面に巻装することにより、当該バインド10
の自重が小さく、自己の遠心力による応力が小さいの
で、永久磁石6を備えたヨーク5の遠心力に抗すること
ができ、ロータの耐遠心力強度を補強することができ
る。すなわちバインド10の引張り強度が高いので、よ
り高速回転に耐えられる。
By winding the bind 10 thus treated on the outer peripheral surface of the yoke 5, the bind 10 is
Since its own weight is small and the stress caused by its own centrifugal force is small, it is possible to withstand the centrifugal force of the yoke 5 provided with the permanent magnets 6 and reinforce the centrifugal resistance strength of the rotor. That is, since the bind 10 has high tensile strength, it can endure higher speed rotation.

【0019】またヨーク5の上記円筒状空間4の内壁円
周面4−2に設けられた複数の永久磁石7の表面に、非
磁性体の磁石カバー11が巻装される。この磁石カバー
11の部材も、上記のバインド10と同様の部材が採用
されている。
A non-magnetic magnet cover 11 is wound around the surfaces of a plurality of permanent magnets 7 provided on the inner circumferential surface 4-2 of the inner wall of the cylindrical space 4 of the yoke 5. As the member of the magnet cover 11, the same member as that of the bind 10 is adopted.

【0020】なお、回転機器の容量が大きいときには、
図1の点線で示されている様に、ヨーク5の一部分を削
り取りその重量を軽くするような構造としている。図5
は本発明に係るフラット回転機のロータの一実施例部分
断面図、図6は図5のB−B断面図である。
When the rotating equipment has a large capacity,
As shown by the dotted line in FIG. 1, the yoke 5 is partially shaved to reduce its weight. Figure 5
FIG. 6 is a partial sectional view of an embodiment of a rotor of a flat rotating machine according to the present invention, and FIG. 6 is a sectional view taken along line BB of FIG.

【0021】図5,図6において、想像線で描かれた円
筒ケース51の両端にブラケット52が固定されてお
り、ロータ20を構成するシャフト25が両側のブラケ
ット52で回転自在に軸支されている。シャフト25に
は、2枚の円板状のフラット型ロータ28が、それぞれ
空隙29を隔てて配設され固着されている。そして当該
円板状のフラット型ロータ28には、極性を異にして順
に複数個の永久磁石26が固着されている。空隙29を
隔てて配設された2枚の各フラット型ロータ28の各永
久磁石26は、その極性を異にし相対向している。これ
らの永久磁石26は、バックヨーク27に埋め込まれる
と共に非磁性のセパレータ23でそれぞれ区切られ、フ
ラット型ロータ28の外周面はバインド21で巻装され
ている。
In FIGS. 5 and 6, brackets 52 are fixed to both ends of a cylindrical case 51 drawn by imaginary lines, and the shaft 25 constituting the rotor 20 is rotatably supported by the brackets 52 on both sides. There is. Two flat disk-shaped flat rotors 28 are arranged and fixed to the shaft 25 with a gap 29 therebetween. A plurality of permanent magnets 26 are sequentially fixed to the disc-shaped flat rotor 28 with different polarities. The permanent magnets 26 of the two flat type rotors 28, which are arranged with a gap 29 in between, face each other with different polarities. These permanent magnets 26 are embedded in the back yoke 27 and separated by the non-magnetic separator 23, and the outer peripheral surface of the flat rotor 28 is wound by the bind 21.

【0022】このバインド21は、上記図1で説明した
部材のものが用いられている。すなわち低比重で引張り
強度の高い繊維部材であり、この繊維部材には、例えば
炭素繊維、ガラス繊維、アラミド繊維等の比重が小さく
高強度を有するものが使用され、その巻装に当たって
は、これらの繊維部材をフラット型ロータ28の外周面
に巻き、合成樹脂材の含浸し、硬化処理を行う。
The bind 21 is made of the member described with reference to FIG. That is, a low specific gravity and high tensile strength fiber member, for example, carbon fiber, glass fiber, aramid fiber or the like having a small specific gravity and high strength is used for this fiber member. A fibrous member is wound around the outer peripheral surface of the flat rotor 28, impregnated with a synthetic resin material, and a curing process is performed.

【0023】そしてこれらの永久磁石26は、エネルギ
ー密度の高い、例えばネオジムNd,鉄Fe,ホウ素B
を含んだ合金の磁性材でなる磁石が用いられる。2枚の
フラット型ロータ28で形成される空隙29には、フラ
ット型に形成された円板状のステータコイル50、すな
わち電機子巻線がそれぞれ配設されている。当該ステー
タコイル50は、直径が0.1mm程度の細いエナメル
線等を10本から数10本より合わせた絶縁電線のリッ
ツ線で、略三角形状に巻線されたU,V,W各相のコイ
ルを、図6の永久磁石26に対向させて6個円形に配置
し、例えば3層構造で絶縁ワニスや合成樹脂材でモール
ドして固形化されたものである。
The permanent magnets 26 have a high energy density, such as neodymium Nd, iron Fe, and boron B.
A magnet made of an alloy magnetic material containing is used. In the space 29 formed by the two flat rotors 28, a flat disk-shaped stator coil 50, that is, an armature winding is arranged. The stator coil 50 is a litz wire of an insulated electric wire in which ten to several tens of thin enameled wires having a diameter of about 0.1 mm are combined, and each of the U, V, and W phases wound in a substantially triangular shape. Six coils are arranged in a circular shape so as to face the permanent magnets 26 in FIG. 6, and the coils are solidified by molding with an insulating varnish or a synthetic resin material in a three-layer structure, for example.

【0024】ステータコイル50は、図5図示の如く円
形のスペーサ56でサイドイッチ状に挟まれ、円筒ケー
ス51に固定される。このときステータコイル50のコ
イルの部分が、上記永久磁石26の位置に配置されるよ
うになっていることは言うまでもない。
As shown in FIG. 5, the stator coil 50 is sandwiched between circular spacers 56 in a side-itch shape and fixed to the cylindrical case 51. At this time, it goes without saying that the coil portion of the stator coil 50 is arranged at the position of the permanent magnet 26.

【0025】[0025]

【発明の効果】以上説明した如く、本発明によれば、ロ
ータの外周面を比重が小さい高強度繊維部材のバインド
で巻装するようにしたので、自己の遠心力による応力が
小さく、より高速回転まで耐えられ、ロータの耐遠心力
強度を補強することができる。
As described above, according to the present invention, the outer peripheral surface of the rotor is wound with the binding of the high-strength fiber member having a small specific gravity, so that the stress due to the centrifugal force of the rotor is small and the speed is higher. It can withstand rotation and can reinforce the centrifugal strength of the rotor.

【0026】従ってコアレス回転機の高速回転が可能と
なり、大容量を保持しつつその軽量小型化が可能とな
る。
Therefore, the coreless rotating machine can rotate at a high speed, and it is possible to reduce its weight and size while maintaining a large capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るコアレス回転機の一実施例断面図
である。
FIG. 1 is a cross-sectional view of an embodiment of a coreless rotating machine according to the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】本発明に用いられるステータコイルの一実施例
斜視図である。
FIG. 3 is a perspective view of an embodiment of a stator coil used in the present invention.

【図4】ステータコイルを形成するコイルの一実施例斜
視図である。
FIG. 4 is a perspective view of an embodiment of a coil forming a stator coil.

【図5】本発明に係るフラット回転機のロータの一実施
例部分断面図である。
FIG. 5 is a partial sectional view of an embodiment of the rotor of the flat rotating machine according to the present invention.

【図6】図5のB−B断面図である。6 is a sectional view taken along line BB of FIG.

【符号の説明】[Explanation of symbols]

1 ブラケット 3 シャフト 4 円筒状空間 4−1,4−2 内壁円周面 5 ヨーク 6,7 永久磁石 8 ステータコイル 9 ケース 10 バインド 11 磁石カバー 20 ロータ 21 バインド 26 永久磁石 27 バックヨーク 28 フラット型ロータ 1 Bracket 3 Shaft 4 Cylindrical Space 4-1 and 4-2 Inner Wall Circumferential Surface 5 Yoke 6,7 Permanent Magnet 8 Stator Coil 9 Case 10 Bind 11 Magnet Cover 20 Rotor 21 Bind 26 Permanent Magnet 27 Back Yoke 28 Flat Type Rotor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空隙を隔て、極性を異にして相対向した
複数の永久磁石が配設され、円筒ケース内を回転自在に
軸支されたロータと、当該ロータの空隙に配設されたス
テータコイルとを備えた回転電機のバインド構造におい
て、 当該ロータの外周面を比重が小さい高強度繊維部材のバ
インドで巻装したことを特徴とする回転電機のバインド
構造。
1. A rotor in which a plurality of permanent magnets facing each other with different polarities are arranged with a gap therebetween, and the rotor is rotatably supported in a cylindrical case, and a stator arranged in the gap of the rotor. A binding structure for a rotary electric machine comprising: a coil; and a binding structure for a rotary electric machine, wherein an outer peripheral surface of the rotor is wound with a bind of a high-strength fiber member having a small specific gravity.
【請求項2】 上記ロータは、シャフトと、当該シャフ
トに固着されると共に、内部に円筒状空間が形成された
円柱状のヨークとを備え、かつ極性を異にして相対向し
て設けられた複数の永久磁石を当該ヨークの上記円筒状
空間の両内壁円周面に設けられてなることを特徴とする
請求項1記載の回転電機のバインド構造。
2. The rotor comprises a shaft and a cylindrical yoke fixed to the shaft and having a cylindrical space formed therein, and the rotors are provided to face each other with different polarities. The binding structure for a rotary electric machine according to claim 1, wherein a plurality of permanent magnets are provided on both inner wall circumferential surfaces of the cylindrical space of the yoke.
【請求項3】 上記ロータは、シャフトと、極性を異に
して順に複数個の永久磁石を固着した円板状のフラット
型ロータとを備え、かつ当該シャフトに、当該円板状の
フラット型ロータを、空隙を隔てて2枚配設すると共
に、空隙を隔てて配設された当該2枚のフラット型ロー
タの各永久磁石が異なる極性で相対向して固着されてな
ることを特徴とする請求項1記載の回転電機のバインド
構造。
3. The rotor comprises a shaft and a disk-shaped flat rotor having a plurality of permanent magnets fixed in order with different polarities, and the shaft has the disk-shaped flat rotor. And two permanent magnets of the two flat type rotors, which are arranged with a gap, are fixed to face each other with different polarities. Item 1. A binding structure for a rotating electric machine according to item 1.
JP7041522A 1995-03-01 1995-03-01 Binder structure of rotary electric machine Pending JPH08242564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7041522A JPH08242564A (en) 1995-03-01 1995-03-01 Binder structure of rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7041522A JPH08242564A (en) 1995-03-01 1995-03-01 Binder structure of rotary electric machine

Publications (1)

Publication Number Publication Date
JPH08242564A true JPH08242564A (en) 1996-09-17

Family

ID=12610725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7041522A Pending JPH08242564A (en) 1995-03-01 1995-03-01 Binder structure of rotary electric machine

Country Status (1)

Country Link
JP (1) JPH08242564A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035425A1 (en) * 1997-02-09 1998-08-13 Fumihide Haba Generator and motor
JP2001145209A (en) * 1999-11-18 2001-05-25 Denso Corp Vehicle dynamoelectric machine
WO2002039067A1 (en) * 2000-11-06 2002-05-16 Sony Corporation Angle or position determining device and method, servo device and servo method, and motor
US6590312B1 (en) 1999-11-18 2003-07-08 Denso Corporation Rotary electric machine having a permanent magnet stator and permanent magnet rotor
JP2008048599A (en) * 2002-06-26 2008-02-28 Amotech Co Ltd Drive arrangement for washing machines using bldc motor of radial-core double rotor structure
WO2009057981A3 (en) * 2007-11-02 2009-06-18 Korea Mach & Materials Inst Coreless motor
WO2009132479A1 (en) * 2008-04-28 2009-11-05 许军 A dual-layer rotor wind mill generator
KR100963745B1 (en) * 2008-06-12 2010-06-14 한국전력공사 Motor or Generator having rotational core
JP2012075318A (en) * 2005-07-20 2012-04-12 Panasonic Corp Rotor and motor equipped with inward/outward rotor yoke
JP2013249857A (en) * 2012-05-30 2013-12-12 Mitsubishi Heavy Ind Ltd Magnetic coupling
JP2019106854A (en) * 2017-07-21 2019-06-27 株式会社デンソー Rotating electrical machine
JP2020092516A (en) * 2018-12-05 2020-06-11 株式会社デンソー Rotary electric machine and manufacturing method of rotary electric machine
JP2020137372A (en) * 2019-02-25 2020-08-31 株式会社デンソー Rotating electric machine
CN111682674A (en) * 2020-06-17 2020-09-18 张俊华 Three-in-one multifunctional motor
US20200395878A1 (en) 2017-12-28 2020-12-17 Denso Corporation Rotating electrical machine
US11110793B2 (en) 2017-12-28 2021-09-07 Denso Corporation Wheel driving apparatus
JP2021191221A (en) * 2020-05-29 2021-12-13 深▲セン▼市一吉製造有限公司Shenzhen Yiji Manufacturing Co., Ltd. New model combined energy conservation type motor with four stators and four rotors
JP2021191219A (en) * 2020-05-29 2021-12-13 深▲セン▼市一吉製造有限公司Shenzhen Yiji Manufacturing Co., Ltd. New model energy conservation type mixed wave permanent magnet motor
JP2021191220A (en) * 2020-05-29 2021-12-13 深▲セン▼市一吉製造有限公司Shenzhen Yiji Manufacturing Co., Ltd. New model combined energy conservation type motor with two stators and four rotors
JP2021191218A (en) * 2020-05-29 2021-12-13 深▲セン▼市一吉製造有限公司Shenzhen Yiji Manufacturing Co., Ltd. New model combined energy conservation type motor with two stators and two rotors
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
US11374465B2 (en) 2017-07-21 2022-06-28 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
US11979063B2 (en) 2017-12-28 2024-05-07 Denso Corporation Rotating electric machine
US11984778B2 (en) 2020-03-05 2024-05-14 Denso Corporation Rotating electric machine
WO2024156605A1 (en) * 2023-01-27 2024-08-02 DeepDrive GmbH Stator for a radial-flow double rotor machine, method for producing a stator for a radial-flow double rotor machine, and radial-flow double rotor machine
US12074477B2 (en) 2017-12-28 2024-08-27 Denso Corporation Rotating electrical machine system

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035425A1 (en) * 1997-02-09 1998-08-13 Fumihide Haba Generator and motor
JP2001145209A (en) * 1999-11-18 2001-05-25 Denso Corp Vehicle dynamoelectric machine
US6590312B1 (en) 1999-11-18 2003-07-08 Denso Corporation Rotary electric machine having a permanent magnet stator and permanent magnet rotor
WO2002039067A1 (en) * 2000-11-06 2002-05-16 Sony Corporation Angle or position determining device and method, servo device and servo method, and motor
US6756759B2 (en) 2000-11-06 2004-06-29 Sony Corporation Angle or position detecting apparatus, method thereof, servo apparatus, and servo method, and motor
JP2008048599A (en) * 2002-06-26 2008-02-28 Amotech Co Ltd Drive arrangement for washing machines using bldc motor of radial-core double rotor structure
JP2012075318A (en) * 2005-07-20 2012-04-12 Panasonic Corp Rotor and motor equipped with inward/outward rotor yoke
WO2009057981A3 (en) * 2007-11-02 2009-06-18 Korea Mach & Materials Inst Coreless motor
WO2009132479A1 (en) * 2008-04-28 2009-11-05 许军 A dual-layer rotor wind mill generator
KR100963745B1 (en) * 2008-06-12 2010-06-14 한국전력공사 Motor or Generator having rotational core
JP2013249857A (en) * 2012-05-30 2013-12-12 Mitsubishi Heavy Ind Ltd Magnetic coupling
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
JP2019106853A (en) * 2017-07-21 2019-06-27 株式会社デンソー Rotating electrical machine
US11984795B2 (en) 2017-07-21 2024-05-14 Denso Corporation Rotating electrical machine
US11962228B2 (en) 2017-07-21 2024-04-16 Denso Corporation Rotating electrical machine
US11374465B2 (en) 2017-07-21 2022-06-28 Denso Corporation Rotating electrical machine
JP2019106854A (en) * 2017-07-21 2019-06-27 株式会社デンソー Rotating electrical machine
US11831228B2 (en) 2017-07-21 2023-11-28 Denso Corporation Rotating electrical machine
US11824428B2 (en) 2017-07-21 2023-11-21 Denso Corporation Rotating electrical machine
US11664707B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11979063B2 (en) 2017-12-28 2024-05-07 Denso Corporation Rotating electric machine
US12074477B2 (en) 2017-12-28 2024-08-27 Denso Corporation Rotating electrical machine system
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
US12028004B2 (en) 2017-12-28 2024-07-02 Denso Corporation Rotating electrical machine
US20200395878A1 (en) 2017-12-28 2020-12-17 Denso Corporation Rotating electrical machine
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11110793B2 (en) 2017-12-28 2021-09-07 Denso Corporation Wheel driving apparatus
US11863031B2 (en) 2018-12-05 2024-01-02 Denso Corporation Rotating electrical machine
CN113169651A (en) * 2018-12-05 2021-07-23 株式会社电装 Rotating electrical machine and method for manufacturing rotating electrical machine
JP2020092516A (en) * 2018-12-05 2020-06-11 株式会社デンソー Rotary electric machine and manufacturing method of rotary electric machine
CN113169651B (en) * 2018-12-05 2024-08-13 株式会社电装 Rotary electric machine and method for manufacturing rotary electric machine
WO2020116429A1 (en) * 2018-12-05 2020-06-11 株式会社デンソー Rotating electrical machine, and rotating electrical machine manufacturing method
CN113454894A (en) * 2019-02-25 2021-09-28 株式会社电装 Rotating electrical machine
JP2020137372A (en) * 2019-02-25 2020-08-31 株式会社デンソー Rotating electric machine
CN113454894B (en) * 2019-02-25 2024-01-02 株式会社电装 Rotary electric machine
WO2020175332A1 (en) * 2019-02-25 2020-09-03 株式会社デンソー Rotating electric machine
US20210384782A1 (en) * 2019-02-25 2021-12-09 Denso Corporation Rotating electric machine
US12003139B2 (en) 2019-02-25 2024-06-04 Denso Corporation Rotating electric machine
US11984778B2 (en) 2020-03-05 2024-05-14 Denso Corporation Rotating electric machine
JP2021191218A (en) * 2020-05-29 2021-12-13 深▲セン▼市一吉製造有限公司Shenzhen Yiji Manufacturing Co., Ltd. New model combined energy conservation type motor with two stators and two rotors
JP2021191220A (en) * 2020-05-29 2021-12-13 深▲セン▼市一吉製造有限公司Shenzhen Yiji Manufacturing Co., Ltd. New model combined energy conservation type motor with two stators and four rotors
JP2021191219A (en) * 2020-05-29 2021-12-13 深▲セン▼市一吉製造有限公司Shenzhen Yiji Manufacturing Co., Ltd. New model energy conservation type mixed wave permanent magnet motor
JP2021191221A (en) * 2020-05-29 2021-12-13 深▲セン▼市一吉製造有限公司Shenzhen Yiji Manufacturing Co., Ltd. New model combined energy conservation type motor with four stators and four rotors
CN111682674A (en) * 2020-06-17 2020-09-18 张俊华 Three-in-one multifunctional motor
WO2024156605A1 (en) * 2023-01-27 2024-08-02 DeepDrive GmbH Stator for a radial-flow double rotor machine, method for producing a stator for a radial-flow double rotor machine, and radial-flow double rotor machine

Similar Documents

Publication Publication Date Title
JPH08242564A (en) Binder structure of rotary electric machine
US7714479B2 (en) Segmented composite rotor
US5952756A (en) Permanent magnet energy conversion machine with magnet mounting arrangement
JP5643991B2 (en) High-speed permanent magnet motor and generator with low loss metal rotor
JP2009072009A (en) Permanent magnet rotating machine
JPH114555A (en) Permanent magnet rotating machine
JP2005094955A (en) Axial permanent magnet motor
US6833647B2 (en) Discoid machine
JPH0837769A (en) D.c. machine provided with electric rectification
JP2009072010A (en) Axial gap type coreless rotating machine
JPH11308793A (en) Outer rotor type permanent magnet motor
KR101263350B1 (en) axial flux permanent magnet generator
JP2013198261A (en) Exciting apparatus for rotary electric machine
JP3928297B2 (en) Electric motor and manufacturing method thereof
TW201828573A (en) Axial gap-type rotary electric machine
JPH0479741A (en) Permanent magnet rotor
JPH08126277A (en) Flat rotating machine
WO2008068503A2 (en) Axial flux electrical machines
JP7283361B2 (en) Rotor of rotary electric machine
KR100937843B1 (en) Method of Producing Cylinder Type Back Yoke Formed of Amorphous Alloy, and Method of Producing Slotless Motor Using the Same
JPH05122877A (en) Rotor for permanent magnet type synchronous motor
JP2002010537A (en) Axial gap type motor
JPS6149901B2 (en)
JPH09121522A (en) Flat rotating machine
JP2002369477A (en) Generator, motor, and method for manufacturing the generator and motor