Nothing Special   »   [go: up one dir, main page]

JPH0821382B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH0821382B2
JPH0821382B2 JP63291163A JP29116388A JPH0821382B2 JP H0821382 B2 JPH0821382 B2 JP H0821382B2 JP 63291163 A JP63291163 A JP 63291163A JP 29116388 A JP29116388 A JP 29116388A JP H0821382 B2 JPH0821382 B2 JP H0821382B2
Authority
JP
Japan
Prior art keywords
limn
mno
battery
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63291163A
Other languages
Japanese (ja)
Other versions
JPH02139861A (en
Inventor
徹 松井
純一 山浦
▲吉▼徳 豊口
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63291163A priority Critical patent/JPH0821382B2/en
Publication of JPH02139861A publication Critical patent/JPH02139861A/en
Publication of JPH0821382B2 publication Critical patent/JPH0821382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池、特に、その正極の改
良に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of a positive electrode thereof.

従来の技術 リチウムまたはリチウム合金を負極とする非水電解二
次電池の正極活物質については、これまで、Ti,V,Cr,Mo
等の層状もしくはトンネル構造を有する酸化物及びカル
コゲン化合が知られている。これらの構造を有する化合
物では、電池の充放電により、リチウムイオンが化合物
の層もしくはトンネル内へ出入りする。このため、化合
物自体の結晶格子は単に膨張,収縮するのみで、結晶構
造が著しく破壊されることがないため、二次電池用正極
活物質に適する。
2. Description of the Related Art Conventional positive electrode active materials for non-aqueous electrolysis secondary batteries using lithium or lithium alloys as negative electrodes have so far been classified as Ti, V, Cr, Mo.
There are known oxides and chalcogen compounds having a layered structure or a tunnel structure. In the compounds having these structures, lithium ions move in and out of the compound layer or tunnel as the battery is charged and discharged. Therefore, the crystal lattice of the compound itself simply expands and contracts, and the crystal structure is not significantly destroyed. Therefore, the compound is suitable for a positive electrode active material for a secondary battery.

ところで、MnO2は、高い電圧、大きい放電容量、すな
わち、高エネルギー密度を有する正極活物質として非水
電解質一次電池に適用され、小型電子機器用電源をはじ
めとし広く利用されている。しかし、MnO2はルチル型の
結晶構造で上述のトンネル構造を有しているにもかかな
らず、充放電サイクルでの容量減少が著しいため、二次
電池用正極活物質には不向きである。この理由は、放電
にともなうMnO2粒子自体の電子伝導性の低下と、充電の
際のMnO2粒子の収縮によるMnO2粒子とカーボンブラック
等の導電剤粒子の分離による集電不良である。特に、Mn
O2粒子と導電剤粒子の分離は、放電過程で生成したLiXM
nO2が絶縁体に近いため、充電過程でのMnO2粒子からの
リチウムイオンの放出を一層困難にする。
By the way, MnO 2 is applied to a non-aqueous electrolyte primary battery as a positive electrode active material having a high voltage and a large discharge capacity, that is, a high energy density, and is widely used as a power source for small electronic devices. However, MnO 2 is not suitable for a positive electrode active material for a secondary battery because it has a rutile type crystal structure and has the above-mentioned tunnel structure, and the capacity is significantly reduced during charge / discharge cycles. This is because the decrease in electronic conductivity of the MnO 2 particles themselves due to the discharge, a current collecting failure due to separation of the conductive material particles 2 such as particles of carbon black MnO due to shrinkage of the MnO 2 particles during charging. In particular, Mn
O 2 particles and conductive agent particles are separated by Li X M generated in the discharge process.
Since nO 2 is close to an insulator, it becomes more difficult to release lithium ions from MnO 2 particles during the charging process.

以上のようなMnO2の充放電サイクルでの容量減少を防
止するため、MnO2にあらかじめLiを添加,加熱し、充放
電過程での結晶格子の膨張,収縮の度合がMnO2に比べ小
さい、スピネル型の結晶構造を有するLiMn2O4を正極活
物質に用いることが提案されており、特に、放電容量の
点から、低温で加熱することにより得たLiMn2O4が好ま
しいとされている(英国公開公報GB2196785A)。この低
温でのLiMn2O4の製造法は概ね次のようである。Li2CO3
とMnO2を混合し、430℃〜520℃の温度範囲で加熱する
か、または、LiIとMnO2の混合物を300℃で加熱後、有機
溶媒で洗浄することによりLiMn2O4を得る。ここで、加
熱温度をさらに上昇させると結晶性の高いLiMn2O4にな
るが、この高結晶性のLiMn2O4では放電容量が極め小さ
くなることから電池用正極活物質には適さないとされて
いる。
In order to prevent the capacity decrease of MnO 2 in the charge / discharge cycle as described above, Li is added to MnO 2 in advance and heated, and the degree of expansion and contraction of the crystal lattice during the charge / discharge process is smaller than that of MnO 2 . It has been proposed to use LiMn 2 O 4 having a spinel type crystal structure as a positive electrode active material, and in particular, from the viewpoint of discharge capacity, LiMn 2 O 4 obtained by heating at low temperature is said to be preferable. (UK publication GB2196785A). The manufacturing method of LiMn 2 O 4 at this low temperature is roughly as follows. Li 2 CO 3
And MnO 2 are mixed and heated in a temperature range of 430 ° C. to 520 ° C., or a mixture of LiI and MnO 2 is heated at 300 ° C. and then washed with an organic solvent to obtain LiMn 2 O 4 . Here, if the heating temperature is further increased, it becomes highly crystalline LiMn 2 O 4 , but since this highly crystalline LiMn 2 O 4 has a discharge capacity that is extremely small, it is not suitable as a positive electrode active material for batteries. Has been done.

発明が解決しようとする課題 しかし、このような500℃程度までの低温での製造法
で得たLiMn2O4を正極活物質として用い、リチウムまた
はリチウム合金を負極に用いた電池を組み立て、充放電
サイクルを繰り返した場合、リチウム負極の腐食が著し
く、サイクル寿命が短いという課題があった。これは次
の理由による。
However, using LiMn 2 O 4 obtained by such a manufacturing method at a low temperature up to about 500 ° C. as a positive electrode active material, a battery using lithium or a lithium alloy as a negative electrode is assembled and charged. When the discharge cycle was repeated, there was a problem that the lithium negative electrode was significantly corroded and the cycle life was short. This is for the following reason.

Li2CO3とMnO2を混合,加熱してLiMn2O4を得る場合、L
i2CO3の融点は618℃であるため、Li2CO3がMnO2と十分に
反応できる状態になるためにはこの融点近傍まで加熱す
る必要がある。しかし、MnO2はこのような温度ではβ型
の構造に転移するか、または、Liとの反応が著しく不活
性なMn2O3に変化する。β型のMnO2はLiがMnO2内に拡散
可能なトンネル構造を有するが、Liを十分にMnO2内に取
り込むことができない。これは、β型MnO2を正極活物質
に用いる非水電解質一次電池の放電容量が極端に小さい
ということからもうかがえる。したがって、Li2CO3とMn
O2からLiMn2O4を調製する場合、MnO2粒子表面に過剰なL
iが堆積し電気化学的に不活性なLi2MoO3が形成される一
方、Li2CO3粒子とMnO2粒子が接触していなかったMnO2
子表面上は依然としてMnO2として残る。すなわち、Li2C
O3とMnO2の反応では、同一粒子上にLi2MnO3とMnO2混在
したものが生成しやすい。Li2MnO3やMnO2は電解質中に
含まれる微量の水分より若干溶出するため、リチウムま
たはリチウウ合金負極に到達し、この結果、負極表面上
でリチウム・マンガン酸化物が形成されることにより、
リチウム負極が腐食するため、サイクル寿命が短くなる
ものである。
When Li 2 CO 3 and MnO 2 are mixed and heated to obtain LiMn 2 O 4 , L
Since the melting point of i 2 CO 3 is 618 ° C., it is necessary to heat the Li 2 CO 3 to near this melting point so that Li 2 CO 3 can sufficiently react with MnO 2 . However, at such temperatures, MnO 2 is transformed into a β-type structure, or the reaction with Li is changed to Mn 2 O 3, which is significantly inactive. β-type MnO 2 has a tunnel structure in which Li can diffuse into MnO 2 , but Li cannot be sufficiently incorporated into MnO 2 . This can be seen from the fact that the discharge capacity of the non-aqueous electrolyte primary battery using β-type MnO 2 as the positive electrode active material is extremely small. Therefore, Li 2 CO 3 and Mn
When preparing LiMn 2 O 4 from O 2 , excess L on the surface of MnO 2 particles
While i is is deposited electrochemically inactive Li 2 MoO 3 is formed, Li 2 CO 3 particles and MnO 2 particles MnO 2 particles on the surface which has not been in contact still remains as MnO 2. That is, Li 2 C
In the reaction of O 3 and MnO 2, a mixture of Li 2 MnO 3 and MnO 2 on the same particle is easily generated. Since Li 2 MnO 3 and MnO 2 are slightly eluted from the trace amount of water contained in the electrolyte, they reach the lithium or lithium alloy negative electrode, and as a result, lithium manganese oxide is formed on the negative electrode surface.
Since the lithium negative electrode is corroded, the cycle life is shortened.

以上のようなLi2MnO3とMnO2が混在しないLiMn2O4を作
製するためには、加熱温度を800℃〜900℃まで上昇させ
ればよい。しかし、この場合には、充放電容量が極めて
小さくなり、電池用正極活物質には適さない。
In order to produce LiMn 2 O 4 in which Li 2 MnO 3 and MnO 2 do not coexist as described above, the heating temperature may be raised to 800 ° C to 900 ° C. However, in this case, the charge / discharge capacity becomes extremely small, and it is not suitable as a positive electrode active material for batteries.

本発明はこのような従来の欠点を除去するものであ
り、Li2MnO3やMnO2の混在がなく、リチウムまたはリチ
ウム負極の腐食がないために充放電サイクル寿命が長く
なり、しかも放電容量が大きいLiMn2O4誘導体を正極活
物質に用いることで、信頼性の高い非水電解質二次電池
を提供することを目的とする。
The present invention eliminates such conventional drawbacks, there is no mixture of Li 2 MnO 3 and MnO 2 , and there is no corrosion of lithium or lithium negative electrode, so that the charge / discharge cycle life is extended and the discharge capacity is further increased. An object of the present invention is to provide a highly reliable non-aqueous electrolyte secondary battery by using a large LiMn 2 O 4 derivative as a positive electrode active material.

課題を解決するための手段 本発明の非水電解質二次電池は、正極活物質に次式で
表わされるLiMn2O4誘導体であり、かつ元素A,Bがそれぞ
れLiMn2O4結晶中Li,MnサイトにおいてLi,Mn原子と置換
している誘導体を用いることを特徴とする。
Means for Solving the Problems The non-aqueous electrolyte secondary battery of the present invention is a LiMn 2 O 4 derivative represented by the following formula in the positive electrode active material, and the elements A and B are LiMn 2 O 4 LiM in the crystal, respectively. It is characterized by using a derivative in which Mn sites are substituted with Li and Mn atoms.

(Li1-Y・AY・(Mn1-Z・BZ・O4 ただし、 Aは、Na,K,Cu,Ag,Znから選択される元素 Bは、V,Cr,Fe,Co,Niから選択される元素 1.1≧X≧0.9 0.2≧Y≧0.0 0.2≧Z≧0.0 (X=1.0のとき、Y,Zは同時に0.0にはならない) 作用 LiMn2O4は立方晶系であり、Liは四つの0からなる正
四面体の中心に位置しているため、この正四面体より抜
け出して隣の正面体に拡散するには、三つの0からな三
角形の輪を通ることになり、著しい活性化エネルギーを
必要とする。特に、高い温度で加熱して得られたLiMn2O
4ではこの傾向が顕著であり、放電過程でさらにリチウ
ムイオンを挿入させようとしても、既に正四面体に位置
しているLiが動きにくいため、新たなリチウムイオンが
入らない。すなわち放電容量が少なくなるのである。
(Li 1-Y・ A Y ) X・ (Mn 1-Z・ B Z ) 2・ O 4 where A is an element selected from Na, K, Cu, Ag, Zn B is V, Cr, Element selected from Fe, Co, Ni 1.1 ≧ X ≧ 0.9 0.2 ≧ Y ≧ 0.0 0.2 ≧ Z ≧ 0.0 (Y and Z do not become 0.0 at the same time when X = 1.0) Action LiMn 2 O 4 is cubic Since it is a system, and Li is located at the center of a tetrahedron composed of four 0s, to escape from this tetrahedron and diffuse to the next frontal body, pass through a triangle ring of three 0s. It requires significant activation energy. In particular, LiMn 2 O obtained by heating at high temperature
In 4 , the tendency is remarkable, and even if an attempt is made to insert more lithium ions in the discharging process, new lithium ions do not enter because Li, which is already located in the tetrahedron, is difficult to move. That is, the discharge capacity is reduced.

そこで、本発明は、LiMn2O4のLi量を加減することに
より、空の正四面体を増加させLiMn2O4内でのLiの拡散
を容易にする。さらに、Liの一部またはMnの一部を他元
素で置換することで歪スピネルを作製し、0の正四面体
を歪ませLiの拡散を容易にする。したがって、このよう
なLiMn2O4誘導体は、高い温度で加熱して得ても放電容
量は十分に大きい。そして、高い温度で加熱して作製す
ることによりLi2MnO3やMnO2の混在しないLiMn2O4誘導体
を得ることができるので、充放電サイクル寿命の長い非
水電解質二次電池が構成できる。
The present invention, by adjusting the amount of Li LiMn 2 O 4, to facilitate the diffusion of Li in in the LiMn 2 O 4 increases the empty tetrahedral. Further, a strained spinel is produced by substituting a part of Li or a part of Mn with another element, and distorts the tetrahedron of 0 to facilitate the diffusion of Li. Therefore, such a LiMn 2 O 4 derivative has a sufficiently large discharge capacity even if it is obtained by heating at a high temperature. Then, since the LiMn 2 O 4 derivative in which Li 2 MnO 3 or MnO 2 is not mixed can be obtained by heating at a high temperature to produce, a non-aqueous electrolyte secondary battery having a long charge / discharge cycle life can be configured.

実施例 以下、本発明の実施例について説明する。Examples Hereinafter, examples of the present invention will be described.

実施例1 本発明の実施例としてLi1.1Mn2O4を次のようにして作
製した。
Example 1 As an example of the present invention, Li 1.1 Mn 2 O 4 was produced as follows.

Li2CO313.321gとMn3O450.000gをボールミルで混合
後、空気雰囲気中、850℃で6時間加熱した。さらに、
この生成物を粉砕し、再び850℃で18時間加熱し、粉末
にした。
After mixing 13.21 g of Li 2 CO 3 and 50.000 g of Mn 3 O 4 with a ball mill, the mixture was heated in an air atmosphere at 850 ° C. for 6 hours. further,
The product was ground and heated again at 850 ° C. for 18 hours to give a powder.

このLi1.1Mn2O4を正極活物質として、第2図に示すよ
うに偏平型電池を組み立て充放電試験を行った。以下、
第2図に基づき説明する。
Using this Li 1.1 Mn 2 O 4 as a positive electrode active material, a flat battery was assembled as shown in FIG. 2 and a charge / discharge test was conducted. Less than,
A description will be given based on FIG.

Li1.1Mn2O4、導電剤であるカーボンブラック、及び結
着剤である四弗化エチレン樹脂粉末を重量比で、70対20
対10の割合で混合した。この混合物50mgをチタンエキス
パンドメタルから成る正極集電体1をスポット溶接した
電池ケース2内に成型,圧着し、正極3とした。正極板
の直径は14.3mmである。負極4には、厚さ0.35mmのリチ
ウムシートを用い、ステンレスメッシュから成る負極集
電体5をスポット溶接した封口板6に加圧圧着した。電
解液には、プロピレンカーボネートとジメトキシエタン
を等体積の割合で混合したものに、1モル/lの割合でLi
ClO4を溶解したものを用いた。また、セパレータ7には
ポリプロピレン不織布を用いた。このようにして構成し
た本発明の電池をAとする。
Li 1.1 Mn 2 O 4 , carbon black as a conductive agent, and tetrafluoroethylene resin powder as a binder in a weight ratio of 70:20
Mixed at a ratio of 10 to 10. 50 mg of this mixture was molded into a battery case 2 in which a positive electrode current collector 1 made of titanium expanded metal was spot-welded and pressure-bonded to obtain a positive electrode 3. The diameter of the positive electrode plate is 14.3 mm. A lithium sheet having a thickness of 0.35 mm was used as the negative electrode 4, and the negative electrode current collector 5 made of stainless mesh was spot-welded and pressure-bonded to the sealing plate 6. The electrolyte solution was a mixture of propylene carbonate and dimethoxyethane in equal volume ratio, and 1 mol / l Li
It was prepared by dissolving the ClO 4. A polypropylene nonwoven fabric was used for the separator 7. The battery of the present invention thus constructed is designated as A.

次に比較例として、Li2CO3とMn3O4をLi/Mn原子比で1/
2にしたほかは、上記のLi1.1Mn2O4と同様に加熱してLiM
n2O4の作製し、同様の扁平型電池を構成した。この電池
をBとする。
Next, as a comparative example, Li 2 CO 3 and Mn 3 O 4 have a Li / Mn atomic ratio of 1 /
2 except that the LiM was heated in the same manner as Li 1.1 Mn 2 O 4 above.
n 2 O 4 was prepared and a similar flat battery was constructed. This battery is designated as B.

さらに比較例として、Li2CO3とMnO2を原料としてLiMn
2O4を作製した。Li2CO310.624gとγ型MnO250.000gをボ
ールミルで混合した後、470℃で5時間加熱した。この
ようにして得たLiMn2O4を正極活物質として、上記で述
べた扁平型電池を同様に構成した。この電池をCとす
る。
Further, as a comparative example, LiMn using Li 2 CO 3 and MnO 2 as raw materials
2 O 4 was prepared. Li 2 CO 3 ( 10.624 g) and γ-type MnO 2 ( 50.000 g) were mixed in a ball mill and then heated at 470 ° C. for 5 hours. The LiMn 2 O 4 thus obtained was used as the positive electrode active material, and the flat battery described above was similarly constructed. This battery is designated as C.

以上のように構成した本発明の電池Aと比較例の電池
B,Cにおいて、0.8mAの定電流,放電下限電圧2.0V,充電
上限電圧3.8Vの条件で充放電試験を行った。
The battery A of the present invention and the battery of the comparative example configured as described above
In B and C, a charge / discharge test was performed under the conditions of a constant current of 0.8 mA, a discharge lower limit voltage of 2.0 V, and a charge upper limit voltage of 3.8 V.

第1図は、本発明の電池Aと比較例の電池B,Cの各充
放電サイクルでの放電容量をプロットした図である。第
1図より、比較例の電池Bでは、本発明の電池Aに比べ
て、放電容量が半分未満と極めて少なく、電池の正極活
物質として適さないことがわかる。この理由は、比較例
の電池Bに用いたLiMn2O4の結晶性が著しく高く、LiMn2
O4内でのLiの拡散が困難なためである。また、第1図よ
り比較例の電池Cでは、本発明の電池Aに比べて、放電
容量は同等であるが、サイクル寿命(放電容量が初期容
量の半分になった時のサイクル数)が約130サイクルと
短い。これは、比較例の電池Cに用いたLiMn2O4におい
て、Li2MnO3やMnO2が不純物として混在し、これらが電
解液中の微量の水分によって溶出し、リチウム負極を腐
食するためである。以上のことから、本発明の電池Aは
放電容量,サイクル寿命の両方においてすぐれることが
わかる。
FIG. 1 is a diagram in which the discharge capacities of the battery A of the present invention and the batteries B and C of the comparative example in each charge / discharge cycle are plotted. From FIG. 1, it can be seen that the battery B of the comparative example has an extremely small discharge capacity of less than half that of the battery A of the present invention and is not suitable as a positive electrode active material of the battery. The reason for this is significantly higher crystallinity of LiMn 2 O 4 used in the battery B of Comparative Example, LiMn 2
This is because it is difficult to diffuse Li in O 4 . Further, as shown in FIG. 1, the battery C of the comparative example has the same discharge capacity as the battery A of the present invention, but the cycle life (the number of cycles when the discharge capacity becomes half of the initial capacity) is about. As short as 130 cycles. This is because Li 2 MnO 3 and MnO 2 are mixed as impurities in LiMn 2 O 4 used for the battery C of the comparative example, and these are eluted by a trace amount of water in the electrolytic solution and corrode the lithium negative electrode. is there. From the above, it is understood that the battery A of the present invention is excellent in both discharge capacity and cycle life.

実施例2 実施例1の本発明の実施例としてLi1.1Mn2O4を作製し
たのと同様に表1に示したLiMn2O4誘導体を作製した。
ここで、元素Na,Kは水酸化物として、また、元素cu,Ag,
Znは酸化物として、それぞれ、所定の量をLi2CO3とMn3O
4とともに混合し加熱した。
Example 2 The LiMn 2 O 4 derivative shown in Table 1 was prepared in the same manner as Li 1.1 Mn 2 O 4 was prepared as an example of the present invention in Example 1.
Here, the elements Na and K are as hydroxides, and the elements cu, Ag, and
Zn was used as an oxide in predetermined amounts in Li 2 CO 3 and Mn 3 O, respectively.
Mix with 4 and heat.

扁平型電池の構成及び充放電試験は実施例1と同様に
して行った。
The configuration and charge / discharge test of the flat battery were performed in the same manner as in Example 1.

表1は、各LiMn2O4誘導体を正極活物質に用いた扁平
型電池の10サイクル目の放電容量とサイクル寿命を記載
したものである。表1より、本発明のLiMn2O4誘導体
は、放電容量,サイクル寿命の両方において良好である
ことがわかる。
Table 1 shows the discharge capacity and cycle life at the 10th cycle of the flat battery using each LiMn 2 O 4 derivative as the positive electrode active material. From Table 1, it can be seen that the LiMn 2 O 4 derivative of the present invention is excellent in both discharge capacity and cycle life.

なお、本実施例のLiMn2O4誘導体を次式で表わすと、 (Li1-Y・AYXMn2O4 放電容量,サイクル寿命の両方において特性が向上する
のは、いずれの元素Aにおいても概ね 1.1≦X≦0.9 0.2≧Y≧0.0 (X=1.0のときYは0でない) の範囲であった。
In addition, when the LiMn 2 O 4 derivative of this example is represented by the following formula, which element is improved in both the (Li 1-Y · A Y ) X Mn 2 O 4 discharge capacity and the cycle life is Also in A, the range was approximately 1.1 ≦ X ≦ 0.9 0.2 ≧ Y ≧ 0.0 (Y is not 0 when X = 1.0).

実施例3 実施例1の本発明の実施例としてLi1.1Mn2O4を作製し
たのと同様に、表2に示したLiMn2O4誘導体を作製し
た。ここで、元素V,Cr,Fe,C,Niは、それぞえ酸化物とし
て所定の量をLi2Co3とMn3O4とともに混合し加熱した。
Example 3 The LiMn 2 O 4 derivatives shown in Table 2 were prepared in the same manner as Li 1.1 Mn 2 O 4 was prepared as an example of the present invention in Example 1. Here, the elements V, Cr, Fe, C, and Ni were each mixed as a oxide in a predetermined amount with Li 2 Co 3 and Mn 3 O 4 and heated.

扁平型電池の構成及び充放電試験は実施例1と同様に
して行った。
The configuration and charge / discharge test of the flat battery were performed in the same manner as in Example 1.

表2は、各LiMn2O4誘導体を正極活物質に用いた扁平
型電池の10サイクル目の放電容量とサイクル寿命を記載
したものである。表2より、本発明のLiMn2O4誘導体
は、放電容量,サイクル寿命の両方において優れた特性
を示すことがわかる。
Table 2 shows the discharge capacity at 10th cycle and the cycle life of a flat battery using each LiMn 2 O 4 derivative as a positive electrode active material. From Table 2, it can be seen that the LiMn 2 O 4 derivative of the present invention exhibits excellent characteristics in both discharge capacity and cycle life.

なお、本実施例のLiMn2O4誘導体を次式で表わすと、 Li(Mn1-Z・BZ2O4 放電容量,サイクル寿命の両方において特性が向上する
のは、いずれの元素Bにおいても概ね 0.2≧Z>0.0 の範囲であった。
When the LiMn 2 O 4 derivative of this example is represented by the following formula, it is determined by which element B that the characteristics are improved in both Li (Mn 1-Z · B Z ) 2 O 4 discharge capacity and cycle life. In general, the range was 0.2 ≧ Z> 0.0.

以上、実施例2,3でLiMn2O4中のLiまたはMnの一部を他
元素で置換することで、放電容量,サイクル寿命にすぐ
れたLiMn2O4誘導体を得るが、置換する量がいずれの元
素を用いても同様の特定範囲になる理由は、本発明のLi
Mn2O4誘導体はいずれも置換元素と固溶体(LiMn2O4結晶
構造中におけるLiやMn金属元素のサイトが添加した多金
属元素によって無秩序に置き換わっている状態)と考え
られ、この特定範囲外では複酸化物が形成することにな
り、特性が低下するためと考えられる。
As described above, in Examples 2 and 3, by substituting a part of Li or Mn in LiMn 2 O 4 with another element, LiMn 2 O 4 derivatives having excellent discharge capacity and cycle life can be obtained. The reason why the same specific range is achieved regardless of which element is used is that the Li of the present invention is used.
All of the Mn 2 O 4 derivatives are considered to be substitution elements and solid solutions (states in which the sites of Li and Mn metal elements in the LiMn 2 O 4 crystal structure are randomly replaced by the polymetallic elements added) and are outside this specific range. Then, it is considered that a double oxide is formed and the characteristics are deteriorated.

発明の効果 以上のように、本発明によれば、LiMn2O4誘導体を正
極活物質として用いるため、放電容量,サイクル寿命の
両方において優れた、信頼性の高い非水電解二次電池を
得ることができる。
EFFECTS OF THE INVENTION As described above, according to the present invention, since a LiMn 2 O 4 derivative is used as a positive electrode active material, a highly reliable non-aqueous electrolytic secondary battery having excellent discharge capacity and cycle life is obtained. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の電池A及び比較例の電池B,Cにおける
各サイクルでの放電容量をプロットした図、第2図は本
発明の実施例及び比較例に用いた扁平型電池の断面図で
ある。 1……正極集電体、2……電池ケース、3……正極、4
……負極、5……負極集電体、6……封口板、7……セ
パレータ、8……ガスケット。
FIG. 1 is a diagram in which the discharge capacities in each cycle of the battery A of the present invention and the batteries B and C of the comparative example are plotted, and FIG. 2 is a sectional view of the flat type battery used in the examples and comparative examples of the present invention. Is. 1 ... Positive electrode current collector, 2 ... Battery case, 3 ... Positive electrode, 4
…… Negative electrode, 5 …… Negative electrode current collector, 6 …… Seal plate, 7 …… Separator, 8 …… Gasket.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極、リチウムイオン導電性の非水電解
質、およびリチウムを活物質とする負極を構成要素とす
る電池であって、前記正極は下記の組成式で表されるLi
Mn2O4の誘導体であり、かつ元素A,BはそれぞれLiMn2O4
結晶中のLi,MnサイトにおいてLi,Mn原子と置換している
誘導体を活物質とすることを特徴とする非水電解質二次
電池。 (Li1-Y・AY・(Mn1-Z・BZ・O4 ただし、 Aは、Na,K,Cu,Ag,Znから選択される元素 Bは、V,Cr,Fe,Co,Niから選択される元素 1.1≧X≧0.9 0.2≧Y≧0.0 0.2≧Z≧0.0 (X=1.0のとき、Y,Zは同時に0.0にはならない)
1. A battery comprising a positive electrode, a lithium ion conductive non-aqueous electrolyte, and a negative electrode containing lithium as an active material, wherein the positive electrode is a Li represented by the following composition formula.
It is a derivative of Mn 2 O 4 and the elements A and B are LiMn 2 O 4
A non-aqueous electrolyte secondary battery characterized in that a derivative substituting Li, Mn atoms at Li, Mn sites in a crystal is used as an active material. (Li 1-Y・ A Y ) X・ (Mn 1-Z・ B Z ) 2・ O 4 where A is an element selected from Na, K, Cu, Ag, Zn B is V, Cr, Element selected from Fe, Co, Ni 1.1 ≧ X ≧ 0.9 0.2 ≧ Y ≧ 0.0 0.2 ≧ Z ≧ 0.0 (when X = 1.0, Y and Z do not become 0.0 at the same time)
JP63291163A 1988-11-17 1988-11-17 Non-aqueous electrolyte secondary battery Expired - Fee Related JPH0821382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291163A JPH0821382B2 (en) 1988-11-17 1988-11-17 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291163A JPH0821382B2 (en) 1988-11-17 1988-11-17 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH02139861A JPH02139861A (en) 1990-05-29
JPH0821382B2 true JPH0821382B2 (en) 1996-03-04

Family

ID=17765260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291163A Expired - Fee Related JPH0821382B2 (en) 1988-11-17 1988-11-17 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0821382B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390185B1 (en) * 1989-03-30 1994-06-22 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2561556B2 (en) * 1990-08-24 1996-12-11 本田技研工業株式会社 Positive electrode active material for lithium secondary battery
JPH04233169A (en) * 1990-12-28 1992-08-21 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery
JP3364968B2 (en) * 1992-09-01 2003-01-08 株式会社デンソー Battery
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
JP3487441B2 (en) * 1993-09-22 2004-01-19 株式会社デンソー Method for producing active material for lithium secondary battery
US5742070A (en) * 1993-09-22 1998-04-21 Nippondenso Co., Ltd. Method for preparing an active substance of chemical cells
JP3487438B2 (en) * 1993-09-22 2004-01-19 株式会社デンソー Negative electrode for lithium secondary battery
JP2845150B2 (en) * 1995-01-10 1999-01-13 株式会社日立製作所 Rechargeable battery
JP4326041B2 (en) 1997-05-15 2009-09-02 エフエムシー・コーポレイション Doped intercalation compound and method for producing the same
CA2240805C (en) 1997-06-19 2005-07-26 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements, preparation process and use thereof
US5962166A (en) * 1997-08-18 1999-10-05 Covalent Associates, Inc. Ultrahigh voltage mixed valence materials
WO2000030977A1 (en) 1998-11-20 2000-06-02 Fmc Corporation Multiple doped lithium manganese oxide compounds and methods of preparing same
US6579475B2 (en) 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
JP2007053110A (en) * 2006-10-26 2007-03-01 Hitachi Maxell Ltd Small button secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260056A (en) * 1988-08-25 1990-02-28 Sanyo Electric Co Ltd Manufacture of nonaqueous secondary battery and its positive electrode active mateiral

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260056A (en) * 1988-08-25 1990-02-28 Sanyo Electric Co Ltd Manufacture of nonaqueous secondary battery and its positive electrode active mateiral

Also Published As

Publication number Publication date
JPH02139861A (en) 1990-05-29

Similar Documents

Publication Publication Date Title
EP0000197B1 (en) Rechargeable non-aqueous cell with a chalcogenide-containing electrode, a method for preparing the chalcogenide compound and a method for the preparation of the cell
US3925098A (en) Positive electrode for electrical energy storage device
JPS5948512B2 (en) Lithium-molten salt battery with transition metal chalcogenide anode
JPH05242891A (en) Non-aqueous battery
JPH0821382B2 (en) Non-aqueous electrolyte secondary battery
JPH0824043B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material
JP2001015102A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2004047437A (en) Positive electrode activator for nonaqueous electrolyte secondary battery, and manufacturing method of the same
US4710439A (en) Secondary lithium battery including a lithium molybdate cathode
JPH08162114A (en) Lithium secondary battery
JP2000331680A (en) Lithium secondary battery and manufacture thereof
US5939224A (en) Nonaqueous electrolyte secondary battery
WO1985004763A1 (en) Rechargeable electrochemical device and a positive electrode therefor
JP2512241B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP2517176B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JPH06243870A (en) Nonaqeous secondary battery
KR100565923B1 (en) Production of granular composite lithium/manganese oxide composition and use thereof for lithium ion secondary batteries
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JPH056765A (en) Nonaqueous solvent secondary battery
JP3406636B2 (en) Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same
JP2000133265A (en) Positive active material of lithium secondary battery and manufacture of same
JP3104321B2 (en) Non-aqueous electrolyte lithium secondary battery and method for producing the same
JPH0732010B2 (en) Non-aqueous electrolyte secondary battery
JPS61179063A (en) Lithium secondary battery
JPH0287462A (en) Nonaqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees