Nothing Special   »   [go: up one dir, main page]

JPH08199272A - Aluminum alloy sheet and forming method - Google Patents

Aluminum alloy sheet and forming method

Info

Publication number
JPH08199272A
JPH08199272A JP625895A JP625895A JPH08199272A JP H08199272 A JPH08199272 A JP H08199272A JP 625895 A JP625895 A JP 625895A JP 625895 A JP625895 A JP 625895A JP H08199272 A JPH08199272 A JP H08199272A
Authority
JP
Japan
Prior art keywords
less
forming
strain rate
grain size
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP625895A
Other languages
Japanese (ja)
Inventor
Yukio Sasaki
行雄 佐々木
Masao Kikuchi
正夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP625895A priority Critical patent/JPH08199272A/en
Publication of JPH08199272A publication Critical patent/JPH08199272A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE: To easily obtain an alloy sheet capable of executing practical super plastic forming without adopting special condition by specifying the temp. and strain rate at forming of the alloy sheet regulated for grain size with specified composition. CONSTITUTION: The aluminum alloy sheet contains, by weight, 3.5-8.5% Mg, <=0.5% Cu, <=0.15% Si, <=0.15% Fe, and further, one or more kinds among <=0.4 Mn, <=0.1% respective Cr, Zr, V and Ti respectively, <=0.01% B, and the balance Al, and it is constructed with an average grain size of 15-120μm. The sheet is formed at a strain rate εof >=10<-4> /sec<-1> and at a forming temp. T of 523-823K while the strain rate ε and forming temp. T are in the range of the equation: 1nε<-160+24.5lnT. By this method, an elongation of 200% or more is attained so as to make superplastic forming possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超塑性成形用アルミニ
ウム合金板とその成形方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superplastic forming aluminum alloy sheet and a forming method thereof.

【0002】[0002]

【従来の技術】超塑性現象は伸びが通常の加工条件では
得られない程大きく、かつ変形応力も小さいことが特徴
とされている。そこで近年それらの特徴を利用した超塑
性合金の実用化のための開発や研究が盛んに行われてい
る。特にアルミニウム合金板に関しては軽量性の観点か
ら積極的に開発が行われており、なかでもAl−Mg合
金は適当な強度とともに耐食性や表面処理性に優れてい
ることから注目され、例えば、Al−5 Mg−0.6Cu −0.6M
n(Neopral)やAl−4.5Mg −0.7Mn −0.1Cr( ALNOVI-I:商
品名 )などが実用化されている。
2. Description of the Related Art The superplastic phenomenon is characterized in that the elongation is so large that it cannot be obtained under normal working conditions and the deformation stress is also small. Therefore, in recent years, development and research for practical use of superplastic alloys utilizing these characteristics have been actively conducted. In particular, aluminum alloy plates have been actively developed from the viewpoint of lightness, and among them, Al-Mg alloys have attracted attention because they have excellent strength as well as corrosion resistance and surface treatment properties. 5 Mg-0.6Cu-0.6M
n (Neopral) and Al-4.5Mg-0.7Mn-0.1Cr (ALNOVI-I: trade name) have been put to practical use.

【0003】ところで、超塑性現象を発現させるための
条件としては、(1)安定で微細な等軸結晶粒(〜10
μm)を有する合金を、(2)加熱温度はT>0.5T
m (Tm : 融点の絶対温度) 、(3)低い歪み速度(1
-4〜10-2sec-1)での加工などが適切であると一
般的に言われている( 例えば 大澤・西村:軽金属、39
-10 (1989), P.765-775など )。そこで、これまでの合
金開発の指針としては結晶粒を微細化することや高温で
の加工に際しても熱的に安定な組織にすること、あるい
は延性を阻害するキャビティの生じにくい合金とするこ
となどが上げられてきた。
By the way, the conditions for developing the superplasticity phenomenon are (1) stable and fine equiaxed crystal grains (~ 10
(2) heating temperature T> 0.5T
m (T m : absolute temperature of melting point), (3) low strain rate (1
It is generally said that processing at 0 -4 to 10 -2 sec -1 ) is appropriate (for example, Osawa and Nishimura: Light Metals, 39
-10 (1989), P.765-775, etc.). Therefore, the guidelines for alloy development up to now include making the crystal grains finer, making the structure thermally stable even at the time of processing at high temperature, or making the alloy hard to form cavities that inhibit ductility. It has been raised.

【0004】[0004]

【発明が解決しようとする課題】しかしながら,再結晶
粒の粒径を微細にかつ均質にするための製造条件には制
約条件が多く、また加工も低歪み速度域での加工が要求
されてきた。すなわち、前述の条件は超塑性現象の実用
化に対しては合金として特殊な成分系( 例えば、特開昭
57-76145 号公報など )または特殊な製造条件( 例え
ば、特開昭 58-81957 号公報など )を要求するもので、
製造コストの面から望ましいものではなかった。また、
加工条件も、低歪み速度を要求する( 例えば東:軽金
属、39-11(1989), P.751-764など )ことから生産性に対
して難点となってきた。しかも超塑性成形に際して、実
用的には500%や1000%のような非常に大きい伸
びが要求されることはまれであり、200%以上多くて
も300%までの伸びが達成できれば十分である場合が
多い。本発明は、以上の事情を背景として、特殊な条件
を採用せずに製造が容易で、かつ生産性に優れた超塑性
成形を可能とするアルミニウム合金板とその成形方法を
提供することにある。
However, there are many restrictions on the manufacturing conditions for making the grain size of the recrystallized grains fine and uniform, and the processing has also been required to be performed in the low strain rate range. . That is, the above-mentioned conditions are such that alloys have a special component system (for example, JP-A-
57-76145) or special manufacturing conditions (for example, JP-A-58-81957).
It was not desirable in terms of manufacturing cost. Also,
Processing conditions also require a low strain rate (eg East: Light Metals, 39-11 (1989), P.751-764, etc.), which has been a problem for productivity. In addition, in the case of superplastic forming, it is rare that a very large elongation such as 500% or 1000% is practically required, and it is sufficient if elongation of 200% or more and up to 300% can be achieved. There are many. In view of the above circumstances, the present invention is to provide an aluminum alloy sheet and a forming method thereof that enable superplastic forming that is easy to manufacture without adopting special conditions and has excellent productivity. .

【0005】[0005]

【課題を解決するための手段】すなわち、本発明の第1
は、重量%で、Mg:3.5%〜8.5% Cu:0.5%以下 Si:0.15%以下 Fe:0.15%以下を含有し、さらに、Mn:0.4
%以下 Cr:0.1%以下 Zr:0.1%以下 V:0.1%以下 Ti:0.1%以下 B:0.01%以下のうちの一種または二種以上を含有
し、残部はAl 及び不可避的不純物よりなり、かつ15
〜120μmの平均結晶粒径から構成されており,歪み
速度(ε)が10-4 sec-1以上、成形温度( T )が52
3〜823K、かつ歪み速度(ε)と成形温度(T)と
が次式 ln(ε)<−160+24.5 ln(T) の範囲内において伸び200%以上の超塑性変形を呈す
ることを特徴とするアルミニウム合金板である。
That is, the first aspect of the present invention
% By weight, Mg: 3.5% to 8.5% Cu: 0.5% or less Si: 0.15% or less Fe: 0.15% or less, and further Mn: 0.4
% Or less Cr: 0.1% or less Zr: 0.1% or less V: 0.1% or less Ti: 0.1% or less B: 0.01% or less One or more of the following are contained, and the balance Consists of Al and inevitable impurities, and 15
The average grain size is about 120 μm, the strain rate (ε) is 10 −4 sec −1 or more, and the molding temperature (T) is 52.
3 to 823K, and the strain rate (ε) and the forming temperature (T) exhibit a superplastic deformation of elongation of 200% or more within the range of the following formula ln (ε) <-160 + 24.5 ln (T). And an aluminum alloy plate.

【0006】また,本発明の第2は、重量%で、Mg:
3.5%〜8.5% Cu:0.5%以下 Si:0.15%以下 Fe:0.15%以下を含有し、さらに、Mn:0.4
%以下 Cr:0.1%以下 Zr:0.1%以下 V:0.1%以下 Ti:0.1%以下 B:0.01%以下のうちの一種または二種以上を含有
し、残部はAl及び不可避的不純物よりなり、かつ15
〜120μmの平均結晶粒径から構成されるアルミニウ
合金板を、歪み速度(ε)が10-4 sec-1以上、成形温
度( T )が523〜823Kで、かつ次式で表される歪
み速度(ε)と成形温度(T)の範囲内で成形すること
を特徴とするアルミニウム合金板の成形方法である。 ln(ε)<−160+24.5 ln(T)
The second aspect of the present invention is to provide Mg:
3.5% to 8.5% Cu: 0.5% or less Si: 0.15% or less Fe: 0.15% or less, and further Mn: 0.4
% Or less Cr: 0.1% or less Zr: 0.1% or less V: 0.1% or less Ti: 0.1% or less B: 0.01% or less One or more of the following are contained, and the balance Is Al and inevitable impurities, and 15
Aluminium alloy sheet having an average crystal grain size of ˜120 μm has a strain rate (ε) of 10 −4 sec −1 or more, a molding temperature (T) of 523 to 823 K, and a strain rate represented by the following equation. It is a method for forming an aluminum alloy plate, which comprises forming within a range of (ε) and a forming temperature (T). ln (ε) <-160 + 24.5 ln (T)

【0007】[0007]

【作 用】以下に本発明の合金組成、超塑性加工条件等
の限定理由を説明する。Mgは本発明で成形後の常温で
の強度の向上および超塑性成形性向上に寄与する必須の
基本合金成分であり、3.5〜8.5%含有させる。高
延性を得るためには高Mgが望ましいが8.5%を越え
れば鋳造後に熱延を行う場合、圧延割れが生じ易くなる
ため工業的に適当ではない。また、Mgが3.5%未満
では成形後の常温での強度が充分に得られず、適当では
ない。Cuは加工後の強度を確保するために添加するこ
とに有効である。しかし、0.5%を越えて添加すると
粒界に偏析してキャビテーションを発生させやすくし、
超塑性成形を阻害する。そこで添加量は0.5%以下と
する。また、Cuは耐食性を阻害することでも知られて
おり、耐食性の観点から0.35%以下とすることが望
ましい。
[Operation] The reasons for limiting the alloy composition, superplastic working conditions and the like of the present invention will be described below. In the present invention, Mg is an essential basic alloying component that contributes to the improvement of strength at room temperature after forming and the improvement of superplastic formability, and is contained in 3.5 to 8.5%. In order to obtain high ductility, high Mg is desirable, but if it exceeds 8.5%, rolling cracking tends to occur when hot rolling is performed after casting, which is not industrially suitable. Further, if the Mg content is less than 3.5%, the strength at room temperature after molding cannot be sufficiently obtained, which is not suitable. Cu is effective in adding to secure strength after processing. However, if added over 0.5%, segregation at the grain boundaries tends to occur and cavitation tends to occur,
Inhibits superplastic forming. Therefore, the addition amount is set to 0.5% or less. Cu is also known to inhibit the corrosion resistance, and it is preferably 0.35% or less from the viewpoint of the corrosion resistance.

【0008】FeやSiは一般に不純物として混入する
が、混入するとAl−Mg−Si系,Al−Fe−Si
系の金属間化合物を生成し、成形時にキャビテーション
を発生させやすくし、超塑性成形を阻害する。そこで、
混入許容範囲はそれぞれ0.15%以下とする。なお、
本発明合金においては、必要に応じてMn,Cr,V,
Zr,Ti,Bのうち1種以上を含有させる。MnやC
r,Zr,VおよびTi,Bは結晶粒径が超塑性成形時
に異常成長するのを防止する目的で含有させてもよい。
この場合、Mnを0.4%以上添加するとAl6Mnや
Fe,Siと金属間化合物として析出しキャビテーショ
ンを生成させやすくなる。また、Cr,V,Zr,Ti
をいずれも0.1%を越えて添加するとキャビテーショ
ンを生成させやすくなる。一方、BはTiと共存して結
晶粒の均質化を促進させる。しかし、0.05%を越え
て添加するとTiB2 が生成しキャビテーションを生成
させやすくし、いずれも超塑性成形を阻害する。従っ
て、Mnの添加量は0.4wt%以下、Cr,V,Z
r,Tiの添加量は0.1wt%以下とし、Bの添加量
は0.05wt%以下とする。なお上記以外の不可避的
な不純物はAl地金の純度が98%以上であれば問題な
い。
[0008] Fe and Si are generally mixed as impurities, but if mixed, they are Al-Mg-Si system and Al-Fe-Si.
It produces a system intermetallic compound, makes it easier to generate cavitation during molding, and hinders superplastic molding. Therefore,
The permissible mixing range is 0.15% or less. In addition,
In the alloy of the present invention, Mn, Cr, V,
At least one of Zr, Ti and B is contained. Mn and C
r, Zr, V and Ti, B may be contained for the purpose of preventing abnormal growth of the crystal grain size during superplastic forming.
In this case, if Mn is added in an amount of 0.4% or more, Al 6 Mn, Fe, and Si are precipitated as an intermetallic compound to easily generate cavitation. Also, Cr, V, Zr, Ti
If any of the above is added in excess of 0.1%, it becomes easy to generate cavitation. On the other hand, B coexists with Ti and promotes homogenization of crystal grains. However, if added in excess of 0.05%, TiB 2 is generated and cavitation is easily generated, and any of them impedes superplastic forming. Therefore, the addition amount of Mn is 0.4 wt% or less, Cr, V, Z
The addition amount of r and Ti is 0.1 wt% or less, and the addition amount of B is 0.05 wt% or less. There is no problem with inevitable impurities other than the above as long as the purity of Al ingot is 98% or more.

【0009】次に、平均結晶粒径を規定する理由を説明
する。従来、超塑性を発現させるためには結晶粒径は微
細化させることが一般的であると報告されている(例え
ば,馬場,吉田:塑性と加工、 27-302 (1986), P.333
-338など) 。しかし、本発明者らが鋭意検討した結果、
生産性の高い超塑性成形加工を可能とするには,従来の
知見よりも大きい結晶粒径の15〜120μmとするこ
とが良いことが判明した。さらに、本発明合金板を用い
て超塑性成形を達成することが出来る加工条件の範囲を
規定する理由について説明する。5182合金の様な高
Mg材を10-3〜10-4sec-1程度の低速で引っ張る
と250℃程度の温度で伸びが100%を越すような挙
動を示すことは知られていた(例えば、 R.A.AYRES : M
etallugical Transactions A ,10A (1979),P.849-854)
。しかしながら、このような従来技術では歪み速度が
低いために高生産性に難点があり、超塑性成形としての
伸びも不十分であった。
Next, the reason for defining the average crystal grain size will be described. In the past, it has been reported that the grain size is generally refined to develop superplasticity (eg, Baba, Yoshida: Plasticity and processing, 27-302 (1986), P.333.
-338). However, as a result of diligent study by the present inventors,
In order to enable highly productive superplastic forming, it has been found that it is better to set the grain size to 15 to 120 μm, which is larger than the conventional knowledge. Further, the reason for defining the range of processing conditions that can achieve superplastic forming using the alloy sheet of the present invention will be described. It has been known that when a high Mg material such as the 5182 alloy is pulled at a low speed of about 10 −3 to 10 −4 sec −1, the behavior is such that the elongation exceeds 100% at a temperature of about 250 ° C. (eg, , RAAYRES: M
(etallugical Transactions A, 10A (1979), P.849-854)
. However, such a conventional technique has a problem in high productivity because of a low strain rate, and the elongation as superplastic forming is insufficient.

【0010】そこで、本発明者らは、高生産性を可能と
する高い歪み速度で超塑性伸びを有するアルミニウム合
金板について調査した。なお、実用的な超塑性成形とし
て必要な伸びは、成形後の強度確保のために最小限の板
厚が必要であるから、非常に大きな伸び(例えば500
%以上の超伸び)は特に必要とされず、200%以上の
伸びであれば良い。そこで、生産性の良い超塑性成形を
行う際の実用的な伸びとして200%以上の伸びを示す
アルミニウム合金板について調べた結果、前記のように
合金塑性と結晶粒径を規定したアルミニウム合金板を下
記の加工条件範囲で成形すれば本発明の目的が達成され
ることを知見した。
Therefore, the present inventors investigated an aluminum alloy plate having superplastic elongation at a high strain rate which enables high productivity. Note that the elongation required for practical superplastic forming requires a minimum plate thickness to secure the strength after forming, and therefore, a very large elongation (for example, 500
% Or more) is not particularly required and may be 200% or more. Therefore, as a result of investigating an aluminum alloy plate showing an elongation of 200% or more as a practical elongation at the time of performing superplastic forming with good productivity, an aluminum alloy plate having alloy plasticity and grain size specified as described above was obtained. It has been found that the object of the present invention can be achieved by molding under the following processing condition range.

【0011】さらに、まず、歪み速度は生産性を考慮し
て10-4sec-1以上とした。そして、加工温度は52
3〜833Kの範囲とした。加工温度は823Kより高
くすると、加工中に結晶粒径が粗大化を起こし適切な超
塑性成形が行えなくなる。そこで加工温度の上限を82
3Kとした。また、523K以下の温度では超塑性現象
が得られないので加工温度の下限は523Kとした。本
発明においては、上記歪み速度と加工温度の範囲内にお
いて、さらに両者の関係が、 −160+24.5 InT<Inε<−115+15.7 InT ただし、T:絶対温度、ε:歪み速度 (sec-1)で規
定される範囲であれば,超塑性成形が有利に行える。
Further, the strain rate is set to 10 -4 sec -1 or more in consideration of productivity. And the processing temperature is 52
The range was 3 to 833K. If the processing temperature is higher than 823K, the crystal grain size becomes coarse during processing, and proper superplastic forming cannot be performed. Therefore, the upper limit of processing temperature is 82
It was set to 3K. Further, since a superplastic phenomenon cannot be obtained at a temperature of 523K or lower, the lower limit of the processing temperature was set to 523K. In the present invention, within the range of the strain rate and the processing temperature, the relationship between the two is −160 + 24.5 InT <Inε <−115 + 15.7 InT, where T: absolute temperature, ε: strain rate (sec −1). Within the range specified in (), superplastic forming can be advantageously performed.

【0012】[0012]

【実施例】次に実施例に基づいて、本発明を具体的に説
明する。 実施例1 表1に示すアルミニウム合金(A1〜A6,B1〜B
6)について、それぞれ通常の方法に従ってDC鋳造法
により鋳造し、得られた鋳塊に530℃×5hrの均質
化処理を施してから熱間圧延および冷間圧延を行って、
厚さ1mmの圧延板とした。ただしB2の合金は熱延時
に割れが発生し、冷延板にすることが出来なかったため
以降の評価に用いることが出来なかった。残りの合金板
に対しては引き続き熱処理を施し、同じく表1に示すよ
うな結晶粒径に調整した。この時の結晶粒径は、板厚中
心部の断面組織写真を100倍で撮影し、切片法により
平均切片長を求め結晶粒径とした。これらの合金板の超
塑性伸びを調べるために表2に示す温度─歪み速度の条
件でJIS5号片を用いて引っ張り試験を行った。ま
た、常温における通常の機械的性質を調べるために、や
はりJIS5号片を用いYPまでは1mm/min,Y
P以降10mm/minで破断までの引っ張り試験を行
った。それらの結果を、同じく表2に示す。
EXAMPLES Next, the present invention will be specifically described based on Examples. Example 1 Aluminum alloys (A1 to A6, B1 to B1 shown in Table 1
Regarding 6), each was cast by a DC casting method according to a usual method, the obtained ingot was subjected to a homogenizing treatment at 530 ° C. for 5 hours, and then hot rolling and cold rolling were performed,
A rolled plate having a thickness of 1 mm was used. However, the alloy of B2 could not be used for the subsequent evaluations because cracks occurred during hot rolling and the cold rolled sheet could not be obtained. The rest of the alloy plates were subsequently subjected to heat treatment to adjust the grain size as shown in Table 1. The crystal grain size at this time was taken as a crystal grain size by taking an image of a cross-section structure of the plate thickness center portion at 100 times and obtaining an average section length by a sectioning method. In order to investigate the superplastic elongation of these alloy sheets, a tensile test was conducted using JIS No. 5 pieces under the conditions of temperature and strain rate shown in Table 2. In addition, in order to investigate ordinary mechanical properties at room temperature, JIS No. 5 piece was also used, and up to YP was 1 mm / min, Y
A tensile test until breakage was performed at 10 mm / min after P. The results are also shown in Table 2.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】No. 1〜6はいずれも合金成分が本発明
で規定する範囲内で、かつ結晶粒径も本発明で規定する
範囲内で、さらに加工条件も本発明で規定する範囲内で
加工した例である。これらの場合は、いずれも伸びが2
00%を越え、良好な超塑性を示した。また、常温での
機械的性質も良好な性質を示した。これに対して、N
o.7〜9は、合金範囲および結晶粒径範囲が本発明で
規定する範囲内であるが、本発明で規定する超塑性加工
条件を満たさなかったため伸びが目標の200%に達し
なかった。また、No.10はMg量が少ないため超塑
性伸びが低いばかりでなく、常温での機械的性質も低
い。さらにNo.11〜13は、添加元素が本発明によ
る規定範囲を越えているために伸びが200%に達っせ
ず実用的に有効な超塑性を得られなかった。また、N
o.14は結晶粒径が本発明による規定範囲以上に大き
くなったためにやはり伸びが200%に達成することが
できなかった。
Nos. 1 to 6 are all processed within the range defined by the present invention for alloy components, within the range defined by the present invention for grain size, and within the range defined for the present invention under processing conditions. It is an example. In these cases, the elongation is 2
It exceeded 00% and showed good superplasticity. The mechanical properties at room temperature also showed good properties. On the other hand, N
o. In Nos. 7 to 9, the alloy range and the crystal grain size range were within the ranges specified by the present invention, but the elongation did not reach the target of 200% because the superplastic working conditions specified by the present invention were not satisfied. In addition, No. No. 10 has a low amount of Mg, so that not only the superplastic elongation is low, but also the mechanical properties at room temperature are low. Furthermore, No. In Nos. 11 to 13, since the additive element exceeded the range specified by the present invention, the elongation did not reach 200% and practically effective superplasticity could not be obtained. Also, N
o. In No. 14, the elongation could not reach 200% because the crystal grain size became larger than the specified range according to the present invention.

【0016】実施例2 表1中のNo.3の合金を用いて通常のDC鋳造〜熱延
を行い、3mmの合金板を得た。この合金を813Kで
1分間の熱処理を施して平均結晶粒径を約60μmに調
整した。このようにして製造した180mm径の合金板
を成形温度723K、成形速度10-2/secの条件
で、ホットプレスを用いて円筒絞り試験(パンチ径50
mm径)を行った。その結果、成形高さが30mmでも
破断することなく良好な成形を行うことができた。
Example 2 No. 1 in Table 1 Ordinary DC casting to hot rolling was performed using the alloy No. 3 to obtain a 3 mm alloy plate. This alloy was heat-treated at 813 K for 1 minute to adjust the average crystal grain size to about 60 μm. The alloy plate having a diameter of 180 mm thus manufactured was subjected to a cylindrical drawing test (punch diameter 50 mm) using a hot press under the conditions of a molding temperature of 723 K and a molding speed of 10 -2 / sec.
mm diameter). As a result, good molding could be performed without breaking even when the molding height was 30 mm.

【0017】[0017]

【発明の効果】以上の説明で明らかなように、本発明に
よれば超塑性成形が可能なアルミニウム合金板を提供で
き、その合金板を用いて特定の成形条件(温度、歪み速
度)のもとで実用的な高生産性の超塑性成形を行うこと
ができる。
As is apparent from the above description, according to the present invention, an aluminum alloy plate capable of superplastic forming can be provided, and the alloy plate can be used under specific forming conditions (temperature, strain rate). With, practical high-productivity superplastic forming can be performed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Mg:3.5%〜8.5% Cu:0.5%以下 Si:0.15%以下 Fe:0.15%以下を含有し、さらに、Mn:0.4
%以下 Cr:0.1%以下 Zr:0.1%以下 V:0.1%以下 Ti:0.1%以下 B:0.01%以下のうちの一種または二種以上を含有
し、残部はAl及び不可避的不純物よりなり、かつ15
〜120μmの平均結晶粒径から構成されており,歪み
速度(ε)が10-4 sec-1以上、成形温度( T )が52
3〜823K、かつ歪み速度(ε)と成形温度(T)と
が次式 ln(ε)<−160+24.5 ln(T) の範囲内において伸び200%以上の超塑性変形を呈す
ることを特徴とするアルミニウム合金板。
1. By weight%, Mg: 3.5% to 8.5% Cu: 0.5% or less Si: 0.15% or less Fe: 0.15% or less, and further Mn: 0. .4
% Or less Cr: 0.1% or less Zr: 0.1% or less V: 0.1% or less Ti: 0.1% or less B: 0.01% or less One or more of the following are contained, and the balance Is Al and inevitable impurities, and 15
The average grain size is about 120 μm, the strain rate (ε) is 10 −4 sec −1 or more, and the molding temperature (T) is 52.
3 to 823K, and the strain rate (ε) and the forming temperature (T) exhibit a superplastic deformation of elongation of 200% or more within the range of the following formula ln (ε) <-160 + 24.5 ln (T). And aluminum alloy plate.
【請求項2】 重量%で、 Mg:3.5%〜8.5% Cu:0.5%以下 Si:0.15%以下 Fe:0.15%以下を含有し、さらに、Mn:0.4
%以下 Cr:0.1%以下 Zr:0.1%以下 V:0.1%以下 Ti:0.1%以下 B:0.01%以下のうちの一種または二種以上を含有
し、残部はAl 及び不可避的不純物よりなり、かつ15
〜120μmの平均結晶粒径から構成されるアルミニウ
合金板を、歪み速度(ε)が10-4 sec-1以上、成形温
度( T )が523〜823Kで、かつ次式で表される歪
み速度(ε)と成形温度(T)の範囲内で成形すること
を特徴とするアルミニウム合金板の成形方法。 ln(ε)<−160+24.5 ln(T)
2. By weight%, Mg: 3.5% to 8.5% Cu: 0.5% or less Si: 0.15% or less Fe: 0.15% or less, and further Mn: 0. .4
% Or less Cr: 0.1% or less Zr: 0.1% or less V: 0.1% or less Ti: 0.1% or less B: 0.01% or less One or more of the following are contained, and the balance Consists of Al and inevitable impurities, and 15
Aluminium alloy sheet having an average crystal grain size of ˜120 μm has a strain rate (ε) of 10 −4 sec −1 or more, a molding temperature (T) of 523 to 823 K, and a strain rate represented by the following equation. A method for forming an aluminum alloy plate, which comprises forming within a range of (ε) and a forming temperature (T). ln (ε) <-160 + 24.5 ln (T)
JP625895A 1995-01-19 1995-01-19 Aluminum alloy sheet and forming method Withdrawn JPH08199272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP625895A JPH08199272A (en) 1995-01-19 1995-01-19 Aluminum alloy sheet and forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP625895A JPH08199272A (en) 1995-01-19 1995-01-19 Aluminum alloy sheet and forming method

Publications (1)

Publication Number Publication Date
JPH08199272A true JPH08199272A (en) 1996-08-06

Family

ID=11633458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP625895A Withdrawn JPH08199272A (en) 1995-01-19 1995-01-19 Aluminum alloy sheet and forming method

Country Status (1)

Country Link
JP (1) JPH08199272A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959736A (en) * 1995-08-23 1997-03-04 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet excellent in high speed superplastic formability and its formation
JP2005307300A (en) * 2004-04-23 2005-11-04 Nippon Light Metal Co Ltd Al-Mg ALLOY SHEET HAVING EXCELLENT HIGH TEMPERATURE HIGH SPEED FORMABILITY AND ITS PRODUCTION METHOD
WO2007080938A1 (en) 2006-01-12 2007-07-19 Furukawa-Sky Aluminum Corp. Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959736A (en) * 1995-08-23 1997-03-04 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet excellent in high speed superplastic formability and its formation
JP2005307300A (en) * 2004-04-23 2005-11-04 Nippon Light Metal Co Ltd Al-Mg ALLOY SHEET HAVING EXCELLENT HIGH TEMPERATURE HIGH SPEED FORMABILITY AND ITS PRODUCTION METHOD
JP4534573B2 (en) * 2004-04-23 2010-09-01 日本軽金属株式会社 Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
WO2007080938A1 (en) 2006-01-12 2007-07-19 Furukawa-Sky Aluminum Corp. Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
US8500926B2 (en) 2006-01-12 2013-08-06 Furukawa-Sky Aluminum Corp Aluminum alloy material for high-temperature/high-speed molding, method of producing the same, and method of producing a molded article of an aluminum alloy

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
JP6412103B2 (en) Structural aluminum alloy plate and manufacturing method thereof
JP4534573B2 (en) Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
WO2006083982A2 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
JPH0372147B2 (en)
JP2017052989A (en) Structural aluminum alloy plate and method for producing the same
US5021106A (en) Brazeable aluminum alloy sheet and process of making same
US20240263279A1 (en) High strength microalloyed magnesium alloy
US11898232B2 (en) High-strength alloy based on aluminium and method for producing articles therefrom
JP2002348625A (en) Aluminum alloy sheet with superior warm formability, and manufacturing method therefor
JP2014208865A (en) Heat treatment type aluminum alloy for cold plastic working and manufacturing method therefor
JPH086161B2 (en) Manufacturing method of high strength A1-Mg-Si alloy member
JP3145904B2 (en) Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
JP4201745B2 (en) 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same
JP2003328065A (en) Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor
KR102566987B1 (en) High strength aluminum-zinc-magnesium-cooper alloy thick plate and method of manufacturing the same
JPH08199272A (en) Aluminum alloy sheet and forming method
JP2003328063A (en) Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor
CN109477169B (en) Aluminum alloy plastic working material and method for producing same
JPH0447019B2 (en)
US20210404038A1 (en) 2xxx aluminum lithium alloys
JPH04311545A (en) Al-mg-si alloy having superior strength and ductility
JP2003328064A (en) Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor
JP2000104149A (en) Production of aluminum-manganese alloy rolling stock having fine recrystallized grain structure
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402