JPH08182996A - Treatment of oil containing waste water - Google Patents
Treatment of oil containing waste waterInfo
- Publication number
- JPH08182996A JPH08182996A JP33763694A JP33763694A JPH08182996A JP H08182996 A JPH08182996 A JP H08182996A JP 33763694 A JP33763694 A JP 33763694A JP 33763694 A JP33763694 A JP 33763694A JP H08182996 A JPH08182996 A JP H08182996A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- tank
- waste water
- fat
- fats
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は各種の生活系や事業系か
ら排出される含油廃水の処理法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating oil-containing wastewater discharged from various living and business systems.
【0002】[0002]
【従来の技術】食品工場を始め食堂や家庭からの廃水は
油脂を多量に含んでいる場合が多い。廃水中に油脂が存
在すると下水管や廃水処理施設にいろいろな問題を引き
起こすようになる。2. Description of the Related Art Waste water from food factories, cafeterias, and households often contains a large amount of fats and oils. The presence of fats and oils in wastewater causes various problems in sewers and wastewater treatment facilities.
【0003】このため,食品工場,レストラン,ビル等
には,油脂分離施設(グリース阻集器等)が設けられ,
含油廃水から油脂の除去を行っている。油脂が除去され
た廃水は,そのまま浄化槽で処理するか,あるいは別置
の油水分離装置で更に油脂を除去した後で浄化槽で処理
している。For this reason, oil and fat separation facilities (grease interceptors, etc.) are provided in food factories, restaurants, buildings, etc.
Oils and fats are removed from oil-containing wastewater. The wastewater from which the oils and fats have been removed is directly treated in the septic tank, or is further treated in the septic tank after the oils and fats have been further removed by a separate oil / water separator.
【0004】また,微生物を利用して含油廃水をそのま
ま好気処理する技術も開発され始めている。この方法は
従来の活性汚泥法を改良するもので,油脂を分解する微
生物を好気処理槽にあらかじめ投入しておき,ここで含
油廃水を処理するというものである。Further, a technique for utilizing a microorganism to aerobically treat oil-containing wastewater as it is has been developed. This method is an improvement over the conventional activated sludge method, in which microorganisms that decompose fats and oils are put into an aerobic treatment tank in advance, and the oil-containing wastewater is treated there.
【0005】このような油脂分解菌には好気性菌に属す
るものと嫌気性に属するものとがあるが,このような菌
類が既に検索分離されている。例えば, 前者に属するも
のとしてリパーゼ生産性細菌 Bacillus sp.No.351 や P
seudomonas sp.No.6が知られている。Such oil-and-fat degrading bacteria include those belonging to aerobic bacteria and those belonging to anaerobic bacteria, and such fungi have already been searched and separated. For example, lipase-producing bacteria such as Bacillus sp.
seudomonas sp. No. 6 is known.
【0006】[0006]
【発明が解決しようとする課題】一般に油脂はボール状
に固まったり,廃水の表面に汚泥状のスカムを形成して
ポンプ場などの施設でトラブルの原因となる。従来の油
脂分離施設(グリース阻集器等)で廃水中の油脂を分離
した場合,1週間に数回は施設の清掃が必要となる。適
切な清掃を行なわないと,施設から油脂が流出する場合
もあり,環境汚染にもつながる。油脂分離装置の実際の
清掃状況の調査結果では全く清掃していない施設もあ
る。また,分離した油脂の大部分は焼却により処分する
ため,焼却のための費用も嵩むという問題がある。Generally, fats and oils solidify into balls or form sludge-like scum on the surface of waste water, which causes troubles at facilities such as pump stations. When the oil and fat in the waste water is separated by the conventional oil and fat separation facility (grease interceptor, etc.), the facility must be cleaned several times a week. If not properly cleaned, fats and oils may leak from the facility, leading to environmental pollution. Some facilities did not clean at all based on the survey results of the actual cleaning status of the oil and fat separation device. Further, since most of the separated oils and fats are disposed of by incineration, there is a problem that the cost for incineration increases.
【0007】活性汚泥法の改良法である好気処理で含油
廃水を処理する方法は,油脂濃度が100mg/リット
ル以上になると活性汚泥処理が難しくなるといわれてい
る。すなわち,油脂を槽内に均一に懸濁することが難し
く,油脂濃度の上昇に伴って処理能力が低下するので,
高濃度に油脂を含む廃水に適用するのは難しいという問
題がある。In the method of treating oil-containing wastewater by aerobic treatment, which is an improved method of the activated sludge method, it is said that the activated sludge treatment becomes difficult when the fat and oil concentration becomes 100 mg / liter or more. In other words, it is difficult to evenly suspend the fats and oils in the tank, and as the concentration of fats and oils increases, the processing capacity decreases.
There is a problem that it is difficult to apply to wastewater containing oil and fat at a high concentration.
【0008】このように,従来の含油廃水の油脂処理に
は,メンテナンス,処理方法,処理能力等の点で種々の
問題があった。本発明はこのようなやっかいな問題を解
決しようとするものである。As described above, the conventional fat and oil treatment of oil-containing wastewater has various problems in terms of maintenance, treatment method, treatment capacity and the like. The present invention is intended to solve such a troublesome problem.
【0009】[0009]
【課題を解決するための手段】本発明によれば,メタン
発酵槽または活性汚泥槽に含油廃水を投入して該廃水中
の油脂を分解処理するにさいし,該槽内の液面に多孔質
で粒状の不織布担体を浮遊させることを特徴とする含油
廃水の処理法を提供する。ここで,不織布担体としては
ガラス繊維またはプラスチックス繊維で構成された多孔
性シートを軽量プラスチックスの粒状体(好ましくは直
径5〜60mmの粒状体)を使用し,槽内の液面を1段
以上で覆うに十分な数量を浮遊させる。According to the present invention, when the oil-containing wastewater is put into a methane fermentation tank or an activated sludge tank to decompose oils and fats in the wastewater, the liquid level in the tank is porous. The present invention provides a method for treating oil-containing wastewater, which comprises suspending a granular non-woven fabric carrier. Here, as the non-woven fabric carrier, a porous sheet made of glass fiber or plastics fiber is used as a lightweight plastics granular material (preferably a granular material having a diameter of 5 to 60 mm), and the liquid level in the tank is one step. Float a sufficient quantity to cover the above.
【0010】[0010]
【作用】嫌気性油脂分解菌が生息するメタン発酵槽また
は好気性油脂分解菌が生息する活性汚泥槽に含油廃水を
投入すると,これらの細菌が油脂を分解しながら増殖す
る。しかし,かような生物処理槽に含油廃水を投入した
だけでは,含油廃水中の油脂分は処理槽の液面近くに浮
遊する性質があるので,槽内に均一に分布している細菌
が油脂分と接する機会が少なくなって効率よく分解でき
ない。[Function] When the oil-containing wastewater is put into the methane fermentation tank in which the anaerobic oil-degrading bacteria inhabit or the activated sludge tank in which the aerobic oil-degrading bacteria inhabit, these bacteria grow while decomposing the oil and fat. However, if the oil-containing wastewater is simply put into such a biological treatment tank, the oil and fat in the oil-containing wastewater has the property of floating near the liquid surface of the treatment tank. The chances of contact with the minute are reduced and it cannot be decomposed efficiently.
【0011】ところが,本発明にしたがって,多孔質・
粒状の不織布担体を液面に浮遊させると,この不織布担
体に油脂分解菌が固定され,ここで活発な増殖活動を行
うので,液面近くに浮遊する油脂分が良好に分解し,全
体として効率のよい処理ができる。However, according to the present invention,
When a granular non-woven fabric carrier is suspended on the liquid surface, fat-decomposing bacteria are fixed on this non-woven fabric carrier, and active growth activity occurs there, so the oil and fat components floating near the liquid surface are well decomposed, and overall efficiency is improved. Good processing is possible.
【0012】本発明で使用する不織布担体は,ガラス繊
維またはプラスチックス繊維で構成された多孔性シート
を軽量プラスチックスの粒状体(好ましくは直径5〜6
0mmの粒状体)の外側に被着したものであり,これ
を,槽内の液面を1段以上で覆うに十分な数量で浮遊さ
せる。ガラス繊維やプラスチックス繊維からなる多孔性
シート(不織布)は微生物固定能力が高く,これに固定
された油脂分解菌は流出する恐れがない。そして,中空
プラスチック,プラスチック発泡体等の軽量の粒状プラ
スチックスを,該多孔性シートを保持させるための芯材
として用いることによって,この不織布担体を自由に槽
内液面に流動浮遊させることができる共にこの芯材とし
てのプラスチックスも微生物担体として機能する。The non-woven fabric carrier used in the present invention comprises a porous sheet composed of glass fibers or plastics fibers, and a granular body of lightweight plastics (preferably having a diameter of 5 to 6).
It is applied to the outside of a 0 mm granular material) and is suspended in a sufficient number to cover the liquid level in the tank with one or more steps. The porous sheet (nonwoven fabric) made of glass fiber or plastics fiber has a high ability to fix microorganisms, and there is no risk that oil-degrading bacteria fixed to this will flow out. Then, by using lightweight granular plastics such as hollow plastics and plastic foams as a core material for holding the porous sheet, this nonwoven fabric carrier can be freely flown and floated on the liquid surface in the tank. Both of the plastics as the core material also function as a microorganism carrier.
【0013】図1は本発明で使用する多孔質粒状の不織
布担体の形状例を示したもので,内部に空洞1をもつ中
空の粒状プラスチックス2の周囲に不織布3を取り付け
た構造を有しており,芯材としての粒状プラスチックス
2の形状としては,図示のように,球形,方形,楕円
形,菱形,リング形など様々なものが使用でき,場合に
よっては板状などであってもよい。そしてこれら芯材の
周囲に不織布3を被着させて直径が5〜60mm程度の
不織布担体粒子を構成する。FIG. 1 shows an example of the shape of a porous granular nonwoven fabric carrier used in the present invention, which has a structure in which a nonwoven fabric 3 is attached around a hollow granular plastics 2 having a cavity 1 inside. As the shape of the granular plastics 2 as the core material, various shapes such as a sphere, a square, an ellipse, a rhombus, and a ring can be used as shown in the figure. Good. Then, the non-woven fabric 3 is applied to the periphery of these core materials to form non-woven fabric carrier particles having a diameter of about 5 to 60 mm.
【0014】図2は,芯材としての発泡プラスチックス
4を使用した以外は,図1と同様の不織布担体粒子を示
している。このように構成した不織布担体粒子は,粒径
を小さくすればするほど,不織布の表面積が大きくなっ
て微生物の担体量を増加させることができるが,5mm
より小径のものでは製作コストが嵩み,60mmより大
径のものでは,不織布の表面積が十分に採れなくなる。
好ましい粒径は10〜50mmである。FIG. 2 shows the same non-woven carrier particles as in FIG. 1 except that the foamed plastics 4 is used as the core material. The non-woven fabric carrier particles thus constructed have a larger surface area of the non-woven fabric as the particle size is reduced, and thus the amount of the microbial carrier can be increased.
If the diameter is smaller, the manufacturing cost is higher, and if the diameter is larger than 60 mm, the surface area of the nonwoven fabric cannot be taken sufficiently.
The preferred particle size is 10 to 50 mm.
【0015】芯材としての粒状プラスチックス2や4の
周囲に不織布3を取り付けるには,図3に示すように,
芯材2(または4)の周囲を半球状の不織布セグメント
3の複数個で包み,セグメント同士を接着剤5で接合す
る方法(図3−a)や,芯材2(または4)が包み込め
るような面積をもつ不織布3で芯材2を囲み込み,首部
を接着剤5で接合する方法(図3−bおよびc)を採用
すれば,可撓性が比較的低いガラス繊維の不織布でも十
分に取り付けができる。また,接着剤5としては通常の
高分子系のもの例えばエポキシ系接着剤を使用すれば,
これも担体の一部として機能する。To attach the non-woven fabric 3 around the granular plastics 2 and 4 as the core material, as shown in FIG.
A method of wrapping the periphery of the core material 2 (or 4) with a plurality of hemispherical non-woven fabric segments 3 and joining the segments with an adhesive 5 (Fig. 3-a), or wrapping the core material 2 (or 4) If a method of enclosing the core material 2 with a non-woven fabric 3 having a large area and joining the neck portion with the adhesive 5 (FIGS. 3B and 3C) is adopted, even a non-woven fabric made of glass fiber having relatively low flexibility is sufficient. Can be installed. In addition, as the adhesive 5, if a usual polymer type adhesive such as an epoxy type adhesive is used,
This also functions as part of the carrier.
【0016】いずれにしても,このように構成した不織
布担体は,メタン発酵槽または活性汚泥槽に装入した場
合,液面に浮遊できるに十分に軽量なものとする。そし
て温度に強い不織布(例えばガラス繊維等)を用いるこ
とにより幅広い処理温度(例えば10〜60℃)に適用
できる。In any case, the non-woven fabric carrier constructed as described above should be sufficiently lightweight so as to be able to float on the liquid surface when loaded into a methane fermentation tank or an activated sludge tank. And by using a non-woven fabric resistant to temperature (eg glass fiber), it can be applied to a wide range of processing temperatures (eg 10 to 60 ° C.).
【0017】一般に,油脂は生物反応槽内でオイルボー
ルとなって浮上する性質があり,そのため通常の攪拌で
は生物処理槽内に均一に分散することは難しく,このた
め攪拌速度を早くすると,処理微生物がダメージを受け
て活性が低下したり,また攪拌エネルギーが大きくなる
等の問題が生じるが,本発明に従うと不織布担体がオイ
ルボールと一緒に液面に浮上し,ここに固定化した油脂
分解菌が直接油脂と接触させることができるので,従来
と同程度の攪拌で効率的に油脂を分解除去できる。Generally, fats and oils have the property of floating as oil balls in the biological reaction tank, and therefore it is difficult to uniformly disperse them in the biological treatment tank by ordinary stirring. Microorganisms are damaged, causing problems such as a decrease in activity and an increase in stirring energy. However, according to the present invention, the non-woven fabric carrier floats on the liquid surface together with the oil balls, and the fats and oils fixed there are decomposed. Since the bacteria can directly contact the oils and fats, the oils and fats can be efficiently decomposed and removed with the same degree of stirring as in the past.
【0018】[0018]
〔試験例〕油脂を高効率で分解できる不織布担体の大き
さを調べるために図3のa〜cで示した様々な大きさの
不織布担体を用いて試験した。芯材のプラスチックスは
中空体であり,不織布3にはガラス繊維からなるシート
を用いた。接着剤5にはエポキシ樹脂を用いた。[Test Example] In order to investigate the size of the non-woven fabric carrier capable of decomposing fats and oils with high efficiency, various types of non-woven fabric carriers shown in a to c of FIG. 3 were tested. The plastic material of the core material is a hollow body, and the non-woven fabric 3 is a sheet made of glass fiber. An epoxy resin was used as the adhesive 5.
【0019】油脂分解能は,不織布担体に対する微生物
の固定化量に依存すると考えてよいので,試作した不織
布担体の微生物固定可能力を測定した。固定化は,後記
の実施例1のところで説明する方法で各担体に微生物を
固定化した。固定化する菌体には嫌気性油脂分解菌を用
いた。嫌気性油脂分解菌は後記の実施例1で示した方法
で分離した。その測定結果を図4に示した。この結果か
ら,微生物固定可能力は,不織布担体の形状には関係な
くほぼ一定であることがわかった。Since it is possible to think that the oil and fat degradability depends on the amount of microorganisms immobilized on the nonwoven fabric carrier, the ability of the prototype nonwoven fabric carrier to immobilize microorganisms was measured. Immobilization was carried out by immobilizing microorganisms on each carrier by the method described in Example 1 below. An anaerobic oil-degrading bacterium was used as the immobilized microbial cells. The anaerobic fat and oil decomposing bacteria were separated by the method described in Example 1 below. The measurement result is shown in FIG. From this result, it was found that the ability to fix microorganisms was almost constant regardless of the shape of the nonwoven fabric carrier.
【0020】生物処理槽の液面の面積が一定の場合,不
織布担体の粒径を小さくした方が表面積を大きくとるこ
とができる。そのため,様々な大きさで作製した図3−
aの不織布担体を用いて油脂分解実験を行った。実験方
法は,嫌気性油脂分解菌を固定化した不織布担体を油脂
を含む培地に投入し,10日後の油脂の除去率を測定し
た。実験に用いた生物処理槽は液面面積が0.785m
2 のメタン発酵槽を用いた。その結果を(生物処理槽の
液面面積)÷(不織布担体の断面積)の値で整理して図
5に示した。ここで言う「不織布担体の断面積」は,不
織布担体で液面が一杯に覆われるように同一粒径の粒子
を一段に浮かせた場合の1個当りの粒子の水平断面積を
指す。When the liquid surface area of the biological treatment tank is constant, the surface area can be increased by decreasing the particle size of the nonwoven fabric carrier. Therefore, Fig. 3-
A fat and oil decomposition experiment was conducted using the nonwoven fabric carrier of a. As an experimental method, a non-woven fabric carrier on which anaerobic fat-and-oil-degrading bacteria were immobilized was put into a medium containing fat and oil, and the removal rate of fat and oil was measured after 10 days. The biological treatment tank used in the experiment has a liquid surface area of 0.785 m.
Two methane fermentors were used. The results are shown in FIG. 5 organized by the value of (liquid surface area of biological treatment tank) / (cross-sectional area of non-woven fabric carrier). The "cross-sectional area of the non-woven fabric carrier" as used herein refers to the horizontal cross-sectional area of each particle when particles of the same particle size are floated so that the liquid surface is fully covered with the non-woven fabric carrier.
【0021】図5の結果から(液面面積)÷(不織布担
体の断面積)の値が400付近から高い除去率が得ら
れ,400以上ではその油脂除去率にさほど変わりない
ことがわかった。不織布担体は粒径を小さくすればする
ほど製作コストが高くなる。そのため,不織布担体の最
適な大きさは,(液面面積)÷(不織布担体の断面積)
の値が10,000〜400であることがわかった。こ
の実験では,液面面積が0.785m2 のメタン発酵槽
を用いたため,不織布担体の直径は1〜5cm,断面積
7.85×10-5〜10-3m2 のものが最適であった。From the results of FIG. 5, it was found that a high removal rate was obtained when the value of (liquid surface area) ÷ (cross-sectional area of the nonwoven fabric carrier) was around 400, and when it was 400 or more, the oil / fat removal rate did not change so much. The smaller the particle size of the nonwoven fabric carrier, the higher the manufacturing cost. Therefore, the optimum size of the non-woven fabric carrier is (liquid surface area) / (cross-sectional area of the non-woven fabric carrier)
Was found to be 10,000 to 400. In this experiment, since the liquid surface area using a methane fermentation tank of 0.785M 2, the diameter of the nonwoven carrier is a best thing 1 to 5 cm, the cross-sectional area 7.85 × 10 -5 ~10 -3 m 2 It was
【0022】以下の実施例において,廃水の成分の分析
は工業廃水試験法(JIS K 0102)に準じた。In the following examples, the analysis of the components of waste water was based on the industrial waste water test method (JIS K 0102).
【0023】〔実施例1〕先ず,厨芥処理後の高温メタ
ン発酵汚泥を0.5ml(ミリリットル,以下同じ)採
取し,表1に示す培地100mlに接種した。この培地
はオートクレープにより120℃×20分間滅菌したあ
とで使用した。培養には嫌気ジャーファーメンタを用い
て55℃で2週間培養した。なお,メタン発酵槽内と同
様の雰囲気下で培養するため,気層にはCH4:CO2=
7:3のガスを通気しながら培養した。Example 1 First, 0.5 ml (milliliter, hereinafter the same) of high temperature methane fermentation sludge after the garbage treatment was sampled and inoculated into 100 ml of the medium shown in Table 1. This medium was used after being sterilized by an autoclave at 120 ° C. for 20 minutes. For culturing, an anaerobic jar fermenter was used and culturing was performed at 55 ° C. for 2 weeks. Since the culture is performed in the same atmosphere as in the methane fermentation tank, CH 4 : CO 2 =
The culture was performed while aerating a gas of 7: 3.
【0024】この培養処理後,培養液0.5mlを表2
に示す培地100mlに接種し,油脂分解能の有無につ
いてテストした。油脂分解能については,n−ヘキサン
抽出物の経時変化を指標として用いた。その結果を図6
に示した。After this culture treatment, 0.5 ml of the culture solution was added to Table 2.
The medium was inoculated into 100 ml of the medium shown in, and tested for the presence or absence of oil and fat degrading. Regarding the oil and fat degradability, the change with time of the n-hexane extract was used as an index. The result is shown in Figure 6.
It was shown to.
【0025】[0025]
【表1】 [Table 1]
【0026】[0026]
【表2】 [Table 2]
【0027】図6の結果から,n−ヘキサン抽出物は,
嫌気性油脂分解菌を接種後,徐々に減少し,2週間後に
は接種前の10%以下となった。すなわち,本方法で分
離した嫌気性油脂分解菌は,油脂を90%以上除去でき
たと考えられる。From the results shown in FIG. 6, the n-hexane extract was
After inoculation with the anaerobic fat-and-oil degrading bacteria, the amount gradually decreased, and after 2 weeks, it was 10% or less before the inoculation. That is, it is considered that the anaerobic fat-and-oil-degrading bacteria separated by this method were able to remove fats and oils by 90% or more.
【0028】〔実施例2〕実施例1で分離した嫌気性油
脂分解菌を前記同様の表2の培地に接種し,55℃で増
殖させ,菌濃度が1×108cells/mlとなった
ところで,直径2cmの前記図3−aの球形の不織布担
体を投入し,さらに2週間培養して,該担体に嫌気性油
脂分解菌を付着させた。2週間後の嫌気性油脂分解菌の
担体への付着量は,乾燥重量で2.2g/cm2であっ
た。[Example 2] The anaerobic fat-and-oil degrading bacteria isolated in Example 1 were inoculated into the same medium as shown in Table 2 above and grown at 55 ° C to give a bacterial concentration of 1 x 10 8 cells / ml. By the way, the spherical non-woven fabric carrier having a diameter of 2 cm shown in FIG. 3A was introduced and further cultured for 2 weeks to attach the anaerobic fat-and-oil-degrading bacteria to the carrier. The amount of anaerobic fat-and-oil-degrading bacteria adhering to the carrier after 2 weeks was 2.2 g / cm 2 in dry weight.
【0029】この嫌気性油脂分解菌を固定化した不織布
担体8を,図7に示すように,メタン発酵槽7に,発酵
液表面で2段となって液面面積を覆う数量となるように
投入した。メタン発酵槽7では,表3に示すような組成
の厨芥原料を原料槽9からポンプ10によって投入し,
循環ポンプ11によって槽内原料を循環しながら,滞留
時間6日となるように55℃でメタン発酵を行った。な
お,メタン発酵槽7の消化ガスライン12には脱硫装置
13およびガスメーター14が取り付けられている。As shown in FIG. 7, the nonwoven fabric carrier 8 on which the anaerobic fat-and-oil-degrading bacteria have been immobilized is placed in a methane fermentation tank 7 in two stages on the surface of the fermented liquid so that the surface area of the liquid is covered. I put it in. In the methane fermentation tank 7, the kitchen waste material having the composition shown in Table 3 is fed from the raw material tank 9 by the pump 10,
While circulating the raw material in the tank by the circulation pump 11, methane fermentation was performed at 55 ° C. so that the residence time was 6 days. A desulfurizer 13 and a gas meter 14 are attached to the digestion gas line 12 of the methane fermentation tank 7.
【0030】[0030]
【表3】 [Table 3]
【0031】この連続処理において,担体8を投入後,
メタン発酵槽から発酵液のサンプルを採取してn−ヘキ
サン抽出物量を測定し,その経時変化を調べた。その結
果を図8に示した。図8に見られるように,発酵液中の
n−ヘキサン抽出物量は,担体投入後徐々に減少し,7
日後には,担体投入前の約10%にまで低下した。ま
た,メタン発酵槽の液面に浮いていたオイルボールは,
担体投入後5日間で消滅した。In this continuous process, after charging the carrier 8,
A sample of the fermentation broth was taken from the methane fermentation tank, the amount of n-hexane extract was measured, and its change over time was examined. The result is shown in FIG. As can be seen in FIG. 8, the amount of n-hexane extract in the fermentation broth gradually decreased after the carrier was added.
After the day, it decreased to about 10% before the carrier was added. Also, the oil balls floating on the liquid surface of the methane fermentation tank
It disappeared 5 days after the carrier was added.
【0032】〔実施例3〕活性汚泥を0.5ml採取
し,前記表1に示す培地100ml(オートクレーブに
より120℃,20分間滅菌したもの)に接種した。培
養には好気ジャーファーメンタを用い,30℃で2週間
通気培養した。2週間後,培養液0.5mlを表2に示
す培地100mlに接種し,通気培養して,油脂分解能
の有無についてテストした。油脂分解能については,前
例と同様にn−ヘキサン抽出物量の経時変化を指標とし
て用いた。その結果を図9に示した。Example 3 0.5 ml of activated sludge was sampled and inoculated into 100 ml of the medium shown in Table 1 (sterilized by autoclave at 120 ° C. for 20 minutes). An aerobic jar fermenter was used for culturing, and aeration culture was carried out at 30 ° C. for 2 weeks. Two weeks later, 0.5 ml of the culture solution was inoculated into 100 ml of the medium shown in Table 2 and aerobically cultured to test the presence or absence of oil and fat degradability. As for the oil and fat degradability, the change over time in the amount of n-hexane extract was used as an index as in the previous example. The results are shown in Fig. 9.
【0033】図9に見られるように,n−ヘキサン抽出
物は,好気性油脂分解菌を接種後,徐々に減少し,10
日後には好気性油脂分解菌接種前の10%以下となっ
た。この結果から,本方法で分離した好気性油脂分解菌
は,油脂を90%以上除去できたと考えられる。As shown in FIG. 9, the n-hexane extract gradually decreased after inoculation with the aerobic fat-and-oil degrading bacteria,
After the day, it became 10% or less before the inoculation of the aerobic fat and oil decomposing bacteria. From these results, it is considered that the aerobic fat-and-oil-degrading bacteria separated by this method were able to remove fats and oils by 90% or more.
【0034】〔実施例4〕実施例3で分離した好気性油
脂分解菌を前記表2に示す培地に接種し,30℃で通気
培養して増殖させ,菌濃度が1×108cells/m
lとなったところで,直径2cmの球形の不織布担体
(図3−aに示したもの)を投入し,1週間培養して担
体に好気性油脂分解菌を付着させた。1週間後の好気性
油脂分解菌の担体への付着量は,乾燥重量で1.8g/
cm2であった。[Example 4] The aerobic fat-and-oil-degrading bacteria isolated in Example 3 were inoculated into the medium shown in Table 2 above and grown by aeration culture at 30 ° C to give a bacterial concentration of 1 x 10 8 cells / m 2.
When it became 1, a spherical non-woven fabric carrier having a diameter of 2 cm (shown in Fig. 3-a) was introduced and cultured for 1 week to attach aerobic fat-degrading bacteria to the carrier. The amount of aerobic fat-degrading bacteria adhering to the carrier after 1 week was 1.8 g / dry weight.
cm 2 .
【0035】この好気性油脂分解菌を固定化した不織布
担体8を,図10に示したように,活性汚泥槽17に,
発酵液表面で2段となって液面面積を覆う数量となるよ
うに入した。活性汚泥槽17では,表4に示した人工廃
水を原水タンク18からポンプ19によって導入し,槽
内の散気管20に爆気ブロアー21から送気しながら滞
留時間10時間となるように30℃で処理した。図中の
22は処理水の放流ラインを示している。The non-woven fabric carrier 8 on which the aerobic fat-and-oil-degrading bacteria are immobilized is placed in an activated sludge tank 17 as shown in FIG.
The fermented liquor surface was added in two steps to cover the liquid surface area. In the activated sludge tank 17, the artificial wastewater shown in Table 4 was introduced from the raw water tank 18 by the pump 19 and the air was blown from the explosion blower 21 to the air diffuser 20 in the tank so that the residence time was 10 hours at 30 ° C. Processed in. Reference numeral 22 in the figure denotes a treated water discharge line.
【0036】[0036]
【表4】 [Table 4]
【0037】この連続処理において,担体8を投入後,
活性汚泥槽から処理液のサンプルを採取してn−ヘキサ
ン抽出物量を測定し,その経時変化を調べた。その結果
を図11に示した。図11に見られるように,処理液中
のn−ヘキサン抽出物量は,担体投入後減少し,2日後
には,担体投入前の約10%にまで低下した。また,活
性汚泥槽の液面に浮いていたオイルボールは担体投入後
1日間で消滅した。In this continuous process, after the carrier 8 is charged,
A sample of the treated liquid was taken from the activated sludge tank, the amount of n-hexane extract was measured, and its change with time was examined. The results are shown in Fig. 11. As shown in FIG. 11, the amount of the n-hexane extract in the treatment liquid decreased after the carrier was added, and after 2 days, it decreased to about 10% before the carrier was added. The oil balls floating on the liquid surface of the activated sludge tank disappeared within 1 day after the carrier was added.
【0038】[0038]
【発明の効果】以上説明したように,本発明によれば,
含油廃水を生物反応槽で簡単に且つ効率よく分解処理で
きるようになった。このため,グリース阻集器等の油脂
分離施設を設けなくて含油廃水処理が可能となり,既存
のメタン発酵槽や活性汚泥槽等がそのまま油脂分解槽と
して利用可能となった。そして,高濃度に油脂を含む廃
水にも対応できるので,やっかいな含油廃水の処理に大
きく貢献できる。As described above, according to the present invention,
Oil-containing wastewater can now be decomposed easily and efficiently in a biological reaction tank. For this reason, oil-containing wastewater can be treated without providing an oil separation facility such as a grease interceptor, and existing methane fermentation tanks and activated sludge tanks can be used directly as oil decomposition tanks. Also, since it is possible to deal with wastewater containing oil and fat at a high concentration, it can greatly contribute to the troublesome treatment of oil-containing wastewater.
【図1】中空の樹脂製芯材を用いた不織布担体の形状例
を示す略断面図である。FIG. 1 is a schematic cross-sectional view showing a shape example of a nonwoven fabric carrier using a hollow resin core material.
【図2】発泡樹脂製芯材を用いた不織布担体の形状例を
示す略断面図である。FIG. 2 is a schematic cross-sectional view showing a shape example of a nonwoven fabric carrier using a foamed resin core material.
【図3】芯材に不織布シートを取り付ける方法を説明す
る略断面図である。FIG. 3 is a schematic cross-sectional view illustrating a method of attaching a nonwoven fabric sheet to a core material.
【図4】不織布担体の種類と微生物付着量の関係を示す
図である。FIG. 4 is a diagram showing the relationship between the type of non-woven fabric carrier and the amount of attached microorganisms.
【図5】生物処理槽内の液面面積/不織布担体の断面積
の比と油脂除去率の関係を示す図である。FIG. 5 is a diagram showing the relationship between the ratio of the liquid surface area in the biological treatment tank / the cross-sectional area of the nonwoven fabric carrier and the oil and fat removal rate.
【図6】厨芥のメタン発酵槽から採取した嫌気性油脂分
解菌の油脂分解能を示すグラフである。FIG. 6 is a graph showing the oil and fat decomposing ability of anaerobic oil and fat decomposing bacteria collected from a garbage methane fermentation tank.
【図7】嫌気性油脂分解菌を用いて油脂を連続分解する
のに使用した装置の略断面機器配置図である。FIG. 7 is a schematic cross-sectional device layout diagram of an apparatus used for continuously decomposing oils and fats using anaerobic oil and fat decomposing bacteria.
【図8】図7の装置で連続処理した場合の油脂除去率の
経時変化を示す図である。FIG. 8 is a diagram showing a change with time of a fat and oil removal rate in the case of continuous treatment with the apparatus of FIG.
【図9】活性汚泥槽から採取した好気性油脂分解菌の油
脂分解能を示すグラフである。FIG. 9 is a graph showing fat and oil degradability of aerobic fat and oil decomposing bacteria collected from an activated sludge tank.
【図10】好気性油脂分解菌を用いて油脂を連続分解す
るのに使用した装置の略断面機器配置図である。FIG. 10 is a schematic cross-sectional device layout diagram of an apparatus used for continuously decomposing fats and oils using aerobic fat-and-oil degrading bacteria.
【図11】図10の装置で連続処理した場合の油脂除去
率の経時変化を示す図である。FIG. 11 is a diagram showing a change with time of a fat and oil removal rate in the case where continuous processing is performed by the apparatus of FIG.
1 空洞 2 粒状プラスチックスの芯材 3 不織布 4 発泡プラスチックスの芯材 5 接着剤 7 メタン発酵槽 8 不織布担体 9 原料槽 11 循環ポンプ 12 消化ガスライン 17 活性汚泥槽 18 原水タンク 20 散気管 21 爆気ブロワー 1 Cavity 2 Core Material of Granular Plastics 3 Nonwoven Fabric 4 Core Material of Foamed Plastics 5 Adhesive 7 Methane Fermenter 8 Nonwoven Carrier 9 Raw Material Tank 11 Circulation Pump 12 Digestion Gas Line 17 Activated Sludge Tank 18 Raw Water Tank 20 Diffuser 21 Explosion Ki blower
Claims (3)
水を投入して該廃水中の油脂を分解処理するにさいし,
該槽内の液面に多孔質で粒状の不織布担体を浮遊させて
おくことを特徴とする含油廃水の処理法。1. When the oil-containing wastewater is put into a methane fermentation tank or an activated sludge tank to decompose oil and fat in the wastewater,
A method for treating oil-containing wastewater, characterized in that a porous, granular nonwoven fabric carrier is suspended on the liquid surface in the tank.
チックス繊維で構成された多孔性シートを軽量プラスチ
ックスの粒状体に被着したものである請求項1に記載の
含油廃水の処理法。2. The method for treating oil-containing wastewater according to claim 1, wherein the non-woven fabric carrier is obtained by coating a porous sheet composed of glass fibers or plastics fibers on a granular body of lightweight plastics.
であり,この粒状体を槽内の液面に1段以上で覆うに十
分な量浮遊させる請求項1または2に記載の含油廃水の
処理法。3. The oil-containing wastewater according to claim 1 or 2, wherein the non-woven fabric carrier is a granular body having a diameter of 5 to 60 mm, and the granular body is suspended in an amount sufficient to cover the liquid level in the tank in one or more stages. Processing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33763694A JPH08182996A (en) | 1994-12-28 | 1994-12-28 | Treatment of oil containing waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33763694A JPH08182996A (en) | 1994-12-28 | 1994-12-28 | Treatment of oil containing waste water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08182996A true JPH08182996A (en) | 1996-07-16 |
Family
ID=18310527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33763694A Pending JPH08182996A (en) | 1994-12-28 | 1994-12-28 | Treatment of oil containing waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08182996A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998011026A1 (en) * | 1996-09-10 | 1998-03-19 | Käsch Trenntechnik Gmbh | Installation for biological cleaning, particularly of wastewater |
JPH11319882A (en) * | 1998-05-11 | 1999-11-24 | Oppenheimer Technology Japan:Kk | Treatment of oil-containing waste water and treating device |
JP2001321792A (en) * | 2000-03-08 | 2001-11-20 | Japanese Research & Development Association For Environment-Friendly Processing In Food Industry | Method and system for anaerobically treating grease pollutant |
JP2002018460A (en) * | 2000-07-12 | 2002-01-22 | Shikoku Chem Corp | Method and apparatus for treating wastewater containing oil |
JP2003190985A (en) * | 2001-12-26 | 2003-07-08 | Ishikawajima Harima Heavy Ind Co Ltd | Microorganism carrier for anaerobic digestion and manufacturing method therefor |
JP2004041929A (en) * | 2002-07-11 | 2004-02-12 | Fuji Electric Holdings Co Ltd | Methane fermentation apparatus for organic waste |
JP2004290729A (en) * | 2003-03-25 | 2004-10-21 | Kurita Water Ind Ltd | Apparatus for digestion treatment of organic waste liquid |
WO2008075678A1 (en) * | 2006-12-18 | 2008-06-26 | Biogenkoji Research Institute | Method for treatment of oil-and-fat-containing wastewater using yeast, and novel yeast |
JP2018149513A (en) * | 2017-03-14 | 2018-09-27 | 住友重機械工業株式会社 | Oil and fat-containing wastewater treatment apparatus |
WO2022196828A1 (en) * | 2021-03-19 | 2022-09-22 | 株式会社村上開明堂 | Oil-treating carrier and oil-treating method |
-
1994
- 1994-12-28 JP JP33763694A patent/JPH08182996A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998011026A1 (en) * | 1996-09-10 | 1998-03-19 | Käsch Trenntechnik Gmbh | Installation for biological cleaning, particularly of wastewater |
JPH11319882A (en) * | 1998-05-11 | 1999-11-24 | Oppenheimer Technology Japan:Kk | Treatment of oil-containing waste water and treating device |
JP2001321792A (en) * | 2000-03-08 | 2001-11-20 | Japanese Research & Development Association For Environment-Friendly Processing In Food Industry | Method and system for anaerobically treating grease pollutant |
JP2002018460A (en) * | 2000-07-12 | 2002-01-22 | Shikoku Chem Corp | Method and apparatus for treating wastewater containing oil |
JP2003190985A (en) * | 2001-12-26 | 2003-07-08 | Ishikawajima Harima Heavy Ind Co Ltd | Microorganism carrier for anaerobic digestion and manufacturing method therefor |
JP2004041929A (en) * | 2002-07-11 | 2004-02-12 | Fuji Electric Holdings Co Ltd | Methane fermentation apparatus for organic waste |
JP2004290729A (en) * | 2003-03-25 | 2004-10-21 | Kurita Water Ind Ltd | Apparatus for digestion treatment of organic waste liquid |
WO2008075678A1 (en) * | 2006-12-18 | 2008-06-26 | Biogenkoji Research Institute | Method for treatment of oil-and-fat-containing wastewater using yeast, and novel yeast |
JPWO2008075678A1 (en) * | 2006-12-18 | 2010-04-15 | 株式会社源麹研究所 | Method for treating oil-containing wastewater using yeast and novel yeast |
JP5238513B2 (en) * | 2006-12-18 | 2013-07-17 | 株式会社源麹研究所 | Method for treating oil-containing wastewater using yeast and novel yeast |
JP2018149513A (en) * | 2017-03-14 | 2018-09-27 | 住友重機械工業株式会社 | Oil and fat-containing wastewater treatment apparatus |
WO2022196828A1 (en) * | 2021-03-19 | 2022-09-22 | 株式会社村上開明堂 | Oil-treating carrier and oil-treating method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3267935B2 (en) | Method and apparatus for treating organic wastewater | |
JP5374044B2 (en) | Hydrogen fermentation apparatus and method for producing hydrogen | |
JP5383724B2 (en) | Oil-degrading microorganism, microorganism-immobilized carrier, wastewater treatment method, and wastewater treatment system | |
RU2303572C2 (en) | Micellar method for mud treatment in sewage disposal plant | |
CN101514047B (en) | Compound biological membrane sewage treatment process and system | |
Al-Amshawee et al. | Geometry of biofilm carriers: a systematic review deciding the best shape and pore size | |
JPH08182996A (en) | Treatment of oil containing waste water | |
JP4215467B2 (en) | Algae and microcystin treatment agent and treatment method | |
JP2798007B2 (en) | Liquid-flow type biochemical reactor and purification system for groundwater or wastewater using the same | |
JP2011160713A (en) | Fat-splitting microorganism, microbial immobilization carrier, wastewater treatment method, and wastewater treatment system | |
WO2012108437A1 (en) | Method for treating 1,4-dioxane-containing wastewater, and treatment device | |
JP2001129580A (en) | Apparatus for treating waste water containing oil and fat | |
JPH08182998A (en) | Decompostion of fats and oils in oil-containing waste water | |
JP2007300931A (en) | Heated support, method for producing the same and method for environment decontamination with heated support | |
JP2003504185A (en) | Method for purifying water, bacteria suitable for the method and use | |
JPH11188376A (en) | Apparatus for treating oil and fat-containing waste water | |
JP3907004B2 (en) | Wastewater treatment method and apparatus | |
CN208151054U (en) | A kind of conveyor type bacterium algae rotating biological membrane reactor | |
US5753110A (en) | Biochemical reactor of liquid current type, groundwater and wastewater purifying system equipped therewith, and liquid transport-stirring apparatus that employs the transport means used in said reactor and system | |
CN1328192C (en) | A method for comprehensive treatment of high-concentration organic wastewater | |
Yu et al. | Diffusion of lactose in acidogenic biofilms | |
JPS61271090A (en) | Treating device for waste water using immobilized microorganism | |
JPH0796118B2 (en) | Wastewater treatment method | |
JPH11244892A (en) | Treatment of oil-containing waste water | |
WO2003022984A2 (en) | Biofermentor for the treatment of biologically convertible matter |