Nothing Special   »   [go: up one dir, main page]

JPH0817893B2 - Coagulant injection controller for water purification plants - Google Patents

Coagulant injection controller for water purification plants

Info

Publication number
JPH0817893B2
JPH0817893B2 JP2302188A JP2302188A JPH0817893B2 JP H0817893 B2 JPH0817893 B2 JP H0817893B2 JP 2302188 A JP2302188 A JP 2302188A JP 2302188 A JP2302188 A JP 2302188A JP H0817893 B2 JPH0817893 B2 JP H0817893B2
Authority
JP
Japan
Prior art keywords
coagulant
injection amount
raw water
water purification
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2302188A
Other languages
Japanese (ja)
Other versions
JPH01199608A (en
Inventor
格 高瀬
章 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2302188A priority Critical patent/JPH0817893B2/en
Publication of JPH01199608A publication Critical patent/JPH01199608A/en
Publication of JPH0817893B2 publication Critical patent/JPH0817893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、浄水場の原水に注入する凝集剤の注入量を
調整する注入量調整手段を備えている浄水場の凝集剤注
入制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial field of application) The present invention provides a coagulation of a water purification plant equipped with an injection amount adjusting means for adjusting an injection amount of a coagulant to be injected into raw water of a water purification plant. The present invention relates to a drug injection control device.

(従来の技術) 一般に、浄水場では原水中の濁質粒子の粒径が小さい
ため凝集剤を注入してフロツクを形成させ、沈殿させて
いる。したがって浄水場においては、良好なフロツクを
形成させ、沈澱効率を良く維持し、良好な上澄液を得る
ことが重要であり、このために凝集剤の注入量を良好な
フロツクができるように制御する必要がある。第2図に
従来の浄水場の凝集剤注入制御装置を示す。第2図にお
いて、着水井20に流入する原水1の流量が流量計2によ
って検出される。そして、着水井20に流入した原水1の
濁度(濁質の濃度)が濁度計31によって検出される。流
量計2によって検出された原水1の流量と、濁度計31に
よって検出された濁度とに基づいて、着水井3に流入す
る原水1中に含まれる濁質の量が演算器33によって演算
される。この演算された濁質の量に所定の比率(凝集剤
の注入率)が乗算されて凝集剤の注入量の目標値が目標
注入量演算器35から出力される。
(Prior Art) Generally, in a water purification plant, since the particle size of suspended particles in the raw water is small, a flocculant is injected to form a floc and precipitate. Therefore, in water purification plants, it is important to form good flocs, maintain good precipitation efficiency, and obtain a good supernatant liquid. Therefore, the injection amount of coagulant is controlled so that good flocs can be obtained. There is a need to. FIG. 2 shows a conventional flocculant injection control device for a water purification plant. In FIG. 2, the flow rate of the raw water 1 flowing into the landing well 20 is detected by the flow meter 2. Then, the turbidity (concentration of suspended matter) of the raw water 1 flowing into the landing well 20 is detected by the turbidity meter 31. Based on the flow rate of the raw water 1 detected by the flow meter 2 and the turbidity detected by the turbidity meter 31, the amount of suspended matter contained in the raw water 1 flowing into the landing well 3 is calculated by the calculator 33. To be done. The calculated amount of suspended matter is multiplied by a predetermined ratio (coagulant injection rate), and the target value of the coagulant injection amount is output from the target injection amount calculator 35.

一方、凝集剤10はポンプ11によって移送され、流量計
12および流量調整弁13を介して混和池21に注入される。
そして、この時の凝集剤10の注入量の制御は次のように
して行われる。すなわち、流量計12によって検出された
凝集剤の流量と目標注入量演算器35によって求められた
凝集剤注入量の目標値との偏差が零となるような操作信
号が調節計9から出力される。この操作信号に基づいて
流量調整弁13の弁開度が図示していないアクチュエータ
によって調整され、これにより凝集剤の流量が目標値と
なるように制御される。そして、このように制御された
注入量の凝集剤10が混和池21において原水1に注入さ
れ、原水1が撹拌機22によって撹拌される。撹拌された
処理水はフロツク形成池23に送られ、フロキュレータ24
によってフロックが形成される。形成されたフロックは
沈澱池25において沈澱させられる。フロックが沈澱させ
られた処理水はろ過池26に送られてろ過される。ろ過さ
れた処理水は浄水池27に送られて貯留される。
On the other hand, the coagulant 10 is transferred by the pump 11 and
It is injected into the mixing pond 21 through 12 and the flow control valve 13.
Then, the injection amount of the coagulant 10 at this time is controlled as follows. That is, the controller 9 outputs an operation signal such that the deviation between the flow rate of the coagulant detected by the flow meter 12 and the target value of the coagulant injection amount calculated by the target injection amount calculator 35 becomes zero. . Based on this operation signal, the valve opening of the flow rate adjusting valve 13 is adjusted by an actuator (not shown), so that the flow rate of the coagulant is controlled to a target value. Then, the injection amount of the coagulant 10 thus controlled is injected into the raw water 1 in the mixing basin 21, and the raw water 1 is agitated by the agitator 22. The agitated treated water is sent to the floc formation pond 23 and the flocculator 24
Form a floc. The flocs formed are settled in settling basin 25. The treated water in which the flocs are precipitated is sent to the filter basin 26 and filtered. The filtered treated water is sent to and stored in the water purification pond 27.

(発明が解決しようとする課題) このような従来の凝集剤注入制御装置で使用される濁
度計31は濁質の粒子径や、溶液の着色の影響を受ける。
濁質量の濃度を変えないで濁質の粒子径を変化させたと
きにそれぞれ吸光度法(A),散乱光測定法(S),透
視度計法(T)、および肉眼比濁法(V)によって測定
された濁度指示の変化を第3図に示す。粒子径によって
濁度指示が大きく変化していることがわかる。
(Problems to be Solved by the Invention) The turbidity meter 31 used in such a conventional flocculant injection control device is affected by the particle size of the turbidity and the coloring of the solution.
Absorbance method (A), scattered light measurement method (S), fluorometer method (T), and macroscopic turbidimetric method (V) when changing the particle size of the turbidity without changing the concentration of the turbid mass The change in the turbidity indication measured by the is shown in FIG. It can be seen that the turbidity indication greatly changes depending on the particle size.

一方、原水の濁質は粒子径分布を持っているが、降雨
時には粒子径分布が大幅に変化する。したがって原水の
濁質の粒子径分布が小さい方へ変化しても、また逆に大
きい方へ変化しても、濁度計によって計測される濁度指
示は濁質量の正しい値を示さない。また第4図に示すよ
うに原水中の濁質の粒子径分布が変ると凝集剤の最適注
入率も変化する。すなわち粒子径が大きくなれば凝集剤
の最適注入率は小さくてすみ、逆に粒子径が小さくなれ
ば凝集剤の最適注入率を大きくしなければならない。さ
らに、原水中の濁質量が変っても第5図に示すように凝
集剤の最適注入率は変化する。すなわち濁質量が増大す
るにつれて最適注入率は減少するが、濁質量がある値以
上になると最適注入率はほぼ一定となる。
On the other hand, the turbidity of raw water has a particle size distribution, but the particle size distribution changes significantly during rainfall. Therefore, even if the particle size distribution of the turbidity of the raw water changes to the smaller side or to the larger side, the turbidity indicator measured by the turbidimeter does not show the correct value of the turbid mass. Further, as shown in FIG. 4, if the particle size distribution of suspended matter in the raw water changes, the optimum injection rate of the coagulant also changes. That is, the larger the particle size, the smaller the optimum injection rate of the aggregating agent, and conversely, the smaller the particle size, the larger the optimum injection rate of the aggregating agent. Furthermore, even if the turbid mass in the raw water changes, the optimum injection rate of the coagulant changes as shown in FIG. That is, the optimum injection rate decreases as the turbid mass increases, but the optimum injection rate becomes almost constant when the turbid mass exceeds a certain value.

したがって、従来の凝集剤注入制御装置のように原水
1の濁度と流量の検出値に基づいて演算器33によって原
水1中に含まれる濁質量を演算し、この演算された濁質
量と所定の比率(凝集剤の注入率)との積(凝集剤の注
入量の目標値)を目標注入量演算器35によって演算し、
演算された凝集剤の注入量の目標値に基づいて凝集剤の
注入量を制御する制御装置は、降雨時のように濁質の粒
子径分布が変った場合は適切な凝集剤の注入ができず、
凝集剤の過不足が生じる。凝集剤が不足する場合は、フ
ロック形成池23においてフロキュレータ24により撹拌さ
れてもフロックが十分成長しないため、沈澱池25で沈降
不良をおこし、ろ過池26に負荷がかかったり、浄水池27
の処理水濁度が上昇する問題が有り、逆に凝集剤が多す
ぎる場合は凝集剤を浪費する問題があった。
Therefore, as in the conventional flocculant injection control device, the turbid mass contained in the raw water 1 is calculated by the calculator 33 based on the turbidity of the raw water 1 and the detected value of the flow rate, and the calculated turbid mass and a predetermined value are calculated. The product of the ratio (coagulant injection rate) (target value of coagulant injection amount) is calculated by the target injection amount calculator 35,
The control device that controls the coagulant injection amount based on the calculated target value of the coagulant injection amount can perform appropriate coagulant injection when the particle size distribution of suspended matter changes, such as during rainfall. No
An excess or deficiency of the coagulant occurs. If the flocculant is insufficient, the flocs do not grow sufficiently even if they are agitated by the flocculator 24 in the floc formation pond 23, causing sedimentation failure in the sedimentation pond 25, causing a load on the filtration pond 26, and a purification water pond 27.
There was a problem that the turbidity of the treated water increased, and conversely, when the coagulant was too much, the coagulant was wasted.

本発明は、かかる問題点を考慮してなされたものであ
って、降雨時のように濁質の粒子径分布が変動しても凝
集剤を過不足なく注入し、良好な処理水を得ることので
きる浄水場の凝集剤注入制御装置を提供することを目的
とする。
The present invention has been made in view of the above problems, and even if the particle size distribution of suspended matter changes, such as during rainfall, the coagulant is injected just enough to obtain good treated water. An object of the present invention is to provide a coagulant injection control device for a water purification plant.

〔発明の構成〕[Structure of Invention]

(課題を解決するための手段) 本発明は、浄水場の原水に注入する凝集剤の注入量を
調整する注入量調整手段を備えている浄水場の凝集剤注
入制御装置において、浄水場に流入する原水の流量を検
出する流量検出器と、原水中の濁質の画像を取り込む画
像取込手段と、この画像取込手段によって取り込まれた
画像を解析して濁質の粒子径および粒子面積を測定し、
原水中に含まれる濁質の粒子径分布および粒子体積の合
計量を求める画像処理手段と、この画像処理手段によっ
て求められた粒子径分布および粒子体積の合計量、なら
びに流量検出器の検出値に基づいて凝集剤の最適注入量
を演算し、これを注入量調整手段に対し注入量目標値と
して送出する演算手段とを設けたことを特徴とする。
(Means for Solving the Problem) The present invention relates to a coagulant injection control device for a water purification plant, which comprises an injection amount adjusting means for adjusting the injection amount of the coagulant injected into the raw water of the water purification plant. Flow rate detector that detects the flow rate of raw water, image capturing means that captures an image of turbidity in raw water, and the image captured by this image capturing means is analyzed to determine the particle size and particle area of the turbidity. Measure
Image processing means for obtaining the total particle size distribution and particle volume of suspended matter contained in raw water, and the total amount of particle size distribution and particle volume obtained by this image processing means, as well as the detection value of the flow rate detector. Based on this, an optimum injection amount of the coagulant is calculated, and an arithmetic means for transmitting this to the injection amount adjusting means as an injection amount target value is provided.

(作用) このように構成された本発明による浄水場の凝集剤注
入制御装置によれば、画像処理手段によって求められた
粒子径分布および粒子体積の合計量、ならびに流量検出
器の検出値に基づいて凝集剤の最適注入量が演算手段に
よって演算され、この演算された最適注入量に基づいて
凝集剤の注入量が注入量調整手段によって調整される。
したがって、降雨時のように濁質の粒子径分布が変動し
ても凝集剤を過不足なく注入することができ、これによ
り良好な処理水を得ることができる。
(Operation) According to the coagulant injection control device for a water purification plant according to the present invention configured as described above, based on the particle size distribution and the total amount of the particle volume obtained by the image processing means, and the detection value of the flow rate detector. The optimum injection amount of the coagulant is calculated by the calculating means, and the injection amount of the coagulant is adjusted by the injection amount adjusting means based on the calculated optimum injection amount.
Therefore, even if the particle size distribution of suspended matter changes, such as during rainfall, the coagulant can be injected without excess or deficiency, and good treated water can be obtained.

(実施例) 第1図に本発明による浄水場の凝集剤注入制御装置
(以下、制御装置という)の一実施例を示す。この実施
例の制御装置は、着水井20、混和池21、撹拌機22、フロ
ック形成池23、フロキュレータ24、沈澱池25、ろ過池2
6、および浄水池27を有している浄水場に用いられ、流
量計2と、サンプリングポンプ3と、希釈装置5と、画
像取込装置6と、画像処理装置7と、演算装置8と、調
節計9と、ポンプ11と、流量計12と、流量調整弁13とを
備えている。また、演算装置8は最適注入率演算部8a、
流入濁質量演算部8b、および最適注入量演算部8cを有し
ている。なお、サンプリングポンプ3、希釈装置5、画
像取込装置6、画像処理装置7、および演算装置8以外
は従来の技術の項で説明済のため説明を省略する。
(Example) FIG. 1 shows an example of a flocculant injection control device (hereinafter, referred to as a control device) for a water purification plant according to the present invention. The control device of this embodiment includes a landing well 20, a mixing pond 21, an agitator 22, a floc formation pond 23, a flocculator 24, a settling pond 25, and a filtration pond 2.
6, which is used in a water purification plant having a water purification pond 27, a flow meter 2, a sampling pump 3, a diluting device 5, an image capturing device 6, an image processing device 7, an arithmetic device 8, A controller 9, a pump 11, a flow meter 12, and a flow rate adjusting valve 13 are provided. In addition, the arithmetic unit 8 is an optimum injection rate arithmetic unit 8a,
It has an inflow turbid mass calculation unit 8b and an optimum injection amount calculation unit 8c. It should be noted that the description other than the sampling pump 3, the diluting device 5, the image capturing device 6, the image processing device 7, and the arithmetic device 8 has already been described in the section of the related art, and thus the description thereof is omitted.

サンプリングポンプ3は着水井3から原水1をサンプ
リングする。希釈装置5はサンプリングされた原水1を
希釈水4を用いて所定の希釈倍率Kで希釈するものであ
る。この希釈倍率Kは通常後述の画像処理装置7の出力
である、サンプリングされた原水中の濁質の粒子体積の
合計量Vに応じて自動的に設定されるが、手動によって
も設定することが可能である。画像取込装置6は、希釈
装置5で希釈された原水を流通式の厚さの薄いセル(図
示せず)を通過させ、ストロボ光源(図示せず)で照射
し、原水中の濁質の静止画像を拡大して取り込む。画像
処理装置7は、画像取込装置6によって取り込まれた画
像を解析して濁質の粒子径および粒子面積を測定し、希
釈された原水中に含まれる濁質の粒子径分布および粒子
体積の合計量Vを求める。演算装置8の最適注入率演算
部8aは、画像処理装置7によって求められた粒子径分
布、および粒子体積の合計量V、ならびに希釈率Kに基
づいて凝集剤10の最適注入率αを演算する。流入濁質量
演算部8bは、粒子体積の合計量V、および希釈倍率K、
ならびに流量計2によって検出された原水1の流量Qi
に基づいて、流入した原水1中に含まれる流入濁質量M
を演算する。最適注入量演算部8cは最適注入率αと流入
濁質量Mから凝集剤の最適注入量Qmを演算する。
The sampling pump 3 samples the raw water 1 from the landing well 3. The diluting device 5 dilutes the sampled raw water 1 with the diluting water 4 at a predetermined dilution rate K. This dilution ratio K is normally set automatically according to the total amount V of the particle volume of suspended matter in the sampled raw water, which is the output of the image processing device 7 described later, but can also be set manually. It is possible. The image capturing device 6 passes the raw water diluted by the diluting device 5 through a flow-type thin cell (not shown) and irradiates the raw water with a strobe light source (not shown) to remove turbidity in the raw water. Enlarge and capture a still image. The image processing device 7 analyzes the image captured by the image capturing device 6 to measure the particle size and the particle area of the turbidity, and determines the particle size distribution and the particle volume of the turbidity contained in the diluted raw water. Obtain the total amount V. The optimum injection rate calculation unit 8a of the calculation device 8 calculates the optimum injection rate α of the coagulant 10 based on the particle size distribution obtained by the image processing apparatus 7, the total amount V of the particle volume, and the dilution rate K. . The inflow turbid mass calculation unit 8b calculates the total volume V of the particle volume and the dilution ratio K,
And the flow rate Q i of the raw water 1 detected by the flow meter 2
Based on, the inflow turbid mass M contained in the inflowing raw water 1
Is calculated. The optimum injection amount calculator 8c calculates the optimum injection amount Q m of the coagulant from the optimum injection rate α and the inflow turbid mass M.

次に実施例の作用を説明する。着水井20に流入する原
水1の流量が流量計2によって検出される。着水井20に
流入した原水1はサンプリングポンプ3によってサンプ
リングされる。サンプリングされた原水1は希釈装置5
において希釈水4で希釈される。希釈された原水1は、
画像取込装置6に送られ、流通式の厚さの薄いセルを通
過させられてストロボ光を照射され、原水1中の濁質の
静止画像が拡大されて取り込まれる。画像取込装置6に
よって取り込まれた画像は、画像処理装置7に送られて
処理され、画面内の濁質粒子の粒子径および粒子面積が
測定される。そして測定された粒子径および粒子面積に
基づいて画面内の濁質粒子の粒子径分布および粒子体積
の合計量Viが画像処理装置7によって求められる。な
お上記測定において1つのサンプルでは測定値に大きな
誤差が含まれる可能性があるため、連続的に数点の画像
を取り込み、上述の処理を行い、平均化処理を行う。す
なわち、粒子体積の合計量の平均値Vは、サンプルの数
をn個とすると となる。
Next, operation of the embodiment will be described. The flow rate of the raw water 1 flowing into the landing well 20 is detected by the flow meter 2. The raw water 1 flowing into the landing well 20 is sampled by the sampling pump 3. Raw water 1 sampled is diluted device 5
Is diluted with dilution water 4. The diluted raw water 1 is
It is sent to the image capturing device 6, passed through a flow-type thin cell, irradiated with strobe light, and a still image of the turbidity in the raw water 1 is enlarged and captured. The image captured by the image capturing device 6 is sent to the image processing device 7 for processing, and the particle size and particle area of the suspended particles in the screen are measured. Then, based on the measured particle size and particle area, the image processing apparatus 7 obtains the particle size distribution of the turbid particles in the screen and the total amount V i of the particle volume. Note that in the above measurement, one sample may include a large error in the measured value, so several images are continuously captured, the above-described processing is performed, and the averaging processing is performed. That is, the average value V of the total amount of particle volumes is n when the number of samples is n. Becomes

画像処理装置7によって求められた粒子径分布および
粒子体積の合計量V、ならびに希釈倍率Kに基づいて、
予め設定されてある粒子径分布と最適注入率の関係(第
4図参照)、および濁質量(VとKの積に比例してい
る)と最適注入率の関係(第5図参照)から凝集剤10の
最適注入率αが最適注入率演算部8aによって演算され
る。また、流量計2によって検出された原水1の流量Q
i、および画像処理装置7によって求められた粒子体積
の合計量V、ならびに希釈倍率Kに基づいて、次の
(2)式を用いて流入濁質量Mが流入濁質量演算部8bに
よって演算される。
Based on the particle size distribution and the total amount V of the particle volume obtained by the image processing device 7 and the dilution ratio K,
Aggregation based on the preset relationship between the particle size distribution and the optimum injection rate (see FIG. 4), and the relationship between the turbid mass (proportional to the product of V and K) and the optimum injection rate (see FIG. 5). The optimum injection rate α of the agent 10 is calculated by the optimum injection rate calculation unit 8a. In addition, the flow rate Q of the raw water 1 detected by the flow meter 2
The inflow turbid mass M is calculated by the inflow turbid mass calculator 8b using the following equation (2) based on i , the total amount V of the particle volume obtained by the image processing device 7, and the dilution ratio K. .

M=K×V×Qi×ρ ……(2) ここでρは濁質の比重を示す。流入濁質量Mおよび最適
注入率αの積が最適注入量演算部8cによって演算され、
その積(α・M)が凝集剤の最適注入量Qmとなる。す
なわち Qm=α・M ……(3) となる。
M = K × V × Q i × ρ (2) Here, ρ represents the specific gravity of the suspended matter. The product of the inflow turbid mass M and the optimum injection rate α is calculated by the optimum injection amount calculation unit 8c,
The product (α · M) becomes the optimum injection amount Q m of the coagulant. That is, Q m = α · M (3)

そして、最適注入量Qmと流量計12で検出された凝集
剤10の実際の注入量との偏差が零となるような流量調整
弁13の弁開度の操作信号が調節計9から出力される。こ
の操作信号に基づいて流量調整弁9の弁開度が図示して
いないアクチュエータによって操作され、混和池21に注
入される凝集剤10の注入量が最適なものとなる。
The controller 9 outputs an operation signal for the valve opening of the flow rate adjusting valve 13 so that the deviation between the optimum injection amount Q m and the actual injection amount of the coagulant 10 detected by the flow meter 12 becomes zero. It Based on this operation signal, the valve opening of the flow rate adjusting valve 9 is operated by an actuator (not shown), and the injection amount of the coagulant 10 injected into the mixing basin 21 becomes optimum.

以上により本実施例によれば、原水の濁質の粒子径分
布が降雨などにより変化した場合でも画像処理装置7に
よって原水の粒子径分布および流入濁質量が正確に測定
できることにより、凝集剤を過不足なく注入することが
でき、これにより常に良好な処理水を得ることができる
とともに凝集剤の浪費も防止することができる。
As described above, according to the present embodiment, even when the particle size distribution of the turbidity of the raw water changes due to rainfall or the like, the particle size distribution of the raw water and the inflow turbid mass can be accurately measured by the image processing device 7, so that the coagulant is prevented It can be injected without deficiency, which makes it possible to always obtain good treated water and prevent the coagulant from being wasted.

〔発明の効果〕〔The invention's effect〕

本発明によれば、降雨時のように濁質の粒子径分布が
変動しても凝集剤を過不足なく注入することができ、こ
れにより良好な処理水を得ることができるとともに凝集
剤の浪費も防止することができる。
According to the present invention, it is possible to inject the coagulant without excess or deficiency even if the particle size distribution of the suspended matter varies as in the case of rainfall, which makes it possible to obtain good treated water and waste the coagulant. Can also be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による浄水場の凝集剤注入制御装置の一
実施例を示すブロック図、第2図は従来の浄水場の凝集
剤注入制御装置を示すブロック図、第3図は濁質量の濃
度を変えないで濁質の粒子径を変えたときに、それぞれ
吸光度法、散乱光測定法、透視度計法、および肉眼比濁
法によって測定された濁度指示の変化を示すグラフ、第
4図は粒子計と最適注入率の関係を示すグラフ、第5図
は濁質量と最適注入率の関係を示すグラフである。 1……原水、2……流量計、3……サンプリングポン
プ、4……希釈水、5……希釈装置、6……画像取込装
置、7……画像処理装置、8……演算装置、8a……最適
注入率演算部、8b……流入濁質量演算部、8c……最適注
入量演算部、9……調節計、10……凝集剤、11……移送
ポンプ、12……流量計、13……流量調整弁、20……着水
井、21……混和池、22……撹拌機、23……フロック形成
池、24……フロキュレータ、25……沈澱池、26……ろ過
池、27……浄水池。
FIG. 1 is a block diagram showing an embodiment of a flocculant injection control device for a water purification plant according to the present invention, FIG. 2 is a block diagram showing a conventional flocculant injection control device for a water purification plant, and FIG. A graph showing changes in the turbidity indication measured by the absorbance method, the scattered light measuring method, the fluorometer method, and the naked eye turbidimetric method, respectively, when the particle size of the turbidity is changed without changing the concentration, respectively. FIG. 5 is a graph showing the relationship between the particle meter and the optimum injection rate, and FIG. 5 is a graph showing the relationship between the turbid mass and the optimum injection rate. 1 ... Raw water, 2 ... Flow meter, 3 ... Sampling pump, 4 ... Diluting water, 5 ... Diluting device, 6 ... Image capturing device, 7 ... Image processing device, 8 ... Computing device, 8a: Optimum injection rate calculation unit, 8b: Inflow turbid mass calculation unit, 8c: Optimal injection amount calculation unit, 9 ... Controller, 10 ... Flocculant, 11 ... Transfer pump, 12 ... Flowmeter , 13 …… Flow control valve, 20 …… Water well, 21 …… Mixing pond, 22 …… Stirrer, 23 …… Floc formation pond, 24 …… Flocculator, 25 …… Sedimentation pond, 26 …… Filtration pond , 27 …… Purification pond.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】浄水場の原水に注入する凝集剤の注入量を
調整する注入量調整手段を備えている浄水場の凝集剤注
入制御装置において、 前記浄水場に流入する原水の流量を検出する流量検出器
と、前記原水中の濁質の画像を取り込む画像取込手段
と、この画像取込手段によって取り込まれた画像を解析
して濁質の粒子径および粒子面積を測定し、原水中に含
まれる濁質の粒子径分布および粒子体積の合計量を求め
る画像処理手段と、この画像処理手段によって求められ
た粒子径分布および粒子体積の合計量、ならびに前記流
量検出器の検出値に基づいて凝集剤の最適注入量を演算
し、これを前記注入量調整手段に対し注入量目標値とし
て送出する演算手段とを設けたことを特徴とする浄水場
の凝集剤注入制御装置。
1. A coagulant injection control device for a water purification plant, comprising an injection amount adjusting means for adjusting an injection amount of a coagulant injected into the raw water of the water purification plant, wherein the flow rate of the raw water flowing into the water purification plant is detected. A flow rate detector, an image capturing means for capturing an image of the turbidity in the raw water, and an image captured by the image capturing means is analyzed to measure the particle diameter and particle area of the turbidity, and Based on the image processing means for determining the particle size distribution and the total amount of the particle volume of the suspended matter contained therein, and the total amount of the particle size distribution and the particle volume determined by this image processing means, and the detection value of the flow rate detector. A coagulant injection control device for a water purification plant, comprising: an arithmetic means for calculating an optimum injection amount of the coagulant and sending it to the injection amount adjusting means as an injection amount target value.
JP2302188A 1988-02-03 1988-02-03 Coagulant injection controller for water purification plants Expired - Fee Related JPH0817893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2302188A JPH0817893B2 (en) 1988-02-03 1988-02-03 Coagulant injection controller for water purification plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2302188A JPH0817893B2 (en) 1988-02-03 1988-02-03 Coagulant injection controller for water purification plants

Publications (2)

Publication Number Publication Date
JPH01199608A JPH01199608A (en) 1989-08-11
JPH0817893B2 true JPH0817893B2 (en) 1996-02-28

Family

ID=12098832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2302188A Expired - Fee Related JPH0817893B2 (en) 1988-02-03 1988-02-03 Coagulant injection controller for water purification plants

Country Status (1)

Country Link
JP (1) JPH0817893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10988392B2 (en) 2016-04-01 2021-04-27 Kemira Oyj Method and system for optimization of coagulation and/or flocculation in a water treatment process

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659817B2 (en) * 1989-09-08 1997-09-30 株式会社東芝 Flock image capturing device at water purification plant
JPH08126802A (en) * 1994-10-31 1996-05-21 Nissin Electric Co Ltd Control of injection of flocculant
JP4780946B2 (en) * 2004-10-26 2011-09-28 株式会社日立製作所 Water treatment process operation support device, program and recording medium
JP4493473B2 (en) * 2004-11-10 2010-06-30 株式会社日立製作所 Water treatment process operation support equipment
JP6173949B2 (en) * 2014-02-28 2017-08-02 株式会社東芝 Water treatment system, control device, and water treatment method
KR20230148865A (en) * 2017-07-18 2023-10-25 에코랍 유에스에이 인코퍼레이티드 Recycling automotive phosphate rinse water stream

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10988392B2 (en) 2016-04-01 2021-04-27 Kemira Oyj Method and system for optimization of coagulation and/or flocculation in a water treatment process

Also Published As

Publication number Publication date
JPH01199608A (en) 1989-08-11

Similar Documents

Publication Publication Date Title
US4170553A (en) Process and apparatus for the controlled flocculating or precipitating of foreign substances from a liquid
JP4862576B2 (en) Aggregation apparatus and aggregation method
JP3205450B2 (en) Automatic injection rate determination device and automatic determination method
US20150259230A1 (en) System and method for chemical dosage optimization in water treatment and system and method for water treatment
CN102366680B (en) Seawater coagulation turbidity removing system
CN112919605A (en) Sewage treatment system and method based on image acquisition
JPH0817893B2 (en) Coagulant injection controller for water purification plants
JP5401087B2 (en) Flocculant injection control method
JP2002159805A (en) Flocculant injection control method of water purification plant
CN1715201A (en) Method and system for controlling coagulant filling amount by online measurement of floc sedimentation velocity
JP2014002050A (en) Aggregation state detection device
JPH10202013A (en) Control method of water purification coagulation process
JP2012101171A (en) Coagulant injection control system
WO2006067873A1 (en) Method of measuring and managing sedimentation separation operation and apparatus therefor
US4348112A (en) Method of and apparatus for measuring the volume of material in suspension in a liquid
JPH02261505A (en) Method for controlling chemical injection in flocculating and settling device
JP5210948B2 (en) Chemical injection control method for water purification plant
JP5769300B2 (en) Flocculant injection amount determination device and flocculant injection amount control system
JP6270655B2 (en) Flock aggregation condition control method, floc aggregation condition control device, water treatment method and water treatment apparatus
JPH05240767A (en) Floc measuring/controlling device
CN213875349U (en) Flocculation detection device and sewage treatment system
JP2674225B2 (en) Flock formation control device
JP5571424B2 (en) Method and apparatus for controlling the injection rate of flocculant in real time
JP5579404B2 (en) Apparatus and method for controlling flocculant injection rate
JPH01310703A (en) Method for controlling concentration in membrane separator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees