Nothing Special   »   [go: up one dir, main page]

JPH08178646A - Method for controlling profiling measurement - Google Patents

Method for controlling profiling measurement

Info

Publication number
JPH08178646A
JPH08178646A JP33489594A JP33489594A JPH08178646A JP H08178646 A JPH08178646 A JP H08178646A JP 33489594 A JP33489594 A JP 33489594A JP 33489594 A JP33489594 A JP 33489594A JP H08178646 A JPH08178646 A JP H08178646A
Authority
JP
Japan
Prior art keywords
probe
stylus
coordinate values
measured
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33489594A
Other languages
Japanese (ja)
Other versions
JP3062412B2 (en
Inventor
Kozo Sugita
耕造 杉田
Naoya Kikuchi
直也 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP6334895A priority Critical patent/JP3062412B2/en
Publication of JPH08178646A publication Critical patent/JPH08178646A/en
Application granted granted Critical
Publication of JP3062412B2 publication Critical patent/JP3062412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE: To prevent measuring efficiency from decreasing by causing a storage circuit to store the definite number of stylus coordinate values which are constantly renewed with the newest ones. CONSTITUTION: A stylus is held against a profiling probe 1 in such a way as to be able to be displaced three-dimensionally. The amounts of displacement of the stylus with respect to a probe body are detected by X-, Y-, and Z-axis displacement detectors, 11, 12, 13, respectively, and are inputted to an adder circuit 22 and a CPU 21 in a drive controller 2. The coordinate values for each axis of a three-dimensional measuring instrument 3 controlling the movement of the probe main body are measured by X-, Y- and X-axis encoders, 31, 32, 33, respectively, and are inputted to the adder circuit 22. The amounts of displacement and the coordinate values are added together by the adder circuit 22, and the results 25 are regarded as the coordinate values for the stylus. A storage circuit 23 stores the definite number of coordinate values for the stylus which are constantly renewed with the newest ones. When the amounts of displacement of the stylus with respect to the probe 1 are out of a predetermined allowable range, the probe 1 is moved to return to the definite number of coordinate values stored, and then measurements are restarted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プローブ本体に対して
スタイラスが三次元方向に変位可能な倣いプローブとコ
ンピュータによる駆動制御可能な三次元測定機とを用い
た倣い測定の制御方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling scanning measurement using a scanning probe in which a stylus can be displaced in three-dimensional directions with respect to a probe main body and a computer-controlled coordinate measuring machine.

【0002】[0002]

【従来の技術】被測定物表面の座標や形状、特に自由曲
面を有する被測定物表面の座標や形状を測定する装置と
して、倣いプローブを装着したコンピュータ駆動制御可
能な三次元測定機が周知である。この倣いプローブには
例えば特開平5−256640号に示されているよう
な、プローブ本体に対して先端に球状の測定子を設けた
スタイラスを三次元方向に変位可能に保持して、ばね等
により絶えずXYZ各軸の変位可能範囲の中心近傍に戻
すように作用させ、このスタイラスのXYZ各軸方向へ
の前記中心からの変位量をそれぞれリニアエンコーダ等
の変位検出器で検出するように構成されたものがある。
2. Description of the Related Art As a device for measuring the coordinates and shape of the surface of an object to be measured, particularly the coordinates and shape of the surface of the object to be measured having a free-form surface, a computer-driven controllable coordinate measuring machine equipped with a scanning probe is well known. is there. In this copying probe, for example, a stylus having a spherical probe on the tip of a probe body as shown in Japanese Patent Laid-Open No. 5-256640 is held so as to be displaceable in the three-dimensional direction, and a spring or the like is used. The stylus is made to constantly return to the vicinity of the center of the displaceable range, and the displacement amount of the stylus from the center in the XYZ axis directions is detected by displacement detectors such as linear encoders. There is something.

【0003】前記のようなコンピュータ駆動制御可能な
三次元測定機と倣いプローブの組み合わせで自由曲面を
倣い測定する方法は、特開昭63ー131016号およ
び特開昭63ー131017号に示されているように、
倣いプローブに装着されたスタイラス先端の球状の測定
子を被測定物表面に接触し続けながら制御目標軌道面に
沿って相対移動させ、所定時間間隔毎に球状の測定子の
中心座標値を被測定物表面の測定座標値として駆動制御
装置内の記憶回路に記録するようにしている。また、倣
い測定中はプローブ本体に対してスタイラスが三次元方
向のどちらに変位したのかを感知できるようにするた
め、常にスタイラスをプローブ本体に予め設定された一
定量押し込んだ状態となるように制御されている。この
予め設定された一定の変位量のことを以後、基準変位量
と呼ぶ。スタイラスが本体に押し込まれる量は、プロー
ブ本体内のXYZ各軸の変位検出器で読み取り、この3
つの値を成分とするベクトルの大きさが常に一定、すな
わち基準変位量に一致するように駆動制御装置により制
御され、同時に基準変位量に対して所定の許容範囲内に
前記ベクトルの大きさが入っているかどうかを監視しな
がら制御目標軌道面に沿って相対移動する、倣い測定制
御が行われている。
A method for scanning and measuring a free-form surface with a combination of a computer-controllable three-dimensional measuring machine and a scanning probe as described above is shown in JP-A-63-131016 and JP-A-63-131017. Like
The spherical probe at the tip of the stylus mounted on the scanning probe is moved relative to the control target trajectory while continuing to contact the surface of the object to be measured, and the center coordinate value of the spherical probe is measured at predetermined time intervals. The measured coordinate values of the surface of the object are recorded in a storage circuit in the drive control device. In addition, during scanning measurement, the stylus is always pushed into the probe body so that it can be sensed in which direction the stylus is displaced in the three-dimensional direction with respect to the probe body. Has been done. This preset constant displacement amount is hereinafter referred to as a reference displacement amount. The amount by which the stylus is pushed into the body is read by the displacement detector for each of the XYZ axes in the probe body,
The magnitude of the vector having one value as a component is always constant, that is, is controlled by the drive control device so as to match the reference displacement amount, and at the same time, the magnitude of the vector falls within a predetermined allowable range with respect to the reference displacement amount. The scanning measurement control is performed in which the relative movement is performed along the control target trajectory surface while monitoring whether or not it is present.

【0004】前記コンピュータ駆動制御可能な三次元測
定機、倣いプローブおよび倣い測定制御手法の組み合わ
せによる自由曲面の測定は、被測定物に接触した瞬間に
タッチ信号を出力するタッチプローブの測定子を1点毎
に接触と退避を繰り返しながら被測定物の形状に沿って
進むように制御する測定方法に比べ、より複雑な自由曲
面を高速に測定できるという利点を有している。このた
め自由曲面を有する金型を数百断面、自動昼夜運転等で
倣い測定するといった利用が三次元測定機ユーザーの間
で次第に増えてきている。
In the measurement of a free-form surface using a combination of a computer-controllable coordinate measuring machine, a scanning probe, and a scanning measurement control method, a probe of a touch probe that outputs a touch signal at the moment of contact with an object to be measured is used. It has an advantage that a more complicated free-form surface can be measured at high speed, as compared with a measuring method in which contact and withdrawal are repeated at each point so as to proceed along the shape of the object to be measured. For this reason, the use such as copying measurement of a mold having a free curved surface in several hundreds of sections, automatic day and night operation, etc. is gradually increasing among users of the coordinate measuring machine.

【0005】[0005]

【発明が解決しようとする課題】ところが、予め駆動制
御装置に設定した倣い測定の移動速度が、三次元測定機
と駆動制御装置等を含めた装置全体の制御の応答速度の
能力に比べて速すぎると、プローブの駆動制御が被測定
物の形状の変化に追従しきれずに、被測定物からプロー
ブが離れてしまったり、スタイラスがプローブ本体に対
して押し込まれ過ぎたりすることがしばしば発生する。
このため、プローブに対して被測定物がどちら側にある
のかを正確に特定できず、この後の倣い測定を続けるこ
とが不可能となってしまい測定を中断せざるを得ない。
再測定する場合は作業者により倣い測定の移動速度を前
回より遅く設定し直す必要がある。このように被測定物
からプローブが離れたり、スタイラスを押し込み過ぎた
りすると以後の測定をスムーズに進めることができず、
倣い測定の効率および無人昼夜自動運転等の稼働率が低
下してしまう原因となっていた。
However, the moving speed for scanning measurement set in advance in the drive control device is faster than the response speed capability of the control of the entire device including the coordinate measuring machine and the drive control device. If too much, the drive control of the probe cannot keep up with the change in the shape of the object to be measured, and the probe often separates from the object to be measured, or the stylus is often pushed too far into the probe body.
For this reason, it is not possible to accurately specify which side the object to be measured is with respect to the probe, and it becomes impossible to continue the scanning measurement thereafter, and the measurement must be interrupted.
When re-measuring, it is necessary for the operator to set the moving speed of the scanning measurement slower than the previous time. In this way, if the probe is separated from the object to be measured or the stylus is pushed too far, the subsequent measurements cannot be carried out smoothly,
This was a cause of a decrease in the efficiency of scanning measurement and the operating rate of unmanned day and night automatic driving.

【0006】本発明はこのような事情に鑑みてなされた
ものであり、その目的は倣い測定の際に、プローブが被
測定物の形状に追従制御しきれずに被測定物から離れた
り、スタイラスがプローブ本体に対して許容範囲を越え
て押し込まれ過ぎたりしても、測定を中断することなく
倣いプローブを自動で正常な倣い経路に復帰させて最後
まで確実に倣い測定が行えるようになり、倣い測定の効
率および無人昼夜自動運転等の稼働率が低下するのを防
止する制御方法を提供することである。
The present invention has been made in view of the above circumstances, and an object thereof is to make a probe move away from the object to be measured without being able to follow the shape of the object to be measured and to move the stylus during scanning measurement. Even if the probe is pushed into the probe body beyond the allowable range, the scanning probe can be automatically returned to the normal scanning path without interrupting the measurement and reliable scanning measurement can be performed to the end. It is an object of the present invention to provide a control method that prevents the efficiency of measurement and the operating rate of unmanned day and night automatic operation from decreasing.

【0007】[0007]

【課題を解決するための手段】本発明は、前記目的を達
成するために、プローブに対して変位可能に取り付けら
れたスタイラスの先端部が常に被測定物の表面と接触す
る状態を保ちつつ、予めプログラムされた方向へ前記プ
ローブを所定速度で移動させ、一定間隔で前記スタイラ
ス先端の座標値を測定し記録する三次元測定機による倣
い測定において、常に最新のものに更新される一定個数
の座標値を記憶しておき、前記スタイラスのプローブに
対する変位量が所定許容範囲をはずれたときには、前記
記憶された一定個数の座標値までさかのぼってプローブ
を移動させた後、前記所定速度よりも遅い速度によって
倣い測定を再開することを特徴とする。
In order to achieve the above-mentioned object, the present invention maintains the state in which the tip of a stylus displaceably attached to a probe is in constant contact with the surface of an object to be measured. In scanning measurement by a coordinate measuring machine that moves the probe at a predetermined speed in a preprogrammed direction and measures and records the coordinate value of the stylus tip at constant intervals, a certain number of coordinates that are constantly updated to the latest one. A value is stored, and when the displacement amount of the stylus with respect to the probe deviates from a predetermined allowable range, the probe is moved back to the stored constant number of coordinate values, and then the speed is slower than the predetermined speed. It is characterized in that the scanning measurement is restarted.

【0008】[0008]

【作用】倣いプローブ本体に対するスタイラスのXYZ
各軸の変位量を成分とするベクトルの大きさが基準変位
量に設定された許容範囲の中に入っているかどうかを絶
えず監視することにより、正常に倣い測定が行われてい
るかを確認できる。もしも前記ベクトルの大きさが基準
変位量に設定された許容範囲より大きい、あるいは小さ
い場合、プローブを移動させるべき正しい方向を特定で
きず、プローブ本体が被測定物等に衝突する危険性があ
るので倣い測定を一旦停止する。駆動制御装置内の記憶
回路には常に倣い測定で得られた最新の測定座標値が所
定の数百点分記憶されているので、この点列状の測定座
標値を用いてそれまでの経路をさかのぼって一定位置ま
でプローブを戻すことができる。この後で、より遅い速
度で確実な倣い測定を再開することができる。
[Operation] Stylus XYZ for the scanning probe body
By constantly monitoring whether or not the magnitude of the vector having the displacement amount of each axis as a component is within the allowable range set as the reference displacement amount, it is possible to confirm whether the scanning measurement is normally performed. If the magnitude of the vector is larger or smaller than the allowable range set for the reference displacement amount, the correct direction to move the probe cannot be specified, and there is a risk that the probe body will collide with the object to be measured. Stop scanning measurement once. The storage circuit in the drive control device always stores the latest measured coordinate values obtained by scanning measurement for a predetermined number of hundreds of points. The probe can be traced back to a fixed position. After this, reliable scanning measurements can be restarted at a slower speed.

【0009】[0009]

【実施例】以下、本発明の倣い測定制御方法を適用した
装置について図を参照して説明する。図1は倣い測定装
置のブロック構成を示している。倣いプローブ1にはプ
ローブ本体に対して、先端に球状の測定子15を備えた
スタイラス14が三次元方向に変位可能となるように保
持されていて、通常、スタイラス14はばね等の作用
で、XYZ各軸の変位が略ゼロ、つまり変位可能範囲の
中心近傍に戻るようになっている。このスタイラス14
の変位量はプローブ本体内に内蔵されたX軸変位検出器
11、Y軸変位検出器12およびZ軸変位検出器13に
より検出され、駆動制御装置2内の加算回路22とCP
U21へ入力される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus to which the scanning measurement control method of the present invention is applied will be described below with reference to the drawings. FIG. 1 shows a block configuration of the scanning measuring apparatus. The scanning probe 1 holds a stylus 14 having a spherical probe 15 at its tip so as to be displaceable in a three-dimensional direction with respect to the probe body. Normally, the stylus 14 is operated by a spring or the like, The displacement of each of the XYZ axes is substantially zero, that is, the displacement returns to the vicinity of the center of the displaceable range. This stylus 14
Is detected by an X-axis displacement detector 11, a Y-axis displacement detector 12 and a Z-axis displacement detector 13 built in the probe body, and the addition circuit 22 and the CP in the drive control device 2 are detected.
Input to U21.

【0010】一方、プローブ本体の移動を制御する三次
元測定機3の各軸座標値は各駆動軸に配設されたX軸エ
ンコーダ31、Y軸エンコーダ32およびZ軸エンコー
ダ33により計測され駆動制御装置2内の加算回路22
へ入力される。前記スタイラス14のプローブ本体に対
する変位量と前記三次元測定機3の各軸座標値は駆動制
御装置2内の加算回路22においてそれぞれ加算され、
この結果25を球状の測定子15の中心の座標値として
いる。この座標値は次にCPU21に入力され必要な演
算処理が施された後、必要に応じて駆動回路24に駆動
指令が出力されX軸駆動モータ34、Y軸駆動モータ3
5およびZ軸駆動モータ36を駆動させたり、記憶回路
23に格納されたり、あるいはホストコンピュータ4に
測定結果として出力されたりする。
On the other hand, the coordinate values of each axis of the coordinate measuring machine 3 for controlling the movement of the probe main body are measured by the X-axis encoder 31, the Y-axis encoder 32 and the Z-axis encoder 33 arranged on each drive axis, and drive control is performed. Adder circuit 22 in device 2
Is input to. The displacement amount of the stylus 14 with respect to the probe main body and the coordinate value of each axis of the coordinate measuring machine 3 are respectively added by an adder circuit 22 in the drive controller 2.
The result 25 is used as the coordinate value of the center of the spherical probe 15. These coordinate values are then input to the CPU 21 and subjected to necessary arithmetic processing, and then a drive command is output to the drive circuit 24 as necessary, and the X-axis drive motor 34 and the Y-axis drive motor 3 are output.
5 and the Z-axis drive motor 36 are driven, stored in the storage circuit 23, or output to the host computer 4 as a measurement result.

【0011】次に倣い測定制御方法について簡単に説明
する。倣い測定制御中のスタイラス14のプローブ本体
に対する変位量と三次元測定機3の各軸座標値は、それ
ぞれ1秒間に50〜100回程度サンプリングされ駆動
制御装置2へ絶えず入力されている。前記入力された値
は加算回路22で加算演算処理され、その値25はCP
U21へ入力される。CPUではその値と予め設定され
ている倣い測定時の移動速度および予め設定されている
倣い測定目標経路を基に、次に倣いプローブ1をどちら
の方向へどれだけの速度で移動させるべきかを求め、そ
の結果を駆動指令として駆動回路24へ入力する。駆動
回路24は駆動指令を受けて三次元測定機3のX軸駆動
モータ34、Y軸駆動モータ35およびZ軸駆動モータ
36を駆動させ、被測定物5の表面に測定子15を常に
接触させながら倣い測定することができる。倣い測定速
度は、加速度の大きさまたは加速に要する時間の変更に
より調節される。加速に要する時間が固定であれば、加
速度の大きさにより倣い測定速度を調節され、逆に加速
度が固定であれば、加速に要する時間により調節され
る。または、加速度と加速に要する時間の両方により倣
い測定速度を調節される。
Next, the scanning measurement control method will be briefly described. The displacement amount of the stylus 14 with respect to the probe main body and the coordinate value of each axis of the coordinate measuring machine 3 during the scanning measurement control are sampled about 50 to 100 times per second and continuously input to the drive control device 2. The input value is subjected to addition calculation processing in the addition circuit 22, and the value 25 is CP.
Input to U21. Based on the value, the preset moving speed at the time of scanning measurement, and the preset target path for scanning measurement, the CPU determines in which direction and at what speed the scanning probe 1 should be moved next. The obtained result is input to the drive circuit 24 as a drive command. In response to the drive command, the drive circuit 24 drives the X-axis drive motor 34, the Y-axis drive motor 35, and the Z-axis drive motor 36 of the coordinate measuring machine 3 so that the surface of the DUT 5 is always brought into contact with the probe 15. It is possible to measure while scanning. The scanning measurement speed is adjusted by changing the magnitude of acceleration or the time required for acceleration. If the time required for acceleration is fixed, the scanning measurement speed is adjusted according to the magnitude of the acceleration, and conversely, if the acceleration is fixed, it is adjusted according to the time required for acceleration. Alternatively, the scanning measurement speed is adjusted by both the acceleration and the time required for the acceleration.

【0012】次に図2乃至4を用いて本発明の倣い測定
制御方法について説明する。被測定物5の表面に沿って
倣いプローブに装着されたスタイラス14の測定子15
を接触させ続けながら倣い測定する際、図2に示すよう
に被測定物の倣い測定軌道上に急激な曲率の変化がある
と、測定子15が被測定物5から離れてしまう。そのた
めスタイラス14の倣いプローブ1のプローブ本体に対
する変位量は、プローブ本体内のばね等の作用によりほ
ぼゼロとなり、予め設定されている許容範囲を越えてし
まう。この結果CPU21は三次元測定機の駆動を一旦
停止させる駆動指令を駆動回路24に出力する。これは
スタイラス14の変位量が許容範囲から外れてしまい、
例えばゼロになってしまうと、プローブに対してどの方
向に被測定物があるのか解らず、プローブの移動方向を
特定することができないためである。
Next, the scanning measurement control method of the present invention will be described with reference to FIGS. A stylus 15 attached to the scanning probe along the surface of the DUT 5
When the scanning measurement is performed while continuously contacting with each other, if there is a rapid change in the curvature on the scanning measurement trajectory of the measured object as shown in FIG. 2, the tracing stylus 15 is separated from the measured object 5. Therefore, the displacement amount of the stylus 14 with respect to the probe main body of the scanning probe 1 becomes almost zero due to the action of the spring or the like in the probe main body, which exceeds a preset allowable range. As a result, the CPU 21 outputs a drive command to the drive circuit 24 to temporarily stop the drive of the coordinate measuring machine. This is because the displacement of the stylus 14 is out of the allowable range,
This is because, for example, if it becomes zero, it is not possible to identify the direction of the object to be measured with respect to the probe and the moving direction of the probe cannot be specified.

【0013】記憶回路23には測定点、すなわち測定子
15の中心の位置座標値の軌跡を連続的に取り込み、常
に最新の所定の数百点分記憶してある。そこで次に図3
に示すように、記憶回路23に記憶されている最新の測
定点から順に古い測定点にさかのぼって読み出し、CP
Uに入力する。CPUはその点列の座標値へ倣いプロー
ブを移動制御して、記憶回路23に記憶されている最も
古い測定点の位置までプローブを戻す。
The memory circuit 23 continuously captures the measurement points, that is, the loci of the position coordinate values of the center of the probe 15, and stores the latest predetermined hundreds of points at all times. Then, next in FIG.
As shown in, the reading is performed by going back to the oldest measurement point from the latest measurement point stored in the memory circuit 23, and CP
Enter in U. The CPU controls the movement of the probe along the coordinate values of the point sequence and returns the probe to the position of the oldest measurement point stored in the storage circuit 23.

【0014】プローブを記憶回路23に記憶されている
最も古い測定点の位置まで戻す経路としては、測定点列
に一致する経路またはこの経路から被測定物表面より所
定距離だけ離れる方向にある経路等が考えられる。いず
れの経路も測定点列を基に求めるため、プローブを被測
定物等に衝突させることなく安全に戻すことができる。
As a route for returning the probe to the position of the oldest measurement point stored in the memory circuit 23, a route which coincides with the sequence of measurement points, or a route which is away from this route by a predetermined distance from the surface of the object to be measured, etc. Can be considered. Since both routes are obtained based on the measurement point sequence, the probe can be returned safely without colliding with the object to be measured or the like.

【0015】次に図4に示すように倣い測定の速度を前
よりも遅くして、再度倣い測定をする。測定子15が被
測定物5から離れてしまう原因は、制御の応答速度が被
測定物の形状の変化に追い付かないためであるので、倣
い測定速度を遅くすることで、制御の応答速度の遅れを
カバーできるようになる。こうして測定子15は被測定
物5から離れることなく倣い測定ができるようになる。
Next, as shown in FIG. 4, the scanning measurement speed is made slower than before, and the scanning measurement is performed again. The reason why the tracing stylus 15 separates from the object to be measured 5 is that the response speed of control cannot keep up with the change in the shape of the object to be measured. Therefore, by delaying the scanning measurement speed, the response speed of control is delayed. Will be able to cover. In this way, the tracing stylus 15 can perform the scanning measurement without separating from the DUT 5.

【0016】次に図5乃至7に示すような被測定物の場
合について説明する。このような被測定物の場合は、急
激に曲率が変化する部分でスタイラス14をプローブ本
体に押し込み過ぎることがしばしば発生してしまう。そ
のためスタイラス14の倣いプローブ1のプローブ本体
に対する変位量は、予め設定されている許容範囲を越え
てしまう。この結果CPU21は三次元測定機の駆動を
一旦停止させる駆動指令を駆動回路24に出力する。こ
れはスタイラス14の変位量が許容範囲から外れてしま
い、プローブに対して正確にどの方向に被測定物がある
のか解らず、このまま移動を続ければプローブ本体が被
測定物等に衝突して破損等重大事故を起こす危険がある
からである。この後の動作は図6および図7に示す通り
であるが、制御の内容については図2乃至4を用いて説
明したものと全く同じであるので説明は省略する。
Next, the case of the object to be measured as shown in FIGS. 5 to 7 will be described. In the case of such an object to be measured, the stylus 14 is often pushed too much into the probe body at the portion where the curvature changes abruptly. Therefore, the amount of displacement of the stylus 14 with respect to the probe body of the scanning probe 1 exceeds a preset allowable range. As a result, the CPU 21 outputs a drive command to the drive circuit 24 to temporarily stop the drive of the coordinate measuring machine. This is because the displacement amount of the stylus 14 is out of the allowable range, and it is not known in which direction the object to be measured is accurately located with respect to the probe. If the probe continues moving as it is, the probe body collides with the object to be measured and is damaged. This is because there is a risk of causing a serious accident. The operation after this is as shown in FIGS. 6 and 7, but the content of the control is exactly the same as that described with reference to FIGS.

【0017】[0017]

【発明の効果】以上説明したように、本発明を適用した
倣い測定装置によれば、倣い測定の際にプローブの駆動
を被測定物の形状に追従させられずに、測定子が被測定
物から離れてしまったり、あるいはスタイラスをプロー
ブ本体に押し込み過ぎてしまっても、測定を中断するこ
となく倣いプローブを自動で倣い経路に復帰させて最後
まで確実に倣い測定が行えるようになり、倣い測定の効
率および無人昼夜自動運転等の稼働率が低下するのを防
止することができる。
As described above, according to the scanning measuring apparatus to which the present invention is applied, the probe cannot be driven to follow the shape of the measured object during the scanning measurement, and the contact point of the measuring object Even if the stylus is pushed away from the probe body or the stylus is pushed too far into the probe body, the scanning probe can automatically return to the scanning path without interrupting the measurement and reliable scanning measurement can be performed to the end. It is possible to prevent the efficiency and the operating rate of unmanned day and night automatic driving from decreasing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した倣い測定装置のブロック構成
図である。
FIG. 1 is a block configuration diagram of a scanning measuring apparatus to which the present invention is applied.

【図2】本発明に係る倣い測定制御におけるスタイラス
の動作説明図である。
FIG. 2 is an operation explanatory diagram of the stylus in the scanning measurement control according to the present invention.

【図3】本発明に係る倣い測定制御におけるスタイラス
の動作説明図である。
FIG. 3 is an operation explanatory diagram of the stylus in the scanning measurement control according to the present invention.

【図4】本発明に係る倣い測定制御におけるスタイラス
の動作説明図である。
FIG. 4 is an operation explanatory view of the stylus in the scanning measurement control according to the present invention.

【図5】本発明に係る倣い測定制御におけるスタイラス
の動作説明図である。
FIG. 5 is a diagram for explaining the operation of the stylus in the scanning measurement control according to the present invention.

【図6】本発明に係る倣い測定制御におけるスタイラス
の動作説明図である。
FIG. 6 is an operation explanatory view of the stylus in the scanning measurement control according to the present invention.

【図7】本発明に係る倣い測定制御におけるスタイラス
の動作説明図である。
FIG. 7 is an operation explanatory diagram of the stylus in the scanning measurement control according to the present invention.

【符号の説明】[Explanation of symbols]

1 倣いプローブ 2 駆動制御装置 3 三次元測定機 4 ホストコンピュータシステム 5 被測定物 11 X軸変位検出器 12 Y軸変位検出器 13 Z軸変位検出器 14 スタイラス 15 測定子 21 CPU 22 加算回路 23 記憶回路 24 駆動回路 25 測定座標値 31 X軸エンコーダ 32 Y軸エンコーダ 33 Z軸エンコーダ 34 X軸駆動モータ 35 X軸駆動モータ 36 X軸駆動モータ 1 Copying probe 2 Drive controller 3 Coordinate measuring machine 4 Host computer system 5 Object to be measured 11 X-axis displacement detector 12 Y-axis displacement detector 13 Z-axis displacement detector 14 Stylus 15 Measuring element 21 CPU 22 Adder circuit 23 Memory Circuit 24 Drive circuit 25 Measured coordinate value 31 X-axis encoder 32 Y-axis encoder 33 Z-axis encoder 34 X-axis drive motor 35 X-axis drive motor 36 X-axis drive motor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 プローブに対して変位可能に取り付けら
れたスタイラスの先端部が常に被測定物の表面と接触す
る状態を保ちつつ、予めプログラムされた方向へ前記プ
ローブを所定速度で移動させ、一定時間間隔で前記スタ
イラス先端の座標値を測定し記録する三次元測定機によ
る倣い測定において、 常に最新のものに更新される一定個数の座標値を記憶し
ておき、途中でプローブの駆動を被測定物の形状に追従
させられなくなったときには、前記記憶された一定個数
の座標値までさかのぼってプローブを移動させた後、前
記所定速度よりも遅い速度によって倣い測定を再開する
ことを特徴とする倣い測定制御方法。
1. A probe is moved at a predetermined speed in a preprogrammed direction while keeping the tip of a stylus movably attached to the probe in contact with the surface of the object to be measured at a constant speed. In scanning measurement with a coordinate measuring machine that measures and records the coordinate value of the stylus tip at time intervals, a certain number of coordinate values that are constantly updated to the latest one are stored, and the probe drive is measured during the process. When it becomes impossible to follow the shape of an object, after moving the probe back to the stored constant number of coordinate values, the scanning measurement is restarted at a speed slower than the predetermined speed. Control method.
【請求項2】 前記特許請求項1において、前記スタイ
ラスのプローブに対する変位量を絶えず監視して、該変
位量が所定許容範囲を外れたときには、プローブの駆動
を被測定物の形状に追従させられなくなったと判断する
ことを特徴とする倣い測定制御方法。
2. The device according to claim 1, wherein the displacement amount of the stylus with respect to the probe is constantly monitored, and when the displacement amount is out of a predetermined allowable range, the drive of the probe is made to follow the shape of the object to be measured. A method for controlling scanning measurement, which is characterized in that it is judged that it has disappeared.
JP6334895A 1994-12-20 1994-12-20 Scanning measurement control method Expired - Fee Related JP3062412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6334895A JP3062412B2 (en) 1994-12-20 1994-12-20 Scanning measurement control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6334895A JP3062412B2 (en) 1994-12-20 1994-12-20 Scanning measurement control method

Publications (2)

Publication Number Publication Date
JPH08178646A true JPH08178646A (en) 1996-07-12
JP3062412B2 JP3062412B2 (en) 2000-07-10

Family

ID=18282437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6334895A Expired - Fee Related JP3062412B2 (en) 1994-12-20 1994-12-20 Scanning measurement control method

Country Status (1)

Country Link
JP (1) JP3062412B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328993A (en) * 1997-05-26 1998-12-15 Topcon Corp Shape of lens measuring device
JP2000039302A (en) * 1998-07-21 2000-02-08 Mitsutoyo Corp Profile measuring instrument
JP2002243436A (en) * 2001-02-22 2002-08-28 Ricoh Co Ltd Apparatus and method for measuring as well as method for controlling operation of apparatus for measuring and measurement control unit
JP2003166819A (en) * 2001-12-03 2003-06-13 Topcon Corp Lens frame shape measuring device
JP2003202219A (en) * 2002-01-07 2003-07-18 Mitsutoyo Corp Surface property profile measuring method and program
JP2003240538A (en) * 2002-02-14 2003-08-27 Mitsutoyo Corp Method and apparatus for measuring surface shape
JP2005009917A (en) * 2003-06-17 2005-01-13 Mitsutoyo Corp Surface copying measuring instrument, surface copying measuring method, surface copying measuring program, and recording medium
JP2005037184A (en) * 2003-07-17 2005-02-10 Ricoh Co Ltd Shape measuring device and control method thereof
JP2005345123A (en) * 2004-05-31 2005-12-15 Mitsutoyo Corp Surface copying measuring instrument, surface copying measuring method, surface copying measuring program, and recording medium
EP1975557A2 (en) 2007-03-27 2008-10-01 Mitutoyo Corporation Apparatus and method for measuring surface texture
JP2009534636A (en) * 2006-04-24 2009-09-24 カール ツァイス インドゥストリエレ メステヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Surface scanning with coordinate measuring instruments
JP2015102502A (en) * 2013-11-27 2015-06-04 株式会社ミツトヨ Shape measurement device and shape measurement method
JP2018072223A (en) * 2016-10-31 2018-05-10 オムロン株式会社 Control system, method for controlling the same, and program therefor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328993A (en) * 1997-05-26 1998-12-15 Topcon Corp Shape of lens measuring device
JP2000039302A (en) * 1998-07-21 2000-02-08 Mitsutoyo Corp Profile measuring instrument
JP2002243436A (en) * 2001-02-22 2002-08-28 Ricoh Co Ltd Apparatus and method for measuring as well as method for controlling operation of apparatus for measuring and measurement control unit
JP2003166819A (en) * 2001-12-03 2003-06-13 Topcon Corp Lens frame shape measuring device
JP2003202219A (en) * 2002-01-07 2003-07-18 Mitsutoyo Corp Surface property profile measuring method and program
JP2003240538A (en) * 2002-02-14 2003-08-27 Mitsutoyo Corp Method and apparatus for measuring surface shape
JP2005009917A (en) * 2003-06-17 2005-01-13 Mitsutoyo Corp Surface copying measuring instrument, surface copying measuring method, surface copying measuring program, and recording medium
JP2005037184A (en) * 2003-07-17 2005-02-10 Ricoh Co Ltd Shape measuring device and control method thereof
JP2005345123A (en) * 2004-05-31 2005-12-15 Mitsutoyo Corp Surface copying measuring instrument, surface copying measuring method, surface copying measuring program, and recording medium
US7392692B2 (en) 2004-05-31 2008-07-01 Mitutoyo Corporation Surface scan measuring device, surface scan measuring method, surface scan measuring program and recording medium
JP2009534636A (en) * 2006-04-24 2009-09-24 カール ツァイス インドゥストリエレ メステヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Surface scanning with coordinate measuring instruments
EP1975557A2 (en) 2007-03-27 2008-10-01 Mitutoyo Corporation Apparatus and method for measuring surface texture
US7643963B2 (en) 2007-03-27 2010-01-05 Mitutoyo Corporation Apparatus, method and program for measuring surface texture
JP2015102502A (en) * 2013-11-27 2015-06-04 株式会社ミツトヨ Shape measurement device and shape measurement method
JP2018072223A (en) * 2016-10-31 2018-05-10 オムロン株式会社 Control system, method for controlling the same, and program therefor

Also Published As

Publication number Publication date
JP3062412B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
JP3341933B2 (en) Scanning method and scanning device for workpiece surface
JPH08178646A (en) Method for controlling profiling measurement
US4688184A (en) System for measuring three-dimensional coordinates
JP5089428B2 (en) Scanning measuring device
US4835718A (en) Method and means for controlling a coordinate-measuring instrument
US9207059B2 (en) Operation of a coordinate measuring machine
CN105302066B (en) The numerical control device of feed speed control is carried out based on stop distance
JP7332682B2 (en) Method and apparatus for measurement cycle generation
US6052628A (en) Method and system for continuous motion digital probe routing
US4513646A (en) Numerically controlled machine tool
US4841430A (en) Method of teaching a path to a moving body
JPH0410568B2 (en)
JP4085031B2 (en) Shape measuring apparatus and control method thereof
JP4479549B2 (en) NC machining equipment
JP5121292B2 (en) Shape measuring method and apparatus
JP7458579B2 (en) A three-dimensional measuring machine and a measuring method using a three-dimensional measuring machine,
JPH07195287A (en) Contact type position transducer of force control robot
JPH08136241A (en) Method for discriminating touch signal
US20240337473A1 (en) Checking the dimensional accuracy of a workpiece with a switching touch probe
JPS63253213A (en) Measuring method for shape of body to be measured
JPH08101031A (en) Method and device for driving probe of coordinate measuring machine
JPH08197465A (en) Contact detecting device for force control robot
JPS63236915A (en) Movement controller for coordinate measuring instrument
JPH0426690B2 (en)
JPH03110087A (en) Follow-up control method for three-dimensional laser beam machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees