JPH08160003A - Iron ion concentration measuring method for pickling solution - Google Patents
Iron ion concentration measuring method for pickling solutionInfo
- Publication number
- JPH08160003A JPH08160003A JP6300651A JP30065194A JPH08160003A JP H08160003 A JPH08160003 A JP H08160003A JP 6300651 A JP6300651 A JP 6300651A JP 30065194 A JP30065194 A JP 30065194A JP H08160003 A JPH08160003 A JP H08160003A
- Authority
- JP
- Japan
- Prior art keywords
- pickling
- concentration
- ion concentration
- ions
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ステンレス鋼、特殊
鋼、普通鋼等の主として熱延鋼帯の酸洗設備の酸洗浴の
性能管理やステンレス鋼のエッチング浴、普通鋼の前処
理酸洗浴の性能管理に適した酸洗浴中の〔Fe3+〕、
〔Fe2+〕等、の鉄イオン濃度の測定方法に関する。BACKGROUND OF THE INVENTION The present invention relates to performance control of a pickling bath for pickling equipment mainly for hot-rolled steel strips such as stainless steel, special steel, and ordinary steel, etching bath for stainless steel, and pretreatment pickling bath for ordinary steel. [Fe 3+ ] in the pickling bath suitable for performance control of
It relates to a method for measuring the iron ion concentration of [Fe 2+ ].
【0002】[0002]
【従来の技術】鋼帯の酸洗工程、特に熱延ステンレス鋼
帯の酸洗においては、酸洗速度、酸洗浴の更新時期を決
定する因子として、〔Fe3+〕、〔Fe2+〕濃度が重要
である。従来よりこの測定をオン・ラインで連続的に安
価に実施できる方法が模索されてきた。2. Description of the Related Art In the pickling process of steel strips, particularly in the pickling of hot-rolled stainless steel strips, [Fe 3+ ] and [Fe 2+ ] are factors that determine the pickling speed and the renewal time of the pickling bath. Concentration is important. Conventionally, a method that can continuously and inexpensively perform this measurement has been sought.
【0003】従来、酸洗浴中の〔Fe3+〕、〔Fe2+〕
濃度の測定においては、浴液を採取し、まず、高周波誘
導加熱プラズマ発光分析(ICP)により鉄イオンの合
計量を測定し、次いで、浴液に重クロム酸を添加して
〔Fe2+〕を〔Fe3+〕に変えることにより、変色点に
おける滴定量から〔Fe2+〕濃度を求めた。そして、
〔Fe3+〕濃度は鉄イオンの合計濃度から、このように
して求めた〔Fe2+〕濃度を差し引くことにより求め
た。Conventionally, [Fe 3+ ] and [Fe 2+ ] in a pickling bath
In the concentration measurement, the bath solution was sampled, first the total amount of iron ions was measured by high frequency induction heating plasma emission spectrometry (ICP), and then dichromic acid was added to the bath solution [Fe 2+ ]. Was changed to [Fe 3+ ] to determine the [Fe 2+ ] concentration from the titration amount at the color change point. And
The [Fe 3+ ] concentration was obtained by subtracting the [Fe 2+ ] concentration thus obtained from the total iron ion concentration.
【0004】この方法は、一部機器分析を使用しなが
ら、最終的には滴定分析という手分析に頼らざるを得な
かった。また、液体クロマトグラフィーを使用する方法
もあるが、装置が非常に高価なものになる。Although this method uses a part of instrumental analysis, it ultimately had to rely on a manual analysis called a titration analysis. There is also a method using liquid chromatography, but the apparatus becomes very expensive.
【0005】[0005]
【発明が解決しようとする課題】前述のように従来の鉄
イオンの濃度測定方法は、機器による分析により鉄イオ
ンの合計濃度を測定し、滴定分析により手分析で一方の
濃度を求め、合計濃度からこの求めた濃度を差し引き、
他方の濃度を求めており、非能率的であり、測定時間が
長くかかっていた。As described above, the conventional method for measuring the concentration of iron ions is to measure the total concentration of iron ions by instrumental analysis and determine one concentration by manual analysis by titration analysis to determine the total concentration. Subtract this calculated concentration from
The other concentration was sought, which was inefficient and required a long measurement time.
【0006】そこで、本発明は、上記の問題点を解消
し、酸洗浴の管理に適した酸洗浴中の鉄イオン濃度を連
続的にかつ自動的に測定する方法を提供しようとするも
のである。Therefore, the present invention is intended to solve the above problems and provide a method for continuously and automatically measuring the iron ion concentration in a pickling bath, which is suitable for controlling the pickling bath. .
【0007】[0007]
【課題を解決するための手段】そのため、本発明では、
酸洗槽の酸洗液中の鉄イオン濃度を銅イオン電極および
酸化・還元電極を用いて連続的に測定する。Therefore, according to the present invention,
The iron ion concentration in the pickling solution in the pickling tank is continuously measured using a copper ion electrode and an oxidation / reduction electrode.
【0008】即ち、本発明は、各種鋼帯を酸洗槽を通過
させることにより、連続的に酸洗脱スケールするプロセ
スにおける酸洗液中の鉄イオン濃度測定方法において、
前記酸洗槽の酸洗液中の鉄イオン濃度を銅イオン電極お
よび酸化・還元電極を用いて測定することを特徴とする
酸洗液中の鉄イオン濃度測定方法を提供する。That is, the present invention provides a method for measuring the iron ion concentration in a pickling solution in a process of continuously pickling and descaling various steel strips by passing them through a pickling tank.
There is provided a method for measuring the iron ion concentration in a pickling solution, which comprises measuring the iron ion concentration in the pickling solution in the pickling tank using a copper ion electrode and an oxidation / reduction electrode.
【0009】[0009]
【作用】本発明の酸洗液中の鉄イオン中にはFe3+およ
びFe2+のイオンが共存しており、かつ鋼を主体とする
材料の帯材(鋼帯)にはCuがほとんど存在しないた
め、酸洗液中にもCu2+イオンが皆無に近い状態にあ
る。銅イオン電極の特性として、Fe3+イオンに対して
銅イオンの場合の約10倍も敏感、即ち、銅イオンが存
在しない場合には、Fe3+イオンに対して非常に感度よ
く測定できる。従って、Fe3+イオンについては前記銅
イオン電極により測定し、Fe2+イオンについては先
ず、酸化・還元電極により、酸化・還元電位(ORP)
を測定し、次の(1)式の関係式より求める。[Function] Fe 3+ and Fe 2+ ions coexist in the iron ions in the pickling solution of the present invention, and Cu is almost contained in the strip material (steel strip) mainly composed of steel. Since it does not exist, there are almost no Cu 2+ ions in the pickling solution. As a characteristic of the copper ion electrode, it is about 10 times more sensitive to Fe 3+ ions than that of copper ions, that is, when copper ions are not present, it can be measured very sensitively to Fe 3+ ions. Therefore, Fe 3+ ions are measured by the copper ion electrode, and Fe 2+ ions are first measured by the oxidation / reduction electrode by the oxidation / reduction potential (ORP).
Is measured and calculated from the following relational expression (1).
【0010】[0010]
【数1】 [Equation 1]
【0011】即ち、上記の(1)式においてE0 、R、
T、Z、F、〔Fe3+〕およびORPは既知とすること
ができるので、〔Fe2+〕を求めることができる。That is, in the above equation (1), E 0 , R,
Since T, Z, F, [Fe 3+ ] and ORP can be known, [Fe 2+ ] can be obtained.
【0012】以上のように、まず、Fe3+イオン濃度を
銅イオン電極により測定し、Fe2+イオン濃度は酸化・
還元電極により酸化・還元電位(ORP)の測定を行
い、銅イオン電極で測定したFe3+イオン濃度を用いて
(1)式により求めることができる。As described above, first, the Fe 3+ ion concentration was measured by the copper ion electrode, and the Fe 2+ ion concentration was measured by oxidation.
The oxidation / reduction potential (ORP) is measured by the reduction electrode, and the Fe 3+ ion concentration measured by the copper ion electrode can be used to obtain the value by the equation (1).
【0013】なお、銅イオン電極はCr3+イオンおよび
Ni2+イオンの影響を受けることが心配されるが、Cr
3+イオンについては、酸洗液中には、1g/l程度しか
存在していなく、かつCr3+イオンはFe3+イオンの1
/1000程度の感度でしか反応せず、又、Ni2+イオ
ンについても酸洗液中には2g/l程度しか存在してい
なく、かつNi2+イオンはFe3+イオンの1/1000
0程度の感度でしか反応しないことが判明し、ステンレ
ス鋼を含む鋼系の帯材の酸洗液中のFe3+イオン濃度を
銅イオン電極により測定するに際し、Cr3+イオンおよ
びNi2+イオンは実質上全く悪影響を及ぼさないので精
度良く測定できる。The copper ion electrode may be affected by Cr 3+ ions and Ni 2+ ions.
Regarding 3+ ions, only about 1 g / l is present in the pickling solution, and Cr 3+ ions are 1 % of Fe 3+ ions.
/ Only about 1000 of the sensitivity does not react, and only absent about 2 g / l is also in the pickling solution for Ni 2+ ion and Ni 2+ ions of Fe 3+ ions 1/1000
It was found that it reacts only with a sensitivity of about 0, and when measuring the Fe 3+ ion concentration in the pickling solution of the steel-based strip material including stainless steel using a copper ion electrode, Cr 3+ ion and Ni 2+ Since the ions have virtually no adverse effect, they can be measured accurately.
【0014】このような銅イオン電極、酸化・還元電極
の電位の測定は短時間で応答するので連続測定が可能と
なり、従来のように手分析による滴定分析が不要とな
り、能率的な鉄イオンの測定ができる。Since the measurement of the electric potentials of the copper ion electrode and the oxidation / reduction electrode responds in a short time, continuous measurement is possible, which eliminates the need for conventional titration analysis by manual analysis and enables efficient measurement of iron ion. You can measure.
【0015】[0015]
【実施例】以下、本発明の実施例を図面を参照して具体
的に説明する。まず、本発明の基本的な方法について述
べるが、酸洗液中にはFe3+およびFe2+イオンが共存
しており、かつ鋼を主体とする材料の帯材(鋼帯)には
Cuがほとんど存在しないため、酸洗液中にもCu2+イ
オンが皆無に近い状態であることに気が付いた。Embodiments of the present invention will be specifically described below with reference to the drawings. First, the basic method of the present invention will be described. Fe 3+ and Fe 2+ ions coexist in the pickling solution, and Cu is used as a strip material (steel strip) mainly composed of steel. It was noticed that there was almost no Cu 2+ ion even in the pickling solution, since there was almost no.
【0016】ところで、銅イオン電極の特性として、F
e3+イオンに対しては銅イオンの場合の約10倍も敏
感、即ち、銅イオンが存在しない場合には、Fe3+イオ
ンに対して非常に感度よく測定できることにも気付い
た。By the way, as a characteristic of the copper ion electrode, F
It was also found that e 3+ ions were about 10 times more sensitive than copper ions, that is, when copper ions were not present, measurements could be made very sensitively to Fe 3+ ions.
【0017】これらのことから、Fe3+イオンの濃度に
ついては感度のよい銅イオン電極を用いて測定し、Fe
2+イオンについては先ず、酸化・還元電極により、酸化
・還元電位(ORP)を測定し、銅イオン電極で測定し
たFe3+イオンの濃度を用いて前述の(1)式の関係よ
りその濃度を求めることができる。このように、Fe 3+
イオン濃度は銅イオン電極により、又、Fe2+イオン濃
度は酸化・還元電極により酸化・還元電位(ORP)の
測定並びにFe3+イオン濃度を用いて(1)式により求
めることができるものである。From these facts, Fe3+To the concentration of ions
For this, it was measured using a highly sensitive copper ion electrode.
2+Ions are first oxidized by the oxidation / reduction electrode.
・ Measure reduction potential (ORP) and measure with copper ion electrode
Fe3+Using the ion concentration, the relationship of the above equation (1)
The concentration can be calculated. Thus, Fe 3+
Ion concentration depends on copper ion electrode and Fe2+AEON rich
The degree of oxidation / reduction potential (ORP) depends on the oxidation / reduction electrode.
Measurement and Fe3+Using the ion concentration, the formula (1) is used.
It can be called.
【0018】なお、銅イオン電極はCr3+イオンおよび
Ni2+イオンの影響を受けることが心配されたが、Cr
3+イオンについては、酸洗液中には、1g/l程度しか
存在していなく、かつCr3+イオンはFe3+イオンの1
/1000程度の感度でしか反応せず、又、Ni2+イオ
ンについては酸洗液中には2g/l程度しか存在してい
なく、かつNi2+イオンはFe3+イオンの1/1000
0程度の感度でしか反応しないことが判明し、ステンレ
ス鋼を含む鋼系の帯材の酸洗液中のFe3+イオン濃度を
銅イオン電極により測定するに際し、Cr3+イオンおよ
びNi2+イオンは実質上全く悪影響を及ぼさないことも
つきとめた。Incidentally, it was feared that the copper ion electrode would be affected by Cr 3+ ions and Ni 2+ ions.
Regarding 3+ ions, only about 1 g / l is present in the pickling solution, and Cr 3+ ions are 1 % of Fe 3+ ions.
/ Only about 1000 of the sensitivity does not react, and only absent about 2 g / l during the pickling solution for Ni 2+ ion and Ni 2+ ions of Fe 3+ ions 1/1000
It was found that it reacts only with a sensitivity of about 0, and when measuring the Fe 3+ ion concentration in the pickling solution of the steel-based strip material including stainless steel using a copper ion electrode, Cr 3+ ion and Ni 2+ It was also found that the ions had virtually no adverse effect.
【0019】図1は本発明の基本となるFe3+濃度と銅
イオン電極による電極電位の関係について示した図で、
図中、黒丸と破線で示したFe3+濃度曲線1は、Cu
(NO 3 )2 水溶液を作成し、Cu(NO3 )2 濃度を
3条件ふって50℃で電極電位(Ag/AgCl)を測
定し、Fe3+濃度がCu2+濃度の1/10で同一電位を
示すことから、換算したFe3+濃度の関係である。FIG. 1 shows the basic Fe of the present invention.3+Concentration and copper
It is a diagram showing the relationship of the electrode potential by the ion electrode,
In the figure, Fe indicated by a black circle and a broken line3+Concentration curve 1 is Cu
(NO 3)2Create an aqueous solution and use Cu (NO3)2Concentration
Measure electrode potential (Ag / AgCl) at 50 ℃ under 3 conditions
And Fe3+Cu concentration2+The same potential at 1/10 of the concentration
From showing, converted Fe3+It is the relationship of concentration.
【0020】一方、図1中、白丸は実線で示したイオン
電極電位曲線2は、Fe3+イオンを所定量含有するよう
に、Fe(NO3 )2 の水溶液を作成し、(Fe3+濃度
として、5×10-4 mol/l、5×10-3 mol/l及び
5×10-2 mol/l)、それぞれの電極電位を50℃で
測定して求めた曲線である。On the other hand, in FIG. 1, an ion electrode potential curve 2 indicated by a white circle with a solid line is an aqueous solution of Fe (NO 3 ) 2 so that a predetermined amount of Fe 3+ ions are contained, and (Fe 3+ Concentrations are 5 × 10 −4 mol / l, 5 × 10 −3 mol / l and 5 × 10 −2 mol / l), and the respective electrode potentials are measured at 50 ° C. to obtain a curve.
【0021】この両者の関係から、実際の酸洗液中のF
e3+イオン濃度が0.001〜0.1 mol/l程度であ
るので、銅イオン電極によりFe3+イオンの選定係数1
0-1として、実際の酸洗液中のFe3+イオン濃度を±6
%の精度で測定できることがわかる。From the relationship between the two, F in the actual pickling solution is
Since the e 3+ ion concentration is about 0.001 to 0.1 mol / l, the selection coefficient of Fe 3+ ion is 1 by the copper ion electrode.
0 -1 , the Fe 3+ ion concentration in the actual pickling solution is ± 6
It can be seen that it can be measured with an accuracy of%.
【0022】次いで、実際の酸洗液により、その測定精
度の確認を行った。実際の酸洗液としてはステンレス鋼
帯用の焼鈍・酸洗ラインで用いられている硝酸酸洗液を
一定時間間隔で3サンプル採取した。Then, the accuracy of the measurement was confirmed with an actual pickling solution. As the actual pickling solution, three samples of nitric acid pickling solution used in the annealing / pickling line for stainless steel strip were taken at regular time intervals.
【0023】各サンプル酸洗液の本発明による分析は前
述したように、図2に示すような手順で実施した。即
ち、S1においてまず酸洗ラインから酸洗液を採取す
る。次に、S2において、酸化・還元電極によりこの液
の酸化・還元電位(ORP)を測定する。次に、S3に
おいて、銅イオン電極を用いてFe3+イオン濃度を測定
する。最後にS4において、S2、S3で測定したデー
タに基づいて(A)式により測定した(ORP)、
E0 、R、T、Z、F及び測定した〔Fe3+〕の既知の
値を用いてFe2+イオンの濃度が求められる。The analysis of each sample pickling solution according to the present invention was carried out by the procedure shown in FIG. 2 as described above. That is, in S1, the pickling solution is first collected from the pickling line. Next, in S2, the oxidation / reduction potential (ORP) of this liquid is measured by the oxidation / reduction electrode. Next, in S3, the Fe 3+ ion concentration is measured using the copper ion electrode. Finally, in S4, measurement (ORP) is performed by the formula (A) based on the data measured in S2 and S3.
The concentration of Fe 2+ ions is determined using E 0 , R, T, Z, F and the known values of [Fe 3+ ] measured.
【0024】その結果を次の表1に示す。なお、実液で
の本発明法によるFeイオン濃度の分析法の精度を確認
するために、Fe2+イオンおよびFe3+イオンそれぞれ
について従来の湿式分析法による測定結果を同表に併せ
示した。The results are shown in Table 1 below. In addition, in order to confirm the accuracy of the Fe ion concentration analysis method according to the method of the present invention in the actual liquid, the measurement results by the conventional wet analysis method for each of Fe 2+ ion and Fe 3+ ion are also shown in the same table. .
【0025】[0025]
【表1】 [Table 1]
【0026】各サンプルともに、本発明法によるFeイ
オン濃度の測定結果は、Fe2+イオン、Fe3+イオンと
もに、測定誤差は±6%以下に入っており、実液で充分
使用できることが確認できた。For each sample, the measurement results of the Fe ion concentration by the method of the present invention show that the measurement error is within ± 6% for both Fe 2+ ion and Fe 3+ ion, and it was confirmed that it can be sufficiently used in the actual liquid. did it.
【0027】以上、説明の実施例によれば、従来は、鋼
帯用の酸洗槽から酸洗液を一部採取し、これを手分析に
よる滴定分析によりFe2+イオンおよびFe3+イオン濃
度を測定するという非能率な方法を採用していたため、
濃度測定の間隔が長くなり、酸洗浴の濃度管理に適切さ
を欠いていた。According to the embodiment described above, conventionally, a part of the pickling solution was picked up from the pickling tank for steel strips, and Fe 2+ ions and Fe 3+ ions were subjected to titration analysis by manual analysis. Because we used the inefficient method of measuring concentration,
The interval of concentration measurement became longer, and the concentration control of the pickling bath was not appropriate.
【0028】しかし、本方式はFe3+イオン濃度測定に
銅イオン電極を、又、Fe2+測定に酸化・還元電極を用
いるので、いずれの電極も3〜5秒という非常に短時間
での応答が可能であるので、連続測定が可能となり、コ
ンピュータを活用してオンラインの測定もできるように
なる。However, since this method uses a copper ion electrode for Fe 3+ ion concentration measurement and an oxidation / reduction electrode for Fe 2+ measurement, both electrodes can be used in a very short time of 3 to 5 seconds. Since the response is possible, continuous measurement is possible, and online measurement can be performed by utilizing a computer.
【0029】[0029]
【発明の効果】以上、具体的に説明したように、本発明
は、各種鋼帯を酸洗槽を通過させることにより、連続的
に酸洗脱スケールするプロセスにおける酸洗液中の鉄イ
オン濃度測定方法において、前記酸洗槽の酸洗液中の鉄
イオン濃度を銅イオン電極および酸化・還元電極を用い
て測定する酸洗液中の鉄イオン濃度測定方法を採用した
ので、いずれの電極でも短時間での応答ができ、従来の
ように酸洗液を一部採取し、手分析による滴定分析を行
うような非能率な作業がなくなり、連続測定が可能とな
るため、鋼帯用酸洗浴の濃度管理を適切に行うことがで
き、鋼帯の酸洗不足又は過酸洗を適切に防止することが
できる。As described above in detail, according to the present invention, the iron ion concentration in the pickling solution in the process of continuously pickling and descaling various steel strips by passing them through the pickling tank. In the measurement method, since the iron ion concentration in the pickling solution in the pickling solution in the pickling solution is measured using a copper ion electrode and an oxidation / reduction electrode, any electrode can be used. Since it is possible to respond in a short time, there is no inefficient work such as the conventional one in which a part of the pickling solution is sampled and the titration analysis is performed manually, and continuous measurement becomes possible. Can be appropriately controlled, and insufficient pickling or overpickling of the steel strip can be appropriately prevented.
【図1】本発明の銅イオン電極方式による基礎測定デー
タで、Fe3+濃度とイオン電極電位との関係を示す図で
ある。FIG. 1 is a diagram showing basic measurement data according to the copper ion electrode method of the present invention, which is a diagram showing the relationship between the Fe 3+ concentration and the ion electrode potential.
【図2】本発明の一実施例に係るイオン濃度の分析手順
を示す図である。FIG. 2 is a diagram showing an ion concentration analysis procedure according to an embodiment of the present invention.
1 Cu(NO3 )2 水溶液より求めたFe3+イオン濃
度曲線 2 Fe(NO3 )2 水溶液より測定したイオン電極電
位曲線Fe 3+ ion concentration curve obtained from 1 Cu (NO 3 ) 2 aqueous solution 2 Ion electrode potential curve measured from 2 Fe (NO 3 ) 2 aqueous solution
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大田 利行 広島市西区観音新町四丁目6番22号 三菱 重工業株式会社広島研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Ota 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City Mitsubishi Heavy Industries Ltd. Hiroshima Research Laboratory
Claims (1)
り、連続的に酸洗脱スケールするプロセスにおける酸洗
液中の鉄イオン濃度測定方法において、前記酸洗槽の酸
洗液中の鉄イオン濃度を銅イオン電極および酸化・還元
電極を用いて測定することを特徴とする酸洗液中の鉄イ
オン濃度測定方法。1. A method for measuring iron ion concentration in a pickling solution in a process of continuously pickling and descaling by passing various steel strips through a pickling tank, the method comprising: A method for measuring iron ion concentration in a pickling solution, which comprises measuring the iron ion concentration using a copper ion electrode and an oxidation / reduction electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30065194A JP3468889B2 (en) | 1994-12-05 | 1994-12-05 | Method for measuring iron ion concentration in pickling liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30065194A JP3468889B2 (en) | 1994-12-05 | 1994-12-05 | Method for measuring iron ion concentration in pickling liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08160003A true JPH08160003A (en) | 1996-06-21 |
JP3468889B2 JP3468889B2 (en) | 2003-11-17 |
Family
ID=17887430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30065194A Expired - Lifetime JP3468889B2 (en) | 1994-12-05 | 1994-12-05 | Method for measuring iron ion concentration in pickling liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3468889B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000033061A1 (en) * | 1998-12-02 | 2000-06-08 | Henkel Kgaa | Device and method to control steel pickling processes |
-
1994
- 1994-12-05 JP JP30065194A patent/JP3468889B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000033061A1 (en) * | 1998-12-02 | 2000-06-08 | Henkel Kgaa | Device and method to control steel pickling processes |
Also Published As
Publication number | Publication date |
---|---|
JP3468889B2 (en) | 2003-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jagner | Instrumental approach to potentiometric stripping analysis of some heavy metals | |
US6537822B1 (en) | Method for analyzing free fluorine in solutions containing hydrofluoric acid solution, and apparatus for practicing the method | |
Jagner | Potentiometric stripping analysis in non-deaerated samples | |
Ensafi et al. | Application of adsorptive cathodic differential pulse stripping method for simultaneous determination of copper and molybdenum using pyrogallol red | |
Hua et al. | Automated determination of total arsenic in sea water by flow constant-current stripping analysis with gold fibre electrodes | |
Jagner | Potentiometric stripping analysis for mercury | |
Komárek et al. | Determination of heavy metals by electrothermal atomic absorption spectrometry after electrodeposition on a graphite probe | |
Wang et al. | Electrochemical behavior and determination of gold at chemically modified carbon paste electrode by the ethylenediamine fixed humic acid preparation | |
Kryger | Differential potentiometric stripping analysis | |
Matuszewski et al. | Selective flow-injection determination of residual chlorine at low levels by amperometric detection with two polarized platinum electrodes | |
JP3321289B2 (en) | Mixed acid analysis method and pickling solution management method | |
Jones | The polarograph1c estimation of molybdenum in plant materials | |
Adams et al. | Potentiometric Polarography | |
JPH08160003A (en) | Iron ion concentration measuring method for pickling solution | |
JP2530711B2 (en) | Method and apparatus for simultaneous quantitative analysis of free acid and ferric ion in solution | |
Christensen et al. | Reductive potentiometric stripping analysis | |
Yang et al. | Simultaneous determination of polycarboxylic acids by capillary electrophoresis with a copper electrode | |
JPS5629153A (en) | Measuring method of exposed iron part for coated steel plate or its processed product | |
Attar et al. | Determination of ultra trace levels of copper in whole blood by adsorptive stripping voltammetry | |
Pecsok et al. | Determination of Molybdenum by Ion Exchange and Polarography | |
ATE318408T1 (en) | DEVICE AND METHOD FOR CONTROLLING STEEL PICKLING | |
JPH07128273A (en) | Measuring device for iron ion concentration in pickling solution | |
GB2033086A (en) | Reducing interference by halide ions in ion-selective elecrode analysis | |
JPH0666766A (en) | Method for measuring iron ion concentration of pickling bath for steel strip | |
Shams | Determination of trace amount of bismuth (III) by adsorptive stripping voltammetry by Alizarine Red S |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030812 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090905 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090905 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100905 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130905 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |