JPH08141549A - Soil restoration method - Google Patents
Soil restoration methodInfo
- Publication number
- JPH08141549A JPH08141549A JP6288300A JP28830094A JPH08141549A JP H08141549 A JPH08141549 A JP H08141549A JP 6288300 A JP6288300 A JP 6288300A JP 28830094 A JP28830094 A JP 28830094A JP H08141549 A JPH08141549 A JP H08141549A
- Authority
- JP
- Japan
- Prior art keywords
- acid
- soil
- acids
- microorganism
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、新規な微生物菌株を利
用した土壌修復法に関する。さらに詳しくはハロゲン置
換有機酸で汚染されている土壌の修復方法に関する。FIELD OF THE INVENTION The present invention relates to a soil remediation method using a novel microbial strain. More particularly, it relates to a method for remediating soil contaminated with halogen-substituted organic acids.
【0002】[0002]
【従来の技術】1970年代の米国EPA(環境保護
庁)による報告以来、下水、上水を問わず、殺菌消毒副
生成物が大きな問題となってきている。日本では塩素に
よる消毒が義務づけられているが、その副生成物として
トリハロメタン類、ハロ酸類、ハロアセトニトリル類、
ハロケトン類等の物質が確認されており、その肝毒性、
変異原性の点により非常に大きな問題となっている。そ
の中でも、平成5年になって環境監視項目として取り上
げられたクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、
ブロモ酢酸といったハロゲン置換有機酸(以降ハロ酸と
記す)は新たな問題としてクローズアップされてきてい
る。これらのことは第23回日本水環境学会セミナー/
水質環境基準改訂に伴う分析法((社)日本水環境学
会)講演資料集p55−p64(平成5年11月)に詳
細に記載されている。2. Description of the Related Art Since a report by the United States EPA (Environmental Protection Agency) in the 1970s, sterilization and disinfection by-products have become a big problem in both sewage and tap water. Disinfection with chlorine is obligatory in Japan, but by-products such as trihalomethanes, haloacids, haloacetonitriles,
Substances such as haloketones have been confirmed, and their hepatotoxicity,
It is a very big problem due to its mutagenicity. Among them, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, which were taken up as environmental monitoring items in 1993,
Halogen-substituted organic acids such as bromoacetic acid (hereinafter referred to as halo acids) have been highlighted as a new problem. These are the 23rd Japan Society on Water Environment Seminar /
It is described in detail in the analytical method accompanying the revision of water quality environmental standards (Japanese Society for Water Environment) p55-p64 (November 1993).
【0003】このようなハロ酸は水溶性が高いため、水
が溶媒となる環境においてこれを介して土壌中に残留・
拡散し、非常な問題となり始めている。Since such a halo acid has high water solubility, it remains in the soil through the environment in which water serves as a solvent.
It is spreading and becoming a huge problem.
【0004】このようにして土壌中に残留したハロ酸の
処理は従来技術では非常に困難であり、テトラクロロエ
チレンやトリクロロエチレンのような揮発性有機塩素化
合物により汚染された土壌の処理に非常に有効な手段で
ある真空抽出法等は用いることができない。有効な処理
方法としては分解処理が考えられるが、その中でも微生
物を用いた生物分解処理ならば非常に温和な条件で行う
ことができ、コストも比較的低く、有害な化学物質を導
入することがないことから、非常に有効な手段であると
期待される。Thus, the treatment of halo acids remaining in soil is very difficult by the conventional technique, and a very effective means for treating soil contaminated with volatile organochlorine compounds such as tetrachlorethylene and trichlorethylene. The vacuum extraction method and the like which are Degradation treatment is considered as an effective treatment method, but biodegradation treatment using microorganisms can be performed under extremely mild conditions, costs are relatively low, and harmful chemical substances can be introduced. Since it is not available, it is expected to be a very effective means.
【0005】例えば、ハロ酸を分解する微生物として
は、Trichoderma, Acrostalagmus, Penicillium, Clono
stachys といったカビ類、Pseudomonas, Arthrobacter,
Rhizobium, Agrobacterium, Bacillus, Alcaligenes,
Nocardia, Micrococcus, Achromobacter, Moraxella
(以上蛋白質核酸酵素、29,101−110(198
4))といった細菌類が研究されている。また、足立
は、未同定の菌OS−2株が、クロロ酢酸、ブロモ酢
酸、ヨード酢酸をほぼ同程度分解する酵素を有し、ジク
ロロ酢酸も半分程度の活性ではあるが分解することを示
した(大阪府立公衛研所報公衆衛生編、第30号、89
(1992))。また、Pseudomonas putida NCIMB 120
18より抽出したデハロゲナーゼをカルボキシメチルセル
ロース或いはチオグリコール酸に固定化して炭素数2か
ら6のハロ酸を分解させる研究もなされている(欧州特
許第179603号)。それ以外にハロ酸脱ハロゲン酵
素と遺伝子の関係についてPseudomonas putida AJ1
株(J. Gen. Microbiol., 138,675(1992)), Pseudomona
s cepacia MBA4株(J. Biochem., 284,87 (1992)),
Pseudomonas sp.CBS3株(Biol. Chem. Hoppe-Seyl
er., 374,489 (1993))といった菌で研究がされている。For example, microorganisms that decompose halo acids include Trichoderma , Acrostalagmus , Penicillium , Clono.
Molds such as stachys , Pseudomonas , Arthrobacter ,
Rhizobium , Agrobacterium , Bacillus , Alcaligenes ,
Nocardia , Micrococcus , Achromobacter , Moraxella
(Above, protein nucleic acid enzyme, 29, 101-110 (198
Bacteria such as 4)) are being studied. In addition, Adachi showed that the unidentified bacterium OS-2 strain has an enzyme that decomposes chloroacetic acid, bromoacetic acid, and iodoacetic acid to almost the same degree, and dichloroacetic acid also decomposes although it has about half the activity. (Osaka Prefectural Public Health Institute, Public Health Edition, No. 30, 89)
(1992)). Also, Pseudomonas putida NCIMB 120
Studies have also been conducted to fix the dehalogenase extracted from 18 on carboxymethylcellulose or thioglycolic acid to decompose haloacids having 2 to 6 carbon atoms (European Patent No. 179603). Other than that, regarding the relationship between haloacid dehalogenase and genes, Pseudomonas putida AJ1
Strain (J. Gen. Microbiol., 138,675 (1992)), Pseudomona
s cepacia MBA4 strain (J. Biochem., 284,87 (1992)),
Pseudomonas sp. CBS3 strain (Biol. Chem. Hoppe-Seyl
er., 374,489 (1993)).
【0006】しかしこれらは全て酵素レベルでの活性を
評価したものであり、実際にこれらの微生物が汚染廃水
中でどのような挙動を示すかは何の知見もないのが現状
である。微生物そのものでのハロ酸分解に関してはXant
hobacter autotrophicusGJ10株(Appl. Biochem. B
iotechnol., 40,158 (1993)), 同40,165 (1993))が研究
されているに過ぎない。[0006] However, all of these are evaluations of the activity at the enzyme level, and it is the current situation that there is no knowledge of how these microorganisms actually behave in contaminated wastewater. Xant for haloacid decomposition in microorganisms themselves
hobacter autotrophicus GJ10 strain (Appl. Biochem. B
iotechnol., 40,158 (1993)) and 40,165 (1993)) have only been studied.
【0007】またハロプロピオン酸の分解に関してはD
型及びL型のクロロプロピオン酸をPseudomonas 属の細
菌より抽出したデハロゲナーゼが乳酸にまで分解するこ
とが報告されている(特開平4−64544)が、この
事例も酵素レベルの研究でしかない。Regarding the decomposition of halopropionic acid, D
It has been reported that the dehalogenase extracted from Pseudomonas bacteria of type L and L-type chloropropionic acid decomposes to lactic acid (Japanese Patent Laid-Open No. 64-64544), but this case is also only an enzyme level study.
【0008】その上、微生物を用いたハロ酸汚染土壌の
処理方法に用いる場合の実用上の諸条件を満たし、なお
かつ十分な分解能を持つという観点で眺めてみると、現
在既知の菌種の範囲では必ずしも十分であるとは言えな
い。そこで、実用上要求される特性を満足する菌種の取
得が強く要望されているのが現状である。Moreover, from the viewpoint of satisfying various practical conditions and having sufficient decomposing ability when used in a method for treating haloacid-contaminated soil using microorganisms, the range of currently known bacterial species is Is not always sufficient. Therefore, at present, there is a strong demand for the acquisition of bacterial strains that satisfy the characteristics required in practical use.
【0009】このような菌種の性質としては、十分なハ
ロ酸分解能を有することは勿論であるが、既知菌種と生
育条件が異なり、その応用範囲が拡大できるもの、或い
はその利用形態が豊富になるものが一層好ましい。As a property of such a bacterial species, of course, it has a sufficient ability to decompose haloacids, but its growth range is different from that of known bacterial species and its application range can be expanded, or its utilization forms are abundant. Is more preferable.
【0010】例えば、ジクロロ酢酸を含む廃液の処理を
想定した場合、適用する微生物はジクロロ酢酸の分解能
もさることながら、土壌という劣悪な環境下でも生育
し、かつ分解活性を維持できることが要求される。For example, in the case of treating a waste liquid containing dichloroacetic acid, it is required that the microorganism to be applied is capable of growing in an adverse environment such as soil and maintaining its degrading activity, in addition to the ability to decompose dichloroacetic acid. .
【0011】このように、十分なハロ酸分解能を有し、
かつ従来既知の菌種よりも実用上有利な特性を有する菌
種が強く求められている。Thus, it has sufficient haloacid degradability,
Further, there is a strong demand for bacterial species having practically advantageous properties over conventionally known bacterial species.
【0012】[0012]
【発明が解決しようとする課題】本発明の目的は、この
ような、殺菌・消毒副生成物として問題となっているハ
ロ酸の分解のための強力な新規微生物を利用するハロ酸
の分解、特に土壌中に含有されるハロ酸を分解処理する
方法を提供することである。DISCLOSURE OF THE INVENTION An object of the present invention is to decompose a halo acid using a powerful novel microorganism for decomposing the halo acid, which is a problem as a sterilization / disinfection by-product. Particularly, it is to provide a method for decomposing halo acids contained in soil.
【0013】[0013]
【課題を解決するための手段】上記の目的は以下の本発
明によって達成される。The above object can be achieved by the present invention described below.
【0014】即ち、本発明者らは上記のような観点か
ら、ハロ酸を分解する菌種を探索した結果、日本の関東
ローム層の土壌中から、高濃度のハロ酸分解能を有する
新たな菌種を取得し、この菌種株を土壌に導入して、土
壌中のハロ酸を分解する方法を見いだした。That is, as a result of searching the bacterial species decomposing halo acids from the above viewpoints, the present inventors have found that new bacteria having a high concentration of halo acid degrading activity can be obtained from the soil of the Kanto loam layer in Japan. We obtained a seed, introduced this strain into soil, and found a method to decompose haloacids in the soil.
【0015】まず、本発明で新たに取得された菌株の菌
学的性質を以下に示す。First, the mycological properties of the strain newly obtained by the present invention are shown below.
【0016】A.形態的性状 グラム染色: 陰性 細胞の大きさ及び形: 長さ1.0〜2.0μm、幅
0.2〜0.5μmのC字及び/或いはS字型を示す桿
菌 運動性: なし コロニーの色: 白色からクリーム色 B.各種培地における成育状況 BHIA: 発育良好 MacConkey : 発育不良 C.成育至適温度: 25℃〜35℃ D.生理的性質 好気性・嫌気性の区別: 好気性 TSI(slant/butt) : アルカリ/アルカリ、H2 S
(−) オキシダーゼ: 陽性 カタラーゼ: 陽性 (同定基準:Bergey's Manual(1984) による) 以上の諸性質から本菌株は、レノバクター・スピーシズ
(Renobacter sp.)に属せしめるのが適当であると認めら
れた。A. Morphological properties Gram staining: Negative cell size and shape: C- and / or S-shaped rods with a length of 1.0 to 2.0 μm and a width of 0.2 to 0.5 μm Motility: None Color: White to cream B. Growth status in various media BHIA: Good growth MacConkey: Bad growth C.I. Optimal growth temperature: 25 ° C to 35 ° C D. Physiological properties Distinction between aerobic and anaerobic: Aerobic TSI (slant / butt): Alkali / Alkali, H 2 S
(−) Oxidase: Positive Catalase: Positive (identification standard: according to Bergey's Manual (1984)) From the above properties, this strain is a Renovobacter species.
( Renobacter sp .) Was found to be suitable.
【0017】また、後述する実施例からも明らかなよう
に、本菌株は卓越したハロ酸分解能を有している。レノ
バクターに属する菌株においてハロ酸を分解する菌はこ
れまでに知られていないことから、本菌を新菌株と認定
し、レノバクター・スピーシズAC株(Renobacter sp.
Strain AC) と命名し、工業技術院生命工学工業技術研
究所に寄託した(受託番号:FERM P−1464
1)。Further, as is clear from the examples described later, this strain has excellent halo acid degrading ability. Since a haloacid-degrading bacterium of a strain belonging to Renovobacter has not been known so far, this bacterium was identified as a new strain, and a Renovobacter sp . AC strain ( Renobacter sp .
Strain AC), and deposited at the Institute of Biotechnology, Institute of Industrial Science and Technology (accession number: FERM P-1464).
1).
【0018】AC株は細胞そのものの形態(S字型)も
さることながら、増殖形態が非常に特異的であり、菌自
体が何らかの高分子物質を分泌して菌塊となって増殖す
る。このような性質は、微視的に見てAC株独自の棲み
家(ハビタット)を速やかに形成し、優先種として増殖
するために、他の様々な土着菌が存在している土壌中で
増殖させ、ハロ酸を分解処理する場合、非常に有利に働
く。The AC strain has a very specific growth morphology in addition to the morphology of the cell itself (S-shape), and the bacterium itself secretes some high molecular substance and grows as a lump of cells. Microscopically, such a property promptly forms a habitat (habitat) unique to the AC strain and grows as a priority species, so that it grows in soil where various other indigenous bacteria are present. Therefore, when the halo acid is decomposed, it is very advantageous.
【0019】本菌の培養は、通常の2YT培地やLB培
地といった天然完全培地で行うことができるが、無機塩
培地、例えばM9培地に若干の栄養素として酵母エキス
を添加したもので培養することも可能である。The bacterium can be cultivated in a natural complete medium such as a usual 2YT medium or LB medium, but it can also be cultivated in an inorganic salt medium such as M9 medium to which yeast extract is added as a slight nutrient. It is possible.
【0020】以下にM9培地の組成を示す。The composition of M9 medium is shown below.
【0021】 Na2 HPO4 : 6.2g KH2 PO4 : 3.0g NaCl: 0.5g NH4 Cl: 1.0g (培地11中;p
H7.0) 培養は好気条件下で行うことができ、液体培養でも固体
培養でもよい。培養温度は30℃前後が望ましい。Na 2 HPO 4 : 6.2 g KH 2 PO 4 : 3.0 g NaCl: 0.5 g NH 4 Cl: 1.0 g (in medium 11; p
H7.0) The culture can be performed under aerobic conditions, and may be liquid culture or solid culture. The culture temperature is preferably around 30 ° C.
【0022】本菌を自然に、もしくは人工的手段によっ
て変異させて得られる変異株であっても、良好なハロ酸
分解活性を有する限り全て本発明に用いることができる
ので、これらを用いる方法であっても本発明に包含され
るものとする。Mutant strains obtained by mutating the bacterium naturally or by artificial means can be used in the present invention as long as they have good haloacid-degrading activity. Even if it exists, it shall be included in the present invention.
【0023】本発明におけるハロ酸の分解処理は、土壌
中のハロ酸と上記レノバクター・スピーシズAC株を接
触させることによって行うことができる。微生物とハロ
酸の接触は、ハロ酸を含有する土壌中で該微生物を培養
する、或いは該汚染土壌を該微生物の培養系に混入する
等の方法によって行うことができる。The halo acid decomposing treatment in the present invention can be carried out by bringing the halo acid in the soil into contact with the above-mentioned Renovobacter species AC strain. The contact between the microorganism and the halo acid can be carried out by a method such as culturing the microorganism in the soil containing the halo acid or mixing the contaminated soil into the culture system of the microorganism.
【0024】本発明の方法は閉鎖系、開放系いずれの土
壌修復にも適用可能であり、バッチ法、半連続法、連続
法等種々の方法を用いて実施できる。該微生物は半固定
状態で或いは適当な担体に固定化して用いることもでき
る。上記のように本菌株は菌自体が高分子を分泌して塊
状となるため、固定化は非常に簡便かつ有用である。The method of the present invention can be applied to soil restoration of both closed and open systems, and can be carried out using various methods such as batch method, semi-continuous method and continuous method. The microorganism can be used in a semi-fixed state or immobilized on a suitable carrier. As described above, this strain is very simple and useful because the strain itself secretes a polymer to form a lump.
【0025】[0025]
【実施例】以下、実施例を述べる。EXAMPLES Examples will be described below.
【0026】なお、全てのハロ酸の定量は、イオン交換
樹脂充填カラムを設置した高速液体クロマトグラフィー
(HPLC)法(展開溶媒:0.01N硫酸水溶液/ア
セトニトリル=95/5、210nmで検出)で行っ
た。 (実施例1) レノバクター・スピーシズAC株によるジクロロ酢酸汚
染土壌の修復 寒天培地上のAC株のコロニーを、200ml容の坂口
フラスコ中の酵母エキス0.1%を含むM9培地100
mlに接種し、30℃で48時間振盪培養を行った。3
0時間程度までAC株は塊状になって増殖し、その後脱
離していく様子が観察された。The quantification of all halo acids was carried out by a high performance liquid chromatography (HPLC) method equipped with an ion exchange resin packed column (developing solvent: 0.01 N sulfuric acid aqueous solution / acetonitrile = 95/5, detected at 210 nm). went. (Example 1) Restoration of dichloroacetic acid-contaminated soil by Renovobacter species AC strain Colonies of the AC strain on an agar medium were treated with 100% M9 medium containing 0.1% yeast extract in a 200 ml Sakaguchi flask.
ml was inoculated and shake culture was carried out at 30 ° C. for 48 hours. Three
It was observed that the AC strain grew in a lump form until about 0 hours, and then detached.
【0027】次に神奈川県厚木市で採取した褐色森林土
の風乾土50gにジクロロ酢酸の濃度が50mg/g w
et soil となるようにジクロロ酢酸水溶液を10ml加
え、さきの培養液10mlを接種して良く攪拌し、10
0ml容三角フラスコ内で30℃で静置培養した。その
後24時間毎に土壌1gを採取し、5mlの0.01N
硫酸水溶液を加えて1時間攪拌し、遠心分離及び濾過に
よって土壌を除いた後、希硫酸によってpHを2以下と
してHPLCに導入し、経日的にジクロロ酢酸の減少を
測定した。この結果を図1に示す。なお、対照実験とし
て菌液の代わりに無菌培地を加えて系で実験を行い、残
存率は対照との比較で表した。Next, the concentration of dichloroacetic acid was 50 mg / g w in 50 g of air-dried soil of brown forest soil collected in Atsugi City, Kanagawa Prefecture.
Add 10 ml of dichloroacetic acid aqueous solution so that it becomes the et soil, inoculate 10 ml of the above culture solution, stir well, and mix.
Static culture was carried out at 30 ° C. in a 0 ml Erlenmeyer flask. 1g of soil is collected every 24 hours thereafter, and 5ml of 0.01N
A sulfuric acid aqueous solution was added and the mixture was stirred for 1 hour, the soil was removed by centrifugation and filtration, the pH was adjusted to 2 or less with dilute sulfuric acid, the solution was introduced into HPLC, and the decrease in dichloroacetic acid was measured daily. The result is shown in FIG. As a control experiment, an aseptic medium was added instead of the bacterial solution to perform the experiment in the system, and the residual rate was expressed by comparison with the control.
【0028】分解は2日過ぎから始まり、4日後には土
壌中の50ppmのジクロロ酢酸が完全に分解された。 (実施例2) レノバクター・スピーシズAC株による他のハロ酸汚染
土壌の修復 実施例1と同様の方法で分解対象物質としてクロロ酢酸
(50ppm)、トリクロロ酢酸(10ppm)、ブロ
モ酢酸(10ppm)を用い、AC株による分解を試み
た。培養日数と各化合物の残存率をそれぞれ図2に示
す。Decomposition started after 2 days, and after 4 days, 50 ppm of dichloroacetic acid in soil was completely decomposed. (Example 2) Restoration of other haloacid-contaminated soil by Renovobacter species AC strain In the same manner as in Example 1, chloroacetic acid (50 ppm), trichloroacetic acid (10 ppm), and bromoacetic acid (10 ppm) were used as decomposition target substances. , AC strain was attempted. The number of culture days and the residual rate of each compound are shown in FIG.
【0029】クロロ酢酸は3日目で、トリクロロ酢酸、
ブロモ酢酸も5日目までには完全に分解された。 (実施例3) レノバクター・スピーシズAC株によるクロロプロピオ
ン酸の分解 実施例1と同様の方法で分解対象物質として2−クロロ
プロピオン酸及び3−クロロプロピオン酸を用い、AC
株による分解を試みた。濃度は200ppmとした。培
養日数と各化合物の残存率を図3に示す。Chloroacetic acid on the third day, trichloroacetic acid,
Bromoacetic acid was also completely decomposed by the 5th day. (Example 3) Degradation of chloropropionic acid by Renovobacter species AC strain In the same manner as in Example 1, 2-chloropropionic acid and 3-chloropropionic acid were used as the substances to be degraded, and AC was used.
Attempted decomposition by strain. The concentration was 200 ppm. The number of culture days and the residual rate of each compound are shown in FIG.
【0030】いずれの化合物も3日目までには完全に分
解された。 (実施例4) レノバクター・スピーシズAC株による2,2−ジクロ
ロプロピオン酸の分解 実施例1と同様の方法で分解対象物質として2,2−ジ
クロロプロピオン酸を用い、AC株による分解を試み
た。濃度は50ppmとした。培養日数と各化合物の残
存率を図4に示す。All the compounds were completely decomposed by the 3rd day. (Example 4) Decomposition of 2,2-dichloropropionic acid by Lenobacter species AC strain Using the same method as in Example 1, 2,2-dichloropropionic acid was used as a substance to be decomposed, and decomposition by the AC strain was tried. The concentration was 50 ppm. The number of culture days and the residual rate of each compound are shown in FIG.
【0031】いずれの化合物も3日目までには完全に分
解された。 (実施例5) レノバクター・スピーシズAC株による各ハロ酸の分解
様式 実施例1で用いた培養液をジクロロ酢酸、クロロ酢酸、
トリクロロ酢酸、ブロモ酢酸、2−クロロプロピオン
酸、3−クロロプロピオン酸及び2,2−ジクロロプロ
ピオン酸をそれぞれ別々に含む(濃度は各実施例と同
様)同培地50mlに1ml接種して30℃で振盪培養
した。その後それぞれ半分程度分解したと思われる時点
で反応液1mlを採取し、遠心分離によって菌体を除い
た後、希硫酸によってpHを2以下としてHPLCに導
入し、分解中間産物を分析した。その結果、ジクロロ酢
酸からはグリオキシル酸が、クロロ酢酸、トリクロロ酢
酸、ブロモ酢酸からはグリコール酸が、2−クロロプロ
ピオン酸からは乳酸が、2,2−ジクロロプロピオン酸
からはピルビン酸がそれぞれ検出され(3−クロロプロ
ピオン酸からは未検出)、レノバクター・スピーシズA
C株による各ハロ酸の分解が加水分解的脱ハロゲン酵素
であるデハロゲナーゼの作用によることが明らかとなっ
た。なお、これらの中間産物はその後完全に分解される
ことを確認した。All the compounds were completely decomposed by the 3rd day. (Example 5) Degradation mode of each halo acid by Renovobacter species AC strain The culture solution used in Example 1 was treated with dichloroacetic acid, chloroacetic acid,
50 ml of the same medium containing trichloroacetic acid, bromoacetic acid, 2-chloropropionic acid, 3-chloropropionic acid and 2,2-dichloropropionic acid separately (concentration is the same as in each example) was inoculated into the medium at 1 ml at 30 ° C. Shake culture was performed. After that, 1 ml of the reaction solution was sampled at a time when it was considered to be decomposed by about half, and the cells were removed by centrifugation. Then, the pH was adjusted to 2 or less with dilute sulfuric acid, and the mixture was introduced into HPLC to analyze the decomposition intermediate products. As a result, glyoxylic acid was detected from dichloroacetic acid, glycolic acid was detected from chloroacetic acid, trichloroacetic acid, and bromoacetic acid, lactic acid was detected from 2-chloropropionic acid, and pyruvic acid was detected from 2,2-dichloropropionic acid. (Not detected from 3-chloropropionic acid), Renovobacter Species A
It was revealed that the decomposition of each haloacid by strain C was due to the action of dehalogenase, which is a hydrolytic dehalogenase. It was confirmed that these intermediate products were completely decomposed thereafter.
【0032】[0032]
【発明の効果】本発明によってもたらされる新規なハロ
酸分解菌により、現在問題になり始めているハロ酸の生
物分解が可能となり、ハロ酸により汚染された土壌の効
率良い生物処理が可能となる。EFFECTS OF THE INVENTION The novel haloacid-degrading bacterium provided by the present invention enables the biodegradation of haloacids, which is currently becoming a problem, and enables efficient biological treatment of soil contaminated with haloacids.
【図1】AC株による土壌中のジクロロ酢酸の分解を示
す図FIG. 1 is a diagram showing decomposition of dichloroacetic acid in soil by an AC strain.
【図2】AC株による土壌中のハロ酢酸の分解を示す図FIG. 2 is a diagram showing decomposition of haloacetic acid in soil by AC strain.
【図3】AC株による土壌中のクロロプロピオン酸の分
解を示す図FIG. 3 is a diagram showing decomposition of chloropropionic acid in soil by an AC strain.
【図4】AC株による土壌中の2,2−ジクロロプロピ
オン酸の分解を示す図FIG. 4 is a diagram showing decomposition of 2,2-dichloropropionic acid in soil by an AC strain.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:01) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication C12R 1:01)
Claims (6)
いる土壌に、ハロゲン置換有機酸を加水分解的に分解す
るデハロゲナーゼを有する微生物を接種し、該ハロゲン
置換有機酸を分解せしめることを特徴とする土壌修復方
法。1. A soil characterized by inoculating a soil contaminated with a halogen-substituted organic acid with a microorganism having a dehalogenase that hydrolytically decomposes the halogen-substituted organic acid to decompose the halogen-substituted organic acid. How to repair.
1に記載の土壌修復方法。2. The soil remediation method according to claim 1, wherein the microorganism is of the genus Renovobacter.
C株である請求項2に記載の土壌修復方法。3. The microorganism is Renovobacter species A.
The soil restoration method according to claim 2, which is a C strain.
プロピオン酸のうちの少なくとも一種類である請求項1
に記載の土壌修復方法。4. The halogen-substituted organic acid is at least one of haloacetic acid and halopropionic acid.
The soil remediation method described in.
酸、トリクロロ酢酸、ブロモ酢酸のうちの少なくとも一
種類である請求項4に記載の土壌修復方法。5. The soil remediation method according to claim 4, wherein the haloacetic acid is at least one selected from chloroacetic acid, dichloroacetic acid, trichloroacetic acid, and bromoacetic acid.
酸、ジクロロプロピオン酸のうちの少なくとも一種類で
ある請求項4に記載の土壌修復方法。6. The soil remediation method according to claim 4, wherein the halopropionic acid is at least one of chloropropionic acid and dichloropropionic acid.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28830094A JP3332618B2 (en) | 1994-11-22 | 1994-11-22 | Soil repair method |
DE69516637T DE69516637T2 (en) | 1994-11-21 | 1995-11-21 | Process for the degradation of pollutants and environmental remediation using microorganisms and the microorganism used |
US08/561,237 US5679568A (en) | 1994-11-21 | 1995-11-21 | Processes for decomposing a pollutant and remedying an environment using Renobacter sp. ferm BP-5353 having dehalogenase activity |
EP95308329A EP0712808B1 (en) | 1994-11-21 | 1995-11-21 | Process for decomposing pollutant with microorganism, process for remedying environment with microorganism, and microorganism itself |
US08/868,951 US6017746A (en) | 1994-11-21 | 1997-06-04 | Remedying a contaminated environment using Pseudomonas cepacia or Corynebacterium species and Renobacter species FERM BP-5353 having dehalogenase activity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28830094A JP3332618B2 (en) | 1994-11-22 | 1994-11-22 | Soil repair method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08141549A true JPH08141549A (en) | 1996-06-04 |
JP3332618B2 JP3332618B2 (en) | 2002-10-07 |
Family
ID=17728386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28830094A Expired - Fee Related JP3332618B2 (en) | 1994-11-21 | 1994-11-22 | Soil repair method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3332618B2 (en) |
-
1994
- 1994-11-22 JP JP28830094A patent/JP3332618B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3332618B2 (en) | 2002-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0712808B1 (en) | Process for decomposing pollutant with microorganism, process for remedying environment with microorganism, and microorganism itself | |
US5807736A (en) | Method for biodegradation of aromatic and chlorinated compounds using microorganism strain FERM BP-5102 | |
Ghisalba et al. | Biodegradation of chemical waste by specialized methylotrophs, an alternative to physical methods of waste disposal | |
JP2001037469A (en) | Biodegradation of epichlorohydrin | |
US6096530A (en) | Pseudomonas cepacia strain isolated from termite intestines that degrades trichlorethylene and furan compounds | |
JP3208092B2 (en) | Degradation method of polychlorinated biphenyl and new microorganism | |
EP0567102B1 (en) | Method of biologically decomposing phenol or furan compounds by microorganisms | |
JP3507151B2 (en) | Biodegradation method of halogen-substituted organic acids and novel microorganisms used therefor | |
JP3332618B2 (en) | Soil repair method | |
JPH0622769A (en) | Method for biodegradation of phenolic compound, new strain used therefor and method for obtaining microorganism having ability to degrade phenolic compound | |
JP2002125659A (en) | New microorganism and method for treating drain | |
JP3513715B2 (en) | Microorganisms and water or soil purification methods | |
JPH0646869A (en) | Method for biodegrading furan compound and production of 2-furancarboxylic acid | |
JPH0655153A (en) | Soil restoring method | |
JPH0253482A (en) | Bacterium having indole and skatole decomposing ability and microbiological decomposition of indole and skatole | |
JPH11514532A (en) | New microorganism and environmental purification method using it | |
JP3382393B2 (en) | Biodegradation purification method of trichlorethylene | |
US6238906B1 (en) | Biodegradation of ethers using a bacterial culture | |
JP2869838B2 (en) | Degradation method of aliphatic polyester using anaerobic bacteria | |
EP0463902A1 (en) | Methode for removal of methylamines | |
JP3578482B2 (en) | Microorganisms and their culture methods | |
JPH07107967A (en) | New microorganism | |
JP3572804B2 (en) | Decomposition method of sodium linear alkyl benzene sulfonate | |
JPH10295366A (en) | New hydrogen peroxide-resistant microorganism, its acquisition, and repair of polluted medium by using the same | |
JP3545791B2 (en) | Decomposition method of nitrile compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080726 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080726 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090726 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090726 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100726 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100726 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110726 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120726 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120726 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130726 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |