JPH0811167B2 - Method for treating waste liquid in which inorganic particles are dispersed - Google Patents
Method for treating waste liquid in which inorganic particles are dispersedInfo
- Publication number
- JPH0811167B2 JPH0811167B2 JP61151577A JP15157786A JPH0811167B2 JP H0811167 B2 JPH0811167 B2 JP H0811167B2 JP 61151577 A JP61151577 A JP 61151577A JP 15157786 A JP15157786 A JP 15157786A JP H0811167 B2 JPH0811167 B2 JP H0811167B2
- Authority
- JP
- Japan
- Prior art keywords
- woven fabric
- inorganic particles
- dispersed
- filter
- tensile strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Filtering Materials (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体、とりわけ排水中に含有される無機質粒
子を除去するための処理方法に関する。Description: TECHNICAL FIELD The present invention relates to a treatment method for removing inorganic particles contained in a liquid, particularly waste water.
近年、エレクトロニクスの進歩に伴い、LSIなどの小
型半導体装置の製造に当っては、丸棒状の半導体素材を
薄い厚みで順次切り落して多数の薄い円板状基板を作る
ことが行なわれている。ところで、この場合、切削部に
水をかけながら切断を行うが、この水の中には切断によ
って生じた0.3〜1μm程度の径をもつ、半導体素材の
切屑が多量に入り込む。この排水からの切屑や純水の回
収が要求されるとともに、とりわけ、半導体基板の材料
がガリウム砒素のような場合には有害物質を含むため直
接排出することが出来ず、この排水の浄化が要求され
る。In recent years, with the progress of electronics, in manufacturing a small semiconductor device such as an LSI, a large number of thin disk-shaped substrates are manufactured by sequentially cutting a round bar-shaped semiconductor material in a thin thickness. By the way, in this case, the cutting is performed while water is applied to the cutting portion, and a large amount of chips of the semiconductor material having a diameter of about 0.3 to 1 μm generated by the cutting enter the water. It is necessary to collect chips and pure water from this wastewater, and especially when the material of the semiconductor substrate is gallium arsenide, it cannot be discharged directly because it contains harmful substances. To be done.
この排水の濾過装置としては、特開昭60−82113、同6
0−175511に開示されているように、従来のカートリッ
ジ方式に対して、面倒な交換作業なしに長時間連続して
液体濾過を行うことが出来る方式として、中心に空胴部
をもつように濾材をロール状に巻いて、目詰まりした際
には表面濾材を別に巻取って、常に新しい濾材により濾
過を行うようにした方式が考案されている。このような
高性能液体濾過においては、1)高い除去効率、2)低
い初期圧力損失、に加え、3)高い引張り強力を合わせ
もつ濾材を用いねばならない。This wastewater filtering device is disclosed in JP-A-60-82113 and JP-A-62-1213.
As disclosed in 0-175511, as compared with the conventional cartridge system, as a system capable of continuously performing liquid filtration for a long time without troublesome replacement work, a filter medium having a hollow portion at the center is provided. A method has been devised in which a filter is wound in a roll shape, and when it is clogged, a surface filter medium is separately wound and filtration is always performed with a new filter medium. In such a high-performance liquid filtration, a filter medium having 1) high removal efficiency, 2) low initial pressure loss, and 3) high tensile strength must be used.
これら1),2)および3)の特徴を全てあわせもつ濾
材は現状までのところなかった。Until now, no filter medium has all of the features 1), 2) and 3).
液体の濾過材として現在までに開発されているもの
は、金属粒の焼結体、セルローズ、合成樹脂、アスベス
トなどの繊維を抄紙したもの、合成樹脂フィルムに孔を
あけた所謂ポアタイプである。これら濾材の濾過原理
は、除去しようとする粒子の粒径より小さい孔を作り、
これによって粒子の通過を阻止して除去しようとするも
のである。しかしながら、焼結金属によるものでは金属
粒子の大きさにもとづく制限から、また、ポアタイプの
ものでは、孔明け技術上の制約から孔の径を小さくする
ことに限界があり、要求性能を満たすような高い除去効
率と低い初期圧力損失をあわせもつ濾過材を作り得なか
った。The liquid filter media that have been developed so far are sintered metal particles, cellulose, synthetic resin, paper made from fibers such as asbestos, and so-called pore type in which a synthetic resin film is perforated. The filtration principle of these filter media is to create pores smaller than the particle size of the particles to be removed,
This prevents the particles from passing and removes them. However, there is a limit to reducing the diameter of the sintered metal due to the limitation based on the size of the metal particles, and for the pore type, there is a limit to reducing the diameter of the pores, so that the required performance is satisfied. It was not possible to make a filter medium with both high removal efficiency and low initial pressure drop.
一方、繊維を抄紙したものは、抄紙するために繊維長
を短く(一般には1cm以下)する必要があり、このため
シートの引張り強力が低かった。引張り強力を高めるた
めに、シートにバインダーを付与すると、除去効率およ
び初期圧損のいずれの性能も大巾に低下し、結局、先の
3つの要件を全てを満たすものは存在しなかった。On the other hand, in the case of fiber-making paper, it is necessary to shorten the fiber length (generally 1 cm or less) in order to make paper, and therefore the tensile strength of the sheet was low. When a binder was applied to the sheet in order to increase the tensile strength, both the removal efficiency and the initial pressure drop performance were significantly reduced, and none of them satisfied all the above three requirements.
本発明の目的は、要するに、高性能で高強力な液体濾
材を用いて、工業的有利に排液から無機質粒子を除去す
る方法を提供するにある。とりわけ、本発明で用いる濾
材は、除去効率および初期圧損に優れていることに加
え、高い引張り強力も保有するため、従来のカートリッ
ジ方式ではなくロール方式による連続的濾過を可能とし
たものであり、前記半導体素子の洗浄水などの高度の浄
化による性能の向上、公害防止等に大きく寄与する。SUMMARY OF THE INVENTION The object of the present invention is therefore to provide a method for industrially advantageously removing inorganic particles from an effluent using a high-performance and high-strength liquid filter medium. In particular, the filter medium used in the present invention is excellent in removal efficiency and initial pressure loss, and also has high tensile strength, so that continuous filtration by a roll system is possible instead of the conventional cartridge system, It greatly contributes to improvement of performance and prevention of pollution by highly purifying cleaning water of the semiconductor element.
本発明に係る無機質粒子が分散した排液の処理方法
は、粒径5.0μm以下の無機粒子が分散した排液を、平
均単糸繊維径0.3〜3.0μmの極細繊維がランダムに絡み
合ってなり、嵩密度0.35/cm3を越え、長さ方向の引張り
強力が少なくとも200g/cm幅であり、目付20〜100g/m2の
メルトブロー法による不織布を多孔管周に多層に巻き付
けて形成した濾過胴横断面に沿った方向で外周面から内
部へ通液し、期間経過で外周面をはぎ取って新しい不織
布濾材面を表面に露出して、前記無機質の粒子を実質的
に除去することを特徴とする無機粒子が分散した排液の
処理方法である。The method for treating the waste liquid in which the inorganic particles are dispersed according to the present invention is a waste liquid in which the inorganic particles having a particle diameter of 5.0 μm or less are dispersed, in which ultrafine fibers having an average single yarn fiber diameter of 0.3 to 3.0 μm are randomly entangled, The bulk density exceeds 0.35 / cm 3 , the tensile strength in the longitudinal direction is at least 200 g / cm width, and the filtration cylinder traverse is formed by winding the nonwoven fabric by the melt blow method with a basis weight of 20 to 100 g / m 2 in multiple layers around the perforated pipe. Liquid is passed from the outer peripheral surface to the inside in the direction along the surface, the outer peripheral surface is peeled off after a period of time to expose a new non-woven fabric filter surface to the surface, and the inorganic particles are substantially removed. This is a method of treating waste liquid in which particles are dispersed.
メルトブロー法は、例えば特開昭50-46972号に開示さ
れており、熱可塑性重合体を溶融してオリフィスから吐
出させ、オリフィスの両側にあるスリットから加熱され
た高速ガスを噴射して吐出体を細化することにより極細
の繊維を得るプロセスである。このメルトブロー法で得
られた繊維ウェブは、極細繊維どうしがランダムに絡み
合った不織布である。本発明で使用する不織布では、こ
の極細繊維が繊維束状になっていなくて実質的に単繊維
状に分離していることが重要である。The melt-blowing method is disclosed in, for example, Japanese Patent Laid-Open No. 50-46972, in which a thermoplastic polymer is melted and discharged from an orifice, and heated high-speed gas is sprayed from slits on both sides of the orifice to discharge the discharged material. This is a process of obtaining ultrafine fibers by thinning. The fiber web obtained by this melt-blowing method is a non-woven fabric in which ultrafine fibers are randomly intertwined with each other. In the nonwoven fabric used in the present invention, it is important that the ultrafine fibers are not in the form of fiber bundles but are separated substantially in the form of single fibers.
本発明者らの検討によれば、極細繊維が繊維束状のま
まで存在する不織布では、極細繊維としての機能がほと
んど発揮されず、太い繊維の不織布と大差がないフィル
ター性能しか得られないことが判った。即ち、極細繊維
どうしのランダムな絡み合いで形成される微小空間が除
去率を高めるポイントであることが判り、実質的に単繊
維状に分離した繊維集合構造をもつ不織布にすることに
より高性能な除去率と併せ低い圧力損失が達成された。
この実質的に繊維束を含まないランダムな極細繊維不織
布を得るのはメルトブロー法が最適である。According to the study of the present inventors, in the non-woven fabric in which the ultrafine fibers are present in the form of a fiber bundle, the function as the ultrafine fibers is hardly exerted, and only the filter performance which is not much different from the thick fiber non-woven fabric is obtained. I understood. That is, it was found that the minute space formed by the random entanglement of ultrafine fibers is the point to increase the removal rate, and by using a non-woven fabric with a fiber aggregate structure separated into substantially single fibers, high-performance removal is possible. A low pressure drop was achieved in combination with the rate.
The melt blow method is most suitable for obtaining the random ultrafine fiber nonwoven fabric which does not substantially contain fiber bundles.
実公昭55-41292には、極細繊維が複数本集束してなる
極細繊維集束状繊維が絡合して構成された不織布からな
る高性能エアフィルターが開示されている。この不織布
は、極細繊維が単繊維状に分離した不織布に比べて圧力
損失を抑えることは可能であるが、反面補集効率は著し
く低下する。この公報の不織布を揉む、叩たく、こする
等の機械的処理を施こしても1部の繊維を部分的に解繊
することが出来るだけで、本発明で用いる不織布にみら
れるような高度な解繊状態は達成されない。Japanese Utility Model Publication No. 55-41292 discloses a high-performance air filter made of a non-woven fabric composed of entangled bundles of ultrafine fiber bundles, each of which is a bundle of ultrafine fibers. This non-woven fabric can suppress pressure loss as compared with a non-woven fabric in which ultrafine fibers are separated into single fibers, but on the other hand, the collection efficiency is significantly reduced. Even if mechanical treatment such as rubbing, tapping, rubbing, etc., of the non-woven fabric of this publication can be partially defibrated, only a part of the fibers can be defibrated, and the non-woven fabric used in the present invention has a high degree. A defibrated state is not achieved.
本発明で用いるメルトブロー極細繊維の平均単糸繊維
径は0.3〜3.0μm、好ましくは、0.5〜2.0μmである。
3.0μmを超えると除去効率が極端に低下してしまい、
本発明で用いる高性能フィルターとしては不適である。
一方、0.3μm未満では、不織布の引張り強力が低下
し、かつ圧力損失が大きくなりすぎ、本発明の目的は達
成されない。The average fiber diameter of the melt-blown ultrafine fibers used in the present invention is 0.3 to 3.0 μm, preferably 0.5 to 2.0 μm.
If it exceeds 3.0 μm, the removal efficiency will be extremely reduced,
It is not suitable as a high performance filter used in the present invention.
On the other hand, if it is less than 0.3 μm, the tensile strength of the nonwoven fabric is lowered and the pressure loss becomes too large, so that the object of the present invention cannot be achieved.
メルトブロー法で得られた繊維の直径は極めて小さい
ため繊維の長さを正確に測定することは困難であるが、
繊維の平均の長さは30mm以上、通常100mm〜数百mmであ
る。繊維長が比較的長いことが本発明で用いる不織布の
引張り強力が高い要因となっている。Although the diameter of the fiber obtained by the melt-blowing method is extremely small, it is difficult to accurately measure the length of the fiber,
The average length of the fibers is 30 mm or more, usually 100 mm to several hundred mm. The relatively long fiber length is a factor of the high tensile strength of the nonwoven fabric used in the present invention.
極細繊維の素材としては、メルトブロー可能な熱可塑
性重合体であれば何でもよく、例えば、ポリエステル、
ポリアミド、ポリオレフィンおよびこれらのブレンド、
共重合体などが挙げられる。高い嵩密度と大きい引張り
強力が得易いことからポリエステル、特に熱収縮率が大
きいポリエチレンテレフタレートが好ましい。The material of the ultrafine fibers may be any melt-blown thermoplastic polymer, for example, polyester,
Polyamide, polyolefin and blends thereof,
Examples thereof include copolymers. Polyester, particularly polyethylene terephthalate, which has a large heat shrinkage rate, is preferable because it is easy to obtain a high bulk density and a large tensile strength.
本発明で使用する不織布の嵩密度は0.35g/cm3より大
でなければならず、好ましくは、0.60g/cm3以下、より
好ましくは0.55g/cm3以下である。嵩密度は、除去効
率、初期圧力損失のみならず不織布の引張り強力に寄与
する重要な要素である。この嵩密度が過大であると、除
去効率、引張り強力は高まるが初期圧力損失が過大とな
るので好ましくない。他方、0.35g/cm3以下では初期圧
力損失が小さくなる点では好ましいが、反面引張り強力
は低くなり不適となる。The bulk density of the nonwoven fabric used in the present invention should be greater than 0.35 g / cm 3 , preferably 0.60 g / cm 3 or less, more preferably 0.55 g / cm 3 or less. The bulk density is an important factor that contributes to not only removal efficiency and initial pressure loss but also tensile strength of the nonwoven fabric. If the bulk density is too large, the removal efficiency and the tensile strength are increased, but the initial pressure loss becomes too large, which is not preferable. On the other hand, if it is 0.35 g / cm 3 or less, it is preferable in that the initial pressure loss is small, but on the other hand, the tensile strength is low and it is not suitable.
この様に高い嵩密度を有する不織布を得る方法として
は、メルトブローウェブをその繊維のガラス転位点以下
の温度で、5kg/cm巾以上で強くプレスする方法が好まし
い。この条件でプレスを行えば繊維相互間で熱融着が起
こることが無く、濾過性能および強力が高まる。As a method of obtaining a nonwoven fabric having such a high bulk density, a method of strongly pressing the meltblown web at a temperature not higher than the glass transition point of the fiber and a width of 5 kg / cm or more is preferable. Pressing under these conditions does not cause heat fusion between fibers, and improves filtration performance and strength.
本発明で使用する不織布の1方向(長さ方向)の引張
り強力は少なくとも200g/cm以上、好ましくは300g/cm以
上、更に好ましくは500g/cm以上である。この強力以上
で初めてロール方式の連続濾過装置用の濾材として使用
することが可能となる。極細繊維を繊維束状でなく単繊
維に分離したランダムな不織布とした場合、不織布の引
張り強力を高く保持することが著しく困難となる。本発
明者は、比較的繊維長の長い極細繊維が得られるメルト
ブロー極細繊維を用いたことと、この極細繊維不織布の
嵩密度を0.35g/cm3より大と高めて、繊維相互の絡み合
い程度を高めることにより、この高い強力を、高いフィ
ルター性能(高い除去効率、低い圧力損失)を満たした
上で達成することが出来た。The tensile strength in one direction (length direction) of the nonwoven fabric used in the present invention is at least 200 g / cm, preferably 300 g / cm or more, more preferably 500 g / cm or more. Only when it is stronger than this, it becomes possible to use it as a filter medium for a roll type continuous filtration device. When the non-woven fabric is a random non-woven fabric in which ultrafine fibers are separated into single fibers instead of fiber bundles, it becomes extremely difficult to maintain high tensile strength of the non-woven fabric. The present inventor uses a melt-blown ultrafine fiber to obtain an ultrafine fiber having a relatively long fiber length, and increases the bulk density of this ultrafine fiber nonwoven fabric to a value greater than 0.35 g / cm 3 to increase the degree of entanglement between the fibers. By increasing it, this high strength could be achieved while satisfying high filter performance (high removal efficiency, low pressure loss).
本発明で用いる不織布は捕集効率として70%以上、好
ましくは80%以上を有す。ここでいう捕集効率は0.3μ
mのジオクチルテレフタレート(DOP)粒子で測定した
値である。この捕集効率であれば、排水中の切断屑とし
て0.3μm以上の粒径のものを99%以上除去することが
出来る。また、本発明で用いる不織布の初期圧力損失
は、風速が4cm/sec.で50mm以下、好ましくは、30mmH2O
以下と低いものである。The nonwoven fabric used in the present invention has a collection efficiency of 70% or more, preferably 80% or more. The collection efficiency here is 0.3μ
It is a value measured with m dioctyl terephthalate (DOP) particles. With this collection efficiency, 99% or more of the cutting waste in the wastewater having a particle size of 0.3 μm or more can be removed. The initial pressure loss of the non-woven fabric used in the present invention is 50 mm or less at a wind speed of 4 cm / sec., Preferably 30 mmH 2 O.
It is as low as below.
本発明で用いる、不織布の目付は20〜100g/m2である
ことが好ましい。20g/m2未満では引張り強力が低下し、
他方、100g/m2を超えると初期圧力損失が大きくなりす
ぎることがある。The nonwoven fabric used in the present invention preferably has a basis weight of 20 to 100 g / m 2 . If it is less than 20 g / m 2 , the tensile strength will decrease,
On the other hand, if it exceeds 100 g / m 2 , the initial pressure loss may become too large.
上記不織布は通常円筒状の多孔管の周面に多層に巻付
けて、中心に空洞をもつ濾過胴を形成して濾過に用い
る。濾過処理すべき排水は、濾過胴の横断面に沿った放
射方向に、外部から濾過胴内部へまたは濾過胴内部から
外部へ通液することにより濾過する。The above-mentioned non-woven fabric is usually wound in multiple layers around the peripheral surface of a cylindrical porous tube to form a filter cylinder having a hollow at the center and used for filtration. The wastewater to be filtered is filtered by passing it from the outside to the inside of the filter cylinder or from the inside of the filter cylinder to the outside in the radial direction along the cross section of the filter cylinder.
上記のように濾過胴を形成し、外部にこの不織布の巻
取軸を設けて、濾過胴の外周面から内部へ排水を通液し
て濾過を行う場合、所定期間が経過して目詰りが始まっ
たとき外部の巻取軸に不織布を巻取って、新しい不織布
濾材面を表面に露出することにより連続して濾過を行う
ことができる。When the filter cylinder is formed as described above and the take-up shaft of this non-woven fabric is provided outside, and when drainage is passed from the outer peripheral surface of the filter cylinder to the inside for filtration, clogging occurs after a predetermined period has passed. When starting, the nonwoven fabric is wound around an external winding shaft, and a new nonwoven fabric filter medium surface is exposed on the surface, whereby continuous filtration can be performed.
排水としては粒径5.0μm以下、特に0.3〜1.0μmの
無機質の粒子が分散したものが処理される。そのような
無機質粒子としてはシリコンウエハー、ガリウム・砒素
ウエハー等の切屑が挙げられる。As the waste water, a dispersion of inorganic particles having a particle size of 5.0 μm or less, particularly 0.3 to 1.0 μm is treated. Examples of such inorganic particles include chips such as silicon wafers and gallium / arsenic wafers.
次に、本発明の排液処理方法の具体例を更に詳細に説
明する。Next, a specific example of the drainage treatment method of the present invention will be described in more detail.
なお、嵩密度は、目付量を厚みで除した値である。厚
みはダイアルシックネスゲージH(ピーコック型:尾崎
製作所)を用い測定した。また、引張り強力は不織布サ
ンプルを巾2cm、把持長10cm、引張りスピード10cm/分の
条件でテンシロンを用いて測定した値を巾1cm当りで表
わしたものである。The bulk density is a value obtained by dividing the weight per unit area by the thickness. The thickness was measured using a dial thickness gauge H (Peacock type: Ozaki Seisakusho). Further, the tensile strength is a value measured using a Tensilon under the conditions of a width of 2 cm, a gripping length of 10 cm, and a pulling speed of 10 cm / min for each of the widths of 1 cm.
実施例1. ポリエチレンテレフタレートをメルトブロー法で紡糸
し、目付50g/m2、巾1m、長さ600mのウェブとして巻取っ
た。このウェブの平均単糸繊維径(走査型電子顕微鏡で
写真撮影を行い測定)は、1.5μmであった。このウェ
ブを室温(25℃)で10kg/cm巾の圧力でプレスし連続的
に巻取った。この不織布の嵩密度は0.45g/cm3、引張り
強力は長さ方向で670g/cm、巾方向で350g/cmであった。
また、DOPの補集効率は90%で、初期圧損は20mmH2Oであ
った。この不織布を多孔をもった円筒管に多層に巻き付
けて、中心に空洞部をもつ濾過胴を形成させ、その外部
にこの不織布(濾材)の巻取軸を設けて、濾過胴の外周
面からの内周面方向に被処理水を供給して濾過を行っ
た。被処理水として、10cc当り約30,000〜50,000個のシ
リコン切断屑を含む排出水を流量25l/分で通し濾過した
ところ、排水中の切断屑の数は10cc当り100個(粒径0.3
〜1.0μm)との良好な結果が得られた。Example 1. Polyethylene terephthalate was spun by a melt blow method and wound into a web having a basis weight of 50 g / m 2 , a width of 1 m and a length of 600 m. The average single fiber diameter of this web (measured by photographing with a scanning electron microscope) was 1.5 μm. The web was pressed at room temperature (25 ° C.) with a pressure of 10 kg / cm width and continuously wound. The bulk density of this nonwoven fabric was 0.45 g / cm 3 , and the tensile strength was 670 g / cm in the length direction and 350 g / cm in the width direction.
The collection efficiency of DOP was 90%, and the initial pressure loss was 20 mmH 2 O. This non-woven fabric is wound in multiple layers around a porous cylindrical tube to form a filter cylinder having a hollow portion in the center, and a take-up shaft for this non-woven fabric (filter material) is provided on the outside of the filter cylinder from the outer peripheral surface of the filter cylinder. The water to be treated was supplied in the direction of the inner peripheral surface for filtration. As the water to be treated, when discharged water containing approximately 30,000 to 50,000 pieces of silicon cutting chips per 10 cc was filtered through a flow rate of 25 l / min, the number of cutting chips in the drainage was 100 per 10 cc (particle size 0.3
˜1.0 μm) was obtained.
目詰り後に巻取軸に不織布濾材を巻取って新しい濾材
面を表面に露出することにより連続的に濾過を続けるこ
とが出来た。After clogging, the nonwoven fabric filter material was wound around the winding shaft and a new filter material surface was exposed on the surface, so that filtration could be continuously continued.
実施例2. ポリプロピレンをメルトブローして、目付70g/m2、巾
1m、長さ600m、平均単糸繊維径0.8μmのウェブを得
た。このウェブを室温で15kg/cm巾の圧力でプレスし
て、嵩密度0.53g/cm3、引張り強力は長さ方向740g/cm、
巾方向560g/cm、DOPの捕集効率99.9%の不織布を得た。
この不織布を用いて実施例1と同様な排出処理テストを
行ったところ、除去率は99.9%以上であり、極めて良好
であった。Example 2. Polypropylene melt-blown to have a basis weight of 70 g / m 2 , width
A web having a length of 1 m, a length of 600 m and an average single fiber diameter of 0.8 μm was obtained. This web is pressed at a pressure of 15 kg / cm width at room temperature to obtain a bulk density of 0.53 g / cm 3 , a tensile strength of 740 g / cm in the longitudinal direction,
A non-woven fabric having a width direction of 560 g / cm and a DOP collection efficiency of 99.9% was obtained.
When this non-woven fabric was subjected to the same discharge treatment test as in Example 1, the removal rate was 99.9% or more, which was extremely good.
本発明で用いる平均単糸繊維径0.3〜3.0μmのメルト
ブロー極細繊維がランダムに絡み合った0.35g/cm3を越
える嵩密度を有する不織布は、メルトブロー極細繊維が
実質的に単繊維状に分離して交絡した構造にもとづくミ
クロ空間による優れたフィルター性能と、メルトブロー
繊維という比較的長い繊維長の繊維の高度な交絡構造に
基づく高い引張り強力を有している。これにより、高い
除去効率と低い初期圧力損失に加え高い引張り強力とい
う3つの優れた性能を有する液体処理用濾材が得られ
る。この濾材は、従来のカートリッジ方式に対して、面
倒な交換操作なしに長時間連続して液体濾過を行うこと
が出来るロール方式の濾過機用の濾材として最適のもの
であり、特に、水中の半導体素材(シリコンウエハー、
ガリウム・砒素ウエハー等)の切屑(0.3〜1μm程度
の径)の除去と純水の回収に有効な濾材であり、この発
明の工業的意義は大きい。The non-woven fabric having a bulk density of more than 0.35 g / cm 3 in which melt-blown ultrafine fibers having an average single-filament fiber diameter of 0.3 to 3.0 μm are randomly entangled, and the meltblown ultrafine fibers are separated into substantially single fibers. It has excellent filter performance due to the micro space based on the entangled structure, and high tensile strength based on the highly entangled structure of the relatively long fiber length of meltblown fiber. As a result, a filter medium for liquid treatment having three excellent properties of high removal efficiency, low initial pressure loss, and high tensile strength can be obtained. This filter medium is most suitable as a filter medium for a roll type filter that can continuously perform liquid filtration for a long time without a troublesome replacement operation, as compared with the conventional cartridge type. Material (silicon wafer,
This is a filter medium effective for removing chips (diameter of about 0.3 to 1 μm) of gallium / arsenic wafers) and for collecting pure water, and the industrial significance of the present invention is great.
Claims (2)
液を、平均単糸繊維径0.3〜3.0μmの極細繊維がランダ
ムに絡み合ってなり、嵩密度0.35/cm3を越え、長さ方向
の引張り強力が少なくとも200g/cm幅であり、目付20〜1
00g/m2のメルトブロー法による不織布を多孔管周に多層
に巻き付けて形成した濾過胴横断面に沿った方向で外周
面から内部へ通液し、期間経過で外周面をはぎ取って新
しい不織布濾材面を表面に露出して、前記無機質の粒子
を実質的に除去することを特徴とする無機粒子が分散し
た排液の処理方法。1. Drainage in which inorganic particles having a particle diameter of 5.0 μm or less are dispersed is randomly entangled with ultrafine fibers having an average single-filament fiber diameter of 0.3 to 3.0 μm, and has a bulk density exceeding 0.35 / cm 3 and a length. Direction tensile strength is at least 200g / cm width, and areal weight 20 ~ 1
A non-woven fabric filter surface made by wrapping multiple layers of non-woven fabric with a melt blown method of 00 g / m 2 around the perforated pipe in a direction along the cross section of the filter cylinder from the outer peripheral surface to the inside, and then peeling off the outer peripheral surface after a certain period of time. Is exposed to the surface to substantially remove the inorganic particles, and a method for treating drainage liquid in which inorganic particles are dispersed.
タレートの粒子を少なくとも70%以上捕集し得る特許請
求の範囲1記載の排液処理方法。2. The drainage treatment method according to claim 1, wherein the non-woven fabric can collect at least 70% or more of dioctoctyl phthalate particles having a particle diameter of 0.3 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61151577A JPH0811167B2 (en) | 1986-06-30 | 1986-06-30 | Method for treating waste liquid in which inorganic particles are dispersed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61151577A JPH0811167B2 (en) | 1986-06-30 | 1986-06-30 | Method for treating waste liquid in which inorganic particles are dispersed |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5161797A Division JP2531486B2 (en) | 1993-06-30 | 1993-06-30 | Filter medium for treating waste liquid in which inorganic particles are dispersed |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS637812A JPS637812A (en) | 1988-01-13 |
JPH0811167B2 true JPH0811167B2 (en) | 1996-02-07 |
Family
ID=15521558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61151577A Expired - Fee Related JPH0811167B2 (en) | 1986-06-30 | 1986-06-30 | Method for treating waste liquid in which inorganic particles are dispersed |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0811167B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010125404A (en) * | 2008-11-28 | 2010-06-10 | Mitsui Chemicals Inc | Liquid filter |
JP6190687B2 (en) * | 2013-10-02 | 2017-08-30 | 三井化学株式会社 | Liquid filter |
JP6534942B2 (en) * | 2016-02-10 | 2019-06-26 | 三井化学株式会社 | Melt blow non-woven fabric and use thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3933557A (en) * | 1973-08-31 | 1976-01-20 | Pall Corporation | Continuous production of nonwoven webs from thermoplastic fibers and products |
US4594202A (en) * | 1984-01-06 | 1986-06-10 | Pall Corporation | Method of making cylindrical fibrous filter structures |
-
1986
- 1986-06-30 JP JP61151577A patent/JPH0811167B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS637812A (en) | 1988-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1200512A (en) | Filter | |
CA2907589C (en) | Aggregate-removing filter material, aggregate removal method, white blood cell-removing filter, and blood product filtering method | |
JP4083951B2 (en) | Cylindrical filter | |
JPH0811167B2 (en) | Method for treating waste liquid in which inorganic particles are dispersed | |
JP2531486B2 (en) | Filter medium for treating waste liquid in which inorganic particles are dispersed | |
JPH01297113A (en) | Nonwoven fabric rolled-in lamination-type cartridge filter and its manufacture | |
JP4164989B2 (en) | Filter cartridge | |
JPH08196829A (en) | Air cleaning filter medium and its production | |
JPH10216430A (en) | Filter for treatment of polluted water | |
JPH05295645A (en) | Nonwoven fabric and its production | |
JP2001321620A (en) | Cylindrical filter | |
JP3578229B2 (en) | Fine particle filter media | |
JP2004000851A (en) | Cylindrical filter and its production method | |
JPH11156125A (en) | Depth type filter | |
JPH0518614U (en) | Cartridge Filter | |
JP3660055B2 (en) | Cartridge filter and manufacturing method thereof | |
JP4464433B2 (en) | Cylindrical filter | |
JP2001096110A (en) | Cylindrical filter | |
JP3712464B2 (en) | Cartridge filter and manufacturing method thereof | |
JPH052715U (en) | Cartridge Filter | |
JP3421846B2 (en) | Method for filtering suspension containing concrete or stone sludge | |
JPH0691105A (en) | Cartridge filter | |
JP2003260746A (en) | Laminated fiber sheet | |
JP2001029717A (en) | Cylindrical filter | |
JP2000024427A (en) | Filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |