JPH08109410A - Finish decarburization refining of stainless steel - Google Patents
Finish decarburization refining of stainless steelInfo
- Publication number
- JPH08109410A JPH08109410A JP24983494A JP24983494A JPH08109410A JP H08109410 A JPH08109410 A JP H08109410A JP 24983494 A JP24983494 A JP 24983494A JP 24983494 A JP24983494 A JP 24983494A JP H08109410 A JPH08109410 A JP H08109410A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- gas
- blowing
- decarburization
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、取鍋精錬炉による効率
的なステンレス鋼の仕上脱炭精錬方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an efficient method for finishing decarburization and refining of stainless steel by a ladle refining furnace.
【0002】[0002]
【従来の技術】ステンレス鋼に代表されるクロム含有溶
鉄は、炭素濃度が低下した領域では脱炭反応に比べてク
ロムの酸化反応のほうが起こりやすくなるため、クロム
の酸化損失を抑制して製品規格から要求される炭素濃度
まで脱炭する方法が種々提案されている。中でもAOD
とVODは広く知られている。2. Description of the Related Art Molten iron containing chromium, typified by stainless steel, is more likely to undergo an oxidation reaction of chromium than a decarburization reaction in a region where the carbon concentration is low. Have proposed various methods for decarburizing carbon to the required carbon concentration. Above all, AOD
And VOD are widely known.
【0003】このうち、AODはArで希釈した酸素ガ
スを浴内に吹込む方法であり、VODは真空下で酸素を
上吹きする方法であるが、いずれの場合も脱炭反応によ
り生成するCOガスの分圧を低下させ、クロムの酸化反
応よりも脱炭反応を優先させることを特徴としている。
このうち、炭素濃度が500ppm以下といった低炭素
ステンレス鋼を溶製するためには減圧精錬が不可欠とな
るため、一般的にはVODが用いられている。Of these, AOD is a method in which oxygen gas diluted with Ar is blown into the bath, and VOD is a method in which oxygen is blown upward under vacuum. In either case, CO produced by decarburization reaction It is characterized by lowering the partial pressure of gas and prioritizing the decarburization reaction over the oxidation reaction of chromium.
Of these, VOD is generally used because depressurization refining is indispensable for producing low carbon stainless steel having a carbon concentration of 500 ppm or less.
【0004】しかしながら、VODは取鍋全体を真空容
器内に入れる方法、もしくは取鍋上部に蓋をして取鍋全
体を真空にする方法であるため、上部空間が狭く、酸素
上吹き時に発生するスプラッシュにより操業が阻害され
るという問題がある上、クロム酸化を抑制した脱炭を進
行させるために攪拌用のガス流量を増大した場合にも、
溶鋼の揺動や底吹きガスによるスプラッシュが増加し、
操業に支障が生じていた。However, VOD is a method in which the entire ladle is placed in a vacuum container or a method in which the entire ladle is placed in a vacuum by covering the upper part of the ladle. There is a problem that the operation is hindered by the splash, and even when the gas flow rate for stirring is increased to promote decarburization that suppresses chromium oxidation,
Fluctuation of molten steel and splash due to bottom blowing gas increase,
Operation was hindered.
【0005】これに対して、特開昭61−37912号
公報においては、取鍋内の溶鋼を大径浸漬管を介して真
空槽内に吸い上げ、低部から攪拌用ガスを供給する方法
が開示されている。さらに、特開平1−156416号
公報においては、浸漬管中心に対して底吹き用ノズル位
置を適切な範囲に偏心させるとともに、上吹き酸素を底
吹きガスの浮上領域である、後述するところの気泡活性
面に衝突させる方法が開示されている。On the other hand, Japanese Patent Laid-Open No. 61-37912 discloses a method of sucking molten steel in a ladle into a vacuum tank through a large-diameter dip tube and supplying a stirring gas from a lower portion. Has been done. Further, in Japanese Patent Laid-Open No. 1-156416, the bottom blowing nozzle is eccentrically positioned with respect to the center of the dip tube and the top blowing oxygen is a floating region of the bottom blowing gas. A method of striking an active surface is disclosed.
【0006】これらの方法により、VODが有する上部
空間が狭いという問題は解決されたものの、これらの方
法のみでは、特に低炭素領域でのクロム酸化の抑制が不
十分であるといった問題があった。Although these methods have solved the problem that the upper space of VOD is narrow, there is a problem that the suppression of chromium oxidation is insufficient especially in the low carbon region only by these methods.
【0007】[0007]
【発明が解決しようとする課題】本発明は、VODが有
している上部空間が狭いため溶鋼の揺動やスプラッシュ
により操業に支障が生じるという問題や、特開昭61−
37912号公報や特開平1−156416号公報に示
された方法が有する、低炭素領域でのクロム酸化の抑制
が不十分であるといった問題を生じることなく、効率的
な精錬を可能とする脱炭方法を提供することを目的とす
るものである。SUMMARY OF THE INVENTION According to the present invention, since the upper space of the VOD is small, the swing and splash of molten steel may hinder the operation.
Decarburization that enables efficient refining without the problem of insufficient suppression of chromium oxidation in the low carbon region that the methods disclosed in JP 37912 and JP-A-1-156416 have It is intended to provide a method.
【0008】[0008]
【課題を解決するための手段】本発明の要旨とするとこ
ろは、Cr濃度が5%以上の取鍋内溶鋼に直胴型浸漬管
を浸漬し、該浸漬管内を減圧するとともに、取鍋低部よ
り攪拌用ガスを供給し、かつ炭素濃度が1.0〜0.0
1%の範囲で、上方より酸素ガス吹付けを行う真空脱炭
精錬において、真空度を50Torr以上の高真空と
し、精錬用酸素ガスに酸素/Ar比が3.0〜0.2と
なる比率でArガスを混合し、かつ酸素ガス吹付け速度
を気泡活性面当り0.04〜0.40(Nm3 /hr・
cm2 )、気泡活性面積が全溶鋼表面積の10%以上、
かつ酸素ガス吹付け面の100%以上とすることによ
り、吹酸脱炭中のCr酸化を抑制し、脱炭酸素効率を高
位に維持するステンレス鋼の仕上脱炭精錬方法にある。SUMMARY OF THE INVENTION The gist of the present invention is to immerse a straight barrel type immersion pipe in molten steel in a ladle having a Cr concentration of 5% or more, reduce the pressure in the immersion pipe, and lower the ladle. A stirring gas is supplied from the part and the carbon concentration is 1.0 to 0.0.
In the vacuum decarburizing refining in which the oxygen gas is blown from above in the range of 1%, the degree of vacuum is set to a high vacuum of 50 Torr or more, and the oxygen / Ar ratio of the refining oxygen gas is 3.0 to 0.2. Ar gas is mixed in and the oxygen gas spraying rate is 0.04 to 0.40 (Nm 3 / hr.
cm 2 ), the bubble active area is 10% or more of the total molten steel surface area,
In addition, there is a finish decarburizing and refining method for stainless steel that suppresses Cr oxidation during the decarburization of blown acid and maintains the efficiency of decarboxylation at a high level by making the oxygen gas blowing surface 100% or more.
【0009】[0009]
【作用】含クロム溶鋼の脱炭反応は、吹付けられた酸素
ガスによって生成したクロム酸化物が火点域あるいは浴
内で鋼中の炭素により還元され、進行することが知られ
ている((1)、(2)式)。 2Cr+3/2O2 →Cr2 O3 (1) Cr2 O3 +3C→2Cr+3CO↑ (2) 従来より、脱炭反応、すなわち(2)式を促進させるた
めの方法としては、雰囲気のCO分圧(Pco)を低下さ
せることが有効であることが知られており、AODやV
ODの原理もこの知見に基づいている。[Function] It is known that the decarburization reaction of molten chromium-containing steel proceeds by reducing the chromium oxide produced by the blown oxygen gas by the carbon in the steel in the hot spot region or in the bath (( 1) and (2)). 2Cr + 3 / 2O 2 → Cr 2 O 3 (1) Cr 2 O 3 +3 C → 2Cr + 3CO ↑ (2) Conventionally, as a method for promoting the decarburization reaction, that is, the formula (2), the CO partial pressure of the atmosphere is used. It is known that reducing (P co ) is effective, and AOD and V
The principle of OD is also based on this finding.
【0010】本発明者らは、数々の詳細な実験の結果、
これまで以上に脱炭反応を促進するため、すなわち生成
したクロム酸化物の還元((2)式)を促進するために
は、高温の火点域での還元を促進させることが有効であ
ることを知見した。本発明は、この知見に基づいてなさ
れたものであり、精錬用酸素ガスにArガスを混合させ
ることにより、吹酸脱炭反応における主要反応サイトで
ある火点域でのCO分圧を低下させるとともに、実効界
面積増大効果の大きい気泡活性面上に吹酸火点を形成さ
せることにより、吹酸火点域の更新を著しく促進させる
ことに立脚している。As a result of various detailed experiments, the present inventors
In order to accelerate the decarburization reaction more than ever, that is, in order to accelerate the reduction of the generated chromium oxide (Equation (2)), it is effective to promote the reduction in the high temperature flash point region. I found out. The present invention was made based on this finding, and by mixing Ar gas with refining oxygen gas, the CO partial pressure in the fire point region, which is the main reaction site in the blowing acid decarburization reaction, is reduced. At the same time, it is based on accelerating the renewal of the blowing acid fire point region by forming the blowing acid fire point on the bubble active surface, which has a large effect of increasing the effective boundary area.
【0011】通常、吹酸火点域の温度は約2400℃で
あり、従って(2)式における標準自由生成エネルギー
も小さく、反応の促進には極めて有利な反応サイトであ
る。よって、本発明においては、火点域での反応(クロ
ム酸化物の還元)を極限まで促進させ得る方法として、
精錬用酸素ガスに不活性ガスであるArガスを混合する
ことを特徴としている。Usually, the temperature in the blowing acid burn point region is about 2400 ° C. Therefore, the standard free-form energy in the equation (2) is also small, which is a very advantageous reaction site for promoting the reaction. Therefore, in the present invention, as a method capable of accelerating the reaction in the flash point region (reduction of chromium oxide) to the limit,
The feature is that Ar gas, which is an inert gas, is mixed with the refining oxygen gas.
【0012】これは、従来より知られている減圧の効果
に加えて、主要な脱炭反応サイトである火点域でのPco
を低下させ、火点温度との相乗効果により火点域での平
衡炭素濃度を極力低下させることにより、反応の駆動力
を最大限大きくできることにある。さらに本発明におい
ては、気泡活性面上に吹酸火点を形成させることを特徴
としている。ここで、浴内の低部から吹込まれた不活性
ガス気泡が浮上し、自由表面で破裂する領域である気泡
活性面積は、水モデル等での知見に基づけば、取鍋脱ガ
ス設備や、取鍋内溶鋼に直胴型浸漬管を浸漬し、該浸漬
管内を減圧する方式の場合には、低部から吹込まれたガ
スがノズルから上方に片側12°の角度で上昇すると仮
定することで計算される幾何学的面積として規定され
る。また、気泡活性面の強度はガス流量やガス吹込み深
さ、真空度により規定されるものであり、実際の気泡活
性面積はガス気泡の表面での破裂効果により、幾何学的
面積の数倍の実効界面積を有するものである。This is due to the fact that in addition to the conventionally known effect of depressurization, P co in the fire point region, which is the main decarburization reaction site.
It is possible to maximize the driving force of the reaction by lowering the reaction temperature and reducing the equilibrium carbon concentration in the hot spot region as much as possible by the synergistic effect with the hot spot temperature. Further, the present invention is characterized in that a blowing acid fire point is formed on the bubble active surface. Here, the bubble active area, which is the region where the inert gas bubbles blown from the lower part in the bath float and burst on the free surface, based on the knowledge of the water model etc., a ladle degassing equipment, In the case of a method of immersing a straight barrel type immersion pipe in molten steel in a ladle and depressurizing the inside of the immersion pipe, it is assumed that the gas blown from the lower part rises upward from the nozzle at an angle of 12 ° on one side. Defined as the calculated geometric area. Also, the strength of the bubble active surface is defined by the gas flow rate, the gas injection depth, and the degree of vacuum.The actual bubble active area is several times the geometric area due to the bursting effect on the surface of the gas bubble. It has an effective boundary area of.
【0013】この気泡活性面上に吹酸火点を形成させる
意義は、吹酸火点において生成するクロム酸化物の微細
化および還元反応界面積の増加にある。すなわち、上記
の気泡活性効果と上吹きジェットによる表面攪乱の相乗
効果によって火点域の界面更新効果は著しく促進される
ことになる。従って、この火点域で形成されたクロム酸
化物は微細であり、実効界面積も極めて大きいため、火
点域近傍での還元反応は著しく促進されることになる。The significance of forming a blowing acid hot spot on the bubble active surface lies in the refinement of the chromium oxide produced at the blowing acid hot spot and an increase in the reduction reaction interfacial area. In other words, the synergistic effect of the bubble activation effect and the surface disturbance caused by the top-blown jet remarkably promotes the interface renewal effect in the hot spot region. Therefore, since the chromium oxide formed in this hot spot region is fine and the effective interfacial area is extremely large, the reduction reaction in the vicinity of the hot spot region is significantly promoted.
【0014】また、これらの場合において低部より供給
される不活性ガス流量としては、0.03〜0.17
(NL/min・ton)の範囲が望ましい。具体的に
は、真空度を50Torr以上の高真空とし、精錬用酸
素ガスに酸素/Ar比が3.0〜0.2となるような比
率でArガスを混合し、かつ酸素ガス吹付け速度を気泡
活性面当り0.04〜0.40(Nm3 /hr・c
m2 )、気泡活性面積が全溶鋼表面積の10%以上、か
つ酸素ガス吹付け面の100%以上とすることにより、
上記の効果が最も顕著となる。In these cases, the flow rate of the inert gas supplied from the lower part is 0.03 to 0.17.
A range of (NL / min · ton) is desirable. Specifically, the degree of vacuum is set to a high vacuum of 50 Torr or more, the refining oxygen gas is mixed with Ar gas in a ratio such that the oxygen / Ar ratio is 3.0 to 0.2, and the oxygen gas blowing rate is 0.04 to 0.40 (Nm 3 / hr · c
m 2 ), the bubble active area is 10% or more of the total molten steel surface area and 100% or more of the oxygen gas sprayed surface,
The above effect is most remarkable.
【0015】このうち、真空度が50Torr未満の低
真空であると、Pcoそのものの低下効果および気泡活性
面の破泡効果が十分でないことに起因して、火点域での
還元が促進され得ないという問題がある。さらに、酸素
/Ar比が3.0より大きな場合には、火点域でのAr
による希釈効果が不十分であることに起因して、Pcoの
低下効果が得られず、逆に0.2より小さな場合にはA
rガスにより火点部が冷却され、火点温度が低下するこ
とにより、火点反応の効果そのものが小さくなってしま
うことになる。Among these, if the degree of vacuum is a low vacuum of less than 50 Torr, reduction in the hot spot region is promoted due to insufficient reduction of P co itself and insufficient bubble breaking effect of the bubble active surface. There is a problem of not getting. Furthermore, when the oxygen / Ar ratio is greater than 3.0, Ar in the flash point region
Due to the insufficient diluting effect due to, the effect of lowering P co cannot be obtained, and conversely when it is less than 0.2, A
Since the hot spot is cooled by the r gas and the hot spot temperature is lowered, the effect itself of the hot spot reaction becomes small.
【0016】さらに、酸素ガスの気泡活性面当りの吹付
け速度が0.04(Nm3 /hr・cm2 )未満の場合
には酸素供給速度そのものが遅いために、処理時間が長
くなって生産性を著しく阻害してしまうことになり、
0.40(Nm3 /hr・cm 2 )を超える場合には酸
素供給速度そのものが過剰なため、クロム酸化物の生成
量が増大し、脱炭酸素効率の低下を招くといった問題が
生じる。Further, spraying of oxygen gas per bubble active surface
The speed is 0.04 (Nm3/ Hr · cm2Less than)
Since the oxygen supply rate itself is slow,
Will significantly hinder productivity,
0.40 (Nm3/ Hr · cm 2) Is exceeded
Chromium oxide is generated due to excessive supply rate
There is a problem that the amount increases and the decarboxylation efficiency decreases.
Occurs.
【0017】また、気泡活性面が全溶鋼表面積の10%
より小さな場合には、還元反応サイトそのものの不足か
ら反応効率の低下を招くことになり、さらに気泡活性面
積が酸素吹付け面積の100%未満であると、クロム酸
化物の生成サイトが気泡活性面以外となる領域が生じ、
生成したクロム酸化物が微細化せずに合体成長し、吹酸
火点域での還元効率が低下するといった問題を生じるこ
とになる。The bubble active surface is 10% of the total molten steel surface area.
If it is smaller, the reduction of the reduction reaction site itself leads to a decrease in reaction efficiency. Further, if the bubble active area is less than 100% of the oxygen spraying area, the chromium oxide generation site becomes a bubble active surface. There is an area other than
The generated chromium oxide grows in a united state without being miniaturized, and there arises a problem that the reduction efficiency in the blowing acid hot spot region decreases.
【0018】ここで、処理中の真空度が50Torr以
上の高真空であることに起因して、特に処理開始時に大
量のスプラッシュを伴った過剰な反応(突沸現象)が生
じることがあるが、本発明では、フリーボード制約がな
いため、突沸が発生しても操業上は何ら支障を生じるこ
とはない。Here, an excessive reaction (bumping phenomenon) accompanied by a large amount of splash may occur especially at the start of the treatment due to the high vacuum of 50 Torr or more during the treatment. In the invention, since there is no freeboard restriction, there is no problem in operation even if bumping occurs.
【0019】[0019]
【実施例】実施例は175トン規模の真空脱ガス装置を
用いて行った。転炉にて〔%C〕が約0.7%、〔C
r〕を5%以上(主に10〜20%)含まれる溶鋼を溶
製した後、図1に示した形状の真空脱ガス炉にて、〔%
C〕=0.01%まで吹酸脱炭精錬を実施した。また、
このときの低部からの不活性ガス供給速度は一律、0.
07(NL/min・ton)で行った。結果を表1お
よび表2(表1のつづき)に示す。EXAMPLES The examples were carried out using a 175 ton scale vacuum degasser. In the converter, [% C] is about 0.7%, [C
r] in an amount of 5% or more (mainly 10 to 20%) is melted, and then [%] in a vacuum degassing furnace having the shape shown in FIG.
C] = 0.01%, and blown acid decarburization refining was implemented. Also,
At this time, the inert gas supply rate from the lower part is uniformly 0.
It carried out at 07 (NL / min * ton). The results are shown in Table 1 and Table 2 (continued from Table 1).
【0020】[0020]
【表1】 [Table 1]
【0021】[0021]
【表2】 [Table 2]
【0022】試験番号1〜8は本発明による実施例であ
る。これに対して、試験番号9は真空度が低い場合であ
るが、Pco低下効果が不十分であることに起因して、脱
炭酸素効率が低く、クロム酸化ロスも多大である。ま
た、試験番号10は酸素/Ar比率が高い場合および試
験番号13は気泡活性面当りの酸素供給量が過大な場合
であり、これらの場合は酸素供給が過剰になるため、ク
ロム酸化ロスが多大となる。逆に、試験番号11は酸素
/Ar比率が低い場合であるが、この場合には火点冷却
による温度低下のためPcoが低下せず、クロム酸化ロス
の増大を引き起こすことになる。さらに、試験番号12
は気泡活性面当りの酸素供給量が過少な場合であるが、
この場合には酸素供給量そのものが不足してしまうた
め、処理に長時間を要し、生産性の低下を招くことにな
る。さらに、試験番号14、15は気泡活性面の形成そ
のものが不足してしまうため、脱炭酸素効率が低く、ク
ロム酸化ロスも多大となってしまう。Test numbers 1 to 8 are examples according to the present invention. On the other hand, Test No. 9 shows a case where the degree of vacuum is low, but the decarboxylation efficiency is low and the chromium oxidation loss is large due to the insufficient effect of lowering P co . Further, Test No. 10 is when the oxygen / Ar ratio is high and Test No. 13 is when the oxygen supply amount per bubble active surface is excessive. In these cases, the oxygen supply becomes excessive, resulting in a large chromium oxidation loss. Becomes On the contrary, Test No. 11 is a case where the oxygen / Ar ratio is low, but in this case, P co does not decrease due to the temperature decrease due to the hot spot cooling, which causes an increase in chromium oxidation loss. Furthermore, test number 12
Is the case where the oxygen supply amount per bubble active surface is too small,
In this case, since the oxygen supply amount itself becomes insufficient, it takes a long time to perform the treatment, resulting in a decrease in productivity. Further, in Test Nos. 14 and 15, the formation of the bubble active surface itself is insufficient, so that the decarboxylation efficiency is low and the chromium oxidation loss is large.
【0023】従って、表1および表2より明らかなよう
に、本発明が反応界面のPco低下と気泡活性面の形成に
よる還元反応サイト増大の相乗効果により、脱炭酸素効
率を高位に保つ方法として優れた方法であることがわか
る。Therefore, as is clear from Tables 1 and 2, the method of the present invention keeps the efficiency of decarboxylation at a high level by the synergistic effect of the decrease of P co at the reaction interface and the increase of the reduction reaction site due to the formation of the bubble active surface. It turns out that this is an excellent method.
【0024】[0024]
【発明の効果】本発明により、操業性を阻害することな
く、脱炭酸素効率を高位に維持したステンレス鋼の仕上
脱炭精錬を行うことが可能になり、しかもクロム酸化が
少なく、安定した精錬が達成された。Industrial Applicability According to the present invention, it becomes possible to carry out finish decarburization refining of stainless steel which maintains the decarboxylation efficiency at a high level without impairing operability, and moreover, stable refining with less chromium oxidation. Was achieved.
【図1】本発明による精錬方法の態様の一例を示す図で
ある。FIG. 1 is a diagram showing an example of an aspect of a refining method according to the present invention.
【図2】酸素/Ar混合比と脱炭酸素効率の関係を示す
図である。FIG. 2 is a diagram showing the relationship between the oxygen / Ar mixing ratio and the decarboxylation efficiency.
1 取鍋 2 浸漬管 3 ポーラスプラグ 4 含クロム溶鋼 5 不活性ガス 6 上吹きランス 7 酸素/Ar混合ガス 1 Ladle 2 Dipping pipe 3 Porous plug 4 Molten chromium-containing steel 5 Inert gas 6 Top blowing lance 7 Oxygen / Ar mixed gas
Claims (1)
型浸漬管を浸漬し、該浸漬管内を減圧するとともに、取
鍋低部より攪拌用ガスを供給し、かつ炭素濃度が1.0
〜0.01%の範囲で、上方より酸素ガス吹付けを行う
真空脱炭精錬において、真空度を50Torr以上の高
真空とし、精錬用酸素ガスに酸素/Ar比が3.0〜
0.2となる比率でArガスを混合し、かつ酸素ガス吹
付け速度を気泡活性面当り0.04〜0.40(Nm3
/hr・cm2 )、気泡活性面積が全溶鋼表面積の10
%以上、かつ酸素ガス吹付け面の100%以上とするこ
とを特徴とするステンレス鋼の仕上脱炭精錬方法。1. A straight-body type immersion pipe is immersed in molten steel in a ladle having a Cr concentration of 5% or more, the interior of the immersion pipe is decompressed, and a stirring gas is supplied from the lower part of the ladle, and the carbon concentration is low. 1.0
In the vacuum decarburization refining in which the oxygen gas is blown from above, the degree of vacuum is set to a high vacuum of 50 Torr or more, and the oxygen gas for refining has an oxygen / Ar ratio of 3.0 to 0.01%.
Ar gas was mixed at a ratio of 0.2 and the oxygen gas spraying rate was 0.04 to 0.40 (Nm 3
/ Hr · cm 2 ), bubble active area is 10 of total molten steel surface area
%, And 100% or more of the oxygen gas sprayed surface, a method for finishing decarburization and refining of stainless steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24983494A JPH08109410A (en) | 1994-10-14 | 1994-10-14 | Finish decarburization refining of stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24983494A JPH08109410A (en) | 1994-10-14 | 1994-10-14 | Finish decarburization refining of stainless steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08109410A true JPH08109410A (en) | 1996-04-30 |
Family
ID=17198883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24983494A Withdrawn JPH08109410A (en) | 1994-10-14 | 1994-10-14 | Finish decarburization refining of stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08109410A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030053582A (en) * | 2001-12-22 | 2003-07-02 | 주식회사 포스코 | Reduction of chromium oxide in Vacuum Oxygen decarburization process |
CN100439538C (en) * | 2007-02-15 | 2008-12-03 | 刘巍 | Process of producing iron alloy with low carbon and manganese |
CN103509913A (en) * | 2013-09-03 | 2014-01-15 | 西安前沿重型工业工程技术有限公司 | Argon-blowing oxygen-blowing molten steel refining apparatus with vacuum cap |
CN106811575A (en) * | 2015-12-02 | 2017-06-09 | 鞍钢股份有限公司 | Device for improving yield of aluminum after converter and using method |
-
1994
- 1994-10-14 JP JP24983494A patent/JPH08109410A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030053582A (en) * | 2001-12-22 | 2003-07-02 | 주식회사 포스코 | Reduction of chromium oxide in Vacuum Oxygen decarburization process |
CN100439538C (en) * | 2007-02-15 | 2008-12-03 | 刘巍 | Process of producing iron alloy with low carbon and manganese |
CN103509913A (en) * | 2013-09-03 | 2014-01-15 | 西安前沿重型工业工程技术有限公司 | Argon-blowing oxygen-blowing molten steel refining apparatus with vacuum cap |
CN106811575A (en) * | 2015-12-02 | 2017-06-09 | 鞍钢股份有限公司 | Device for improving yield of aluminum after converter and using method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2201364C (en) | Vacuum refining method for molten steel | |
JP2018016843A (en) | Method for melting extra-low-sulfur low-nitrogen steel | |
JPH08109410A (en) | Finish decarburization refining of stainless steel | |
JP2000073116A (en) | Production of high clean extra-low sulfur steel | |
JP2767674B2 (en) | Refining method of high purity stainless steel | |
JP2582316B2 (en) | Melting method of low carbon steel using vacuum refining furnace | |
JP2724035B2 (en) | Vacuum decarburization of molten steel | |
JPH05214430A (en) | Method for vacuum-refining molten steel | |
CN1316045C (en) | Refining method and refining appts. of moten steel | |
JP2728184B2 (en) | Oxygen top-blowing vacuum decarburization of molten steel | |
JPH0153329B2 (en) | ||
JP3153983B2 (en) | Melting method for high purity stainless steel | |
JP2648769B2 (en) | Vacuum refining method for molten steel | |
JPH05311231A (en) | Refining method of high purity steel using circulating type vacuum degassing device | |
JP2819440B2 (en) | Method for decarburizing molten steel containing extremely low carbon chromium | |
JPH01156416A (en) | Method for decarburizing high-chromium steel having excellent decarburizing characteristic under reduced pressure | |
JP3706451B2 (en) | Vacuum decarburization method for high chromium steel | |
JPH09287016A (en) | Method for melting stainless steel | |
JP2795597B2 (en) | Vacuum degassing and decarburization of molten stainless steel | |
JPH06212241A (en) | Method for vacuum-refining molten steel by using large diameter immersion tube | |
JPH06116627A (en) | Production of ultra low nitrogen steel | |
JPH0649528A (en) | Vacuum decarburization refining method of extra-low carbon steel | |
JPH05311227A (en) | Reduced pressure-vacuum degassing refining method for molten metal | |
GB1569158A (en) | Methods of and apparatus for vacuum refining molten steel | |
JPH1150133A (en) | Degassing-refining stainless steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020115 |