JPH08104933A - Titanium aluminide base composite material - Google Patents
Titanium aluminide base composite materialInfo
- Publication number
- JPH08104933A JPH08104933A JP26092494A JP26092494A JPH08104933A JP H08104933 A JPH08104933 A JP H08104933A JP 26092494 A JP26092494 A JP 26092494A JP 26092494 A JP26092494 A JP 26092494A JP H08104933 A JPH08104933 A JP H08104933A
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- tial
- matrix
- fiber
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は極超音速機や航空宇宙機
器用エンジン及び原動機等に適用される耐熱高強度タイ
プのチタンアルミナイド基複合材料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant and high-strength type titanium aluminide matrix composite material applied to hypersonic aircraft, aerospace equipment engines and prime movers.
【0002】[0002]
【従来の技術】従来、γタイプTiAlの軽量・耐熱性
に注目し、それをマトリックスとする複合材料の開発が
数多くなされてきた。その複合材料の強化繊維として
は、Al2 O3 繊維、SiC系繊維が主で、W繊維を用
いたものはなく、また、これらの繊維とマトリックスの
複合化に成功したものはない。2. Description of the Related Art Heretofore, attention has been paid to the light weight and heat resistance of γ-type TiAl, and a lot of composite materials using it as a matrix have been developed. Al 2 O 3 fibers and SiC-based fibers are mainly used as the reinforcing fibers of the composite material, there is no one using W fibers, and no one has succeeded in forming a composite of these fibers and a matrix.
【0003】[0003]
【発明が解決しようとする課題】γタイプTiAl(金
属間化合物)をマトリックスとする複合材料では、その
複合化成形時または高温での使用時に強化材の繊維とマ
トリックスのγタイプTiAlの界面で過度の反応が生
じる。その結果、繊維が劣化したり、界面に脆性な反応
生成相が生成され繊維とマトリックスの界面やマトリッ
クス中にクラックが生じる等健全な複合材を得ることが
できない。このように繊維とマトリックスの界面で界面
反応が過度に生じ健全な複合材(複合化成形体)が得ら
れないことを繊維とマトリックスの適合性が悪いとい
う。In the case of a composite material using γ-type TiAl (intermetallic compound) as a matrix, it is excessive at the interface between the fiber of the reinforcing material and the γ-type TiAl of the matrix during its composite molding or use at high temperature. Occurs. As a result, it is not possible to obtain a sound composite material in which the fiber is deteriorated or a brittle reaction product phase is generated at the interface to cause cracks in the interface between the fiber and the matrix or in the matrix. It is said that the compatibility between the fiber and the matrix is poor because the interface reaction excessively occurs at the interface between the fiber and the matrix and a sound composite material (composite molded body) cannot be obtained.
【0004】従って、健全な複合材を得るためにはマト
リックスのγタイプTiAlとの適合性に優れる強化繊
維を選ぶ必要がある。従来、γタイプTiAlマトリッ
クスに対しては、最も適合性が優れる繊維としてSiC
系繊維が主に強化材として用いられ、試作研究が行われ
てきた。しかし、複合化成形体の金属と繊維の断面ミク
ロ組織を示す図3の顕微鏡写真(倍率:100倍)に示
すようにSiC系繊維(図2中の円形部分)とγタイプ
TiAl(図2中の白っぽい部分)複合化成形体には、
界面を起点としたクラック(黒色曲線部分)がマトリッ
クに進展し健全な複合材とはならない。また、その繊維
とマトリックスの界面のEPMA分析結果を図4に示す
が、この界面においては、マトリックスの構成元素であ
るTiおよびAlが繊維表面のカーボン層に拡散してお
り、かつ繊維表面のカーボンがマトリックス中に拡散し
ていることがわかる。さらに、成形体のX線回折像を図
5に示すが、この界面での反応生成物はTiCが主であ
り、このことより界面反応はマトリックスのTiと繊維
表面のカーボンとによるTiC生成反応が主であること
がわかる。Therefore, in order to obtain a sound composite material, it is necessary to select a reinforcing fiber having excellent compatibility with the γ type TiAl of the matrix. Conventionally, SiC is the most suitable fiber for γ-type TiAl matrix.
Fibers have mainly been used as reinforcements, and trial research has been conducted. However, as shown in the micrograph (magnification: 100 times) of FIG. 3 showing the cross-sectional microstructure of the metal and fiber of the composite molded body, the SiC-based fiber (circular portion in FIG. 2) and γ-type TiAl (in FIG. 2) The whitish part) In the composite molded body,
A crack (black curve part) starting from the interface propagates in a matrix and does not form a sound composite material. Further, the EPMA analysis result of the interface between the fiber and the matrix is shown in FIG. 4. At this interface, Ti and Al, which are the constituent elements of the matrix, are diffused in the carbon layer on the fiber surface, and the carbon on the fiber surface is It can be seen that are dispersed in the matrix. Further, an X-ray diffraction image of the molded body is shown in FIG. 5. The reaction product at this interface is mainly TiC, which indicates that the interfacial reaction is TiC formation reaction between Ti in the matrix and carbon on the fiber surface. It turns out to be the Lord.
【0005】以上のことより、SiC系繊維とγタイプ
TiAlの複合材では界面反応が過度に生じ、界面に脆
化相(TiCは脆い)が生じる。つまり、化学的適合性
が劣る。そのため、成形体(複合材)にクラックが生じ
健全な成形体が製造できない。From the above, interfacial reaction occurs excessively in the composite material of SiC fiber and γ-type TiAl, and an embrittlement phase (TiC is brittle) occurs at the interface. That is, the chemical compatibility is poor. Therefore, the molded body (composite material) is cracked and a sound molded body cannot be manufactured.
【0006】本発明は上記技術水準に鑑み、マトリック
スのγタイプTiAlとの適合性に優れたチタンアルミ
ナイド基複合材料を提供しようとするものである。In view of the above-mentioned state of the art, the present invention aims to provide a titanium aluminide-based composite material having excellent compatibility with γ-type TiAl of the matrix.
【0007】[0007]
【課題を解決するための手段】γタイプTiAlとの適
合性に優れる強化繊維を見い出すためγタイプTiAl
の複合化成形(拡散接合)温度、成形時間、成形圧力で
種々の繊維とγタイプTiAlとの複合化成形(拡散接
合)試験を行った。その結果、タングステン繊維が高温
での引張強度が高く、しかもγタイプTiAlとは界面
反応が少なく適合性に優れることの知見を得、本発明は
この知見に基づいて完成されたものである。In order to find a reinforcing fiber having excellent compatibility with γ-type TiAl, γ-type TiAl
The composite molding (diffusion bonding) test of various fibers and γ-type TiAl was performed at the composite molding (diffusion bonding) temperature, molding time, and molding pressure. As a result, it has been found that the tungsten fiber has high tensile strength at high temperature and has little interfacial reaction with γ-type TiAl and excellent compatibility, and the present invention has been completed based on this finding.
【0008】すなわち、本発明はタングステン繊維を強
化材とし、γタイプのTiAlをマトリックスとしてな
ることを特徴とするチタンアルミナイド基複合材料であ
る。That is, the present invention is a titanium aluminide matrix composite material characterized by using tungsten fiber as a reinforcing material and γ type TiAl as a matrix.
【0009】本発明のγタイプTiAl中のタングステ
ン繊維の含有率(Vf)は5〜60%の範囲が好まし
い。The tungsten fiber content (Vf) in the γ-type TiAl of the present invention is preferably in the range of 5 to 60%.
【0010】本発明において用いられるタングステン繊
維としては、純タングステン(W)にThO2 ,HfC
などを含有させた繊維、W−Re合金にThO2 ,Hf
Cなどを含有させた繊維や純タングステンにAl2 O3
などを含有したドープドタングステン繊維などがあげら
れる。The tungsten fibers used in the present invention include pure tungsten (W), ThO 2 , and HfC.
Such as a fiber containing Wo-Re alloy with ThO 2 , Hf
Al 2 O 3 is added to the fibers and pure tungsten containing C etc.
Examples include doped tungsten fibers containing the above.
【0011】また本発明でいうTiAlは金属間化合物
であり、Ti3 Al(α2)、TiAl(γ)、TiA
l3 の3種類があり、そのうちTiAlの結晶構造はL
I0型であり、γTiAlと呼ばれているものである。
しかしながら、γTiAlは室温の延性が乏しい、高温
強度が必ずしも十分でないなどの欠点があり、それらの
欠点を改善するためにNb,Cr,Mn,W,Taなど
の種々の元素を添加している。さらにγTiAl単相の
ものは現実的には殆んど用いられることはなく、通常α
2(DO19型の結晶構造を有する)やβ相(b,C,C
又はBCTの結晶構造を有する。これは金属間化合物で
はない)も混合したものが殆んどである。一般的にγT
iAlのAl量は43〜53%(atomic%)であ
る。TiAl in the present invention is an intermetallic compound, and includes Ti 3 Al (α2), TiAl (γ) and TiA.
There are three types of l 3, of which the crystal structure of the TiAl L
It is of the I 0 type and is called γTiAl.
However, γTiAl has drawbacks such as poor ductility at room temperature and insufficient high temperature strength, and various elements such as Nb, Cr, Mn, W and Ta are added to improve these drawbacks. Further, the γTiAl single phase is practically hardly used, and normally α
2 (having a DO 19 type crystal structure) and β phase (b, C, C
Alternatively, it has a BCT crystal structure. This is not an intermetallic compound), but most of them are also mixed. Generally γT
The Al content of iAl is 43 to 53% (atomic%).
【0012】そこで本発明で使用するTiAlは金属学
的のγTiAlとせず、わざわざγタイプTiAlと特
定したものである。従って本発明においていうγタイプ
TiAlはγTiAlを主成分とするチタンアルミナイ
ドであり、上述した種々の元素及び化合物を含むものと
定義される。Therefore, the TiAl used in the present invention is purposely specified as γ-type TiAl, not γTiAl which is metallurgical. Therefore, the γ-type TiAl in the present invention is a titanium aluminide containing γTiAl as a main component, and is defined as containing the above-mentioned various elements and compounds.
【0013】[0013]
【作用】タングステン繊維はγタイプTiAlと適合性
が優れているため、複合化すれば健全な複合材を得るこ
とができる。Since tungsten fiber has excellent compatibility with γ-type TiAl, a sound composite material can be obtained by compounding.
【0014】[0014]
【実施例】直径0.1mmのドープドタングステン繊維
(商標:AW東京タングステン(株))を直径500m
mのドラム上にピッチ約0.15mmで巻きつけ、この
巻きつけたタングステン繊維上にγタイプTiAlマト
リックスとなるTi−46Al−2Cr−2Nb(at
omic%)のPREP粉末(プラズマ電極回転法で作
られた粉末)を低圧プラズマ溶射にて溶射し、溶射プリ
フォームを製造する。Ti−46Al−2Cr−2Nb
を溶射する溶射条件の一例を表1に示す。Example A doped tungsten fiber having a diameter of 0.1 mm (trademark: AW Tokyo Tungsten Co., Ltd.) having a diameter of 500 m is used.
A pitch of about 0.15 mm is wound around a drum of m, and a Ti-46Al-2Cr-2Nb (at
MIC%) PREP powder (powder made by plasma electrode rotation method) is sprayed by low pressure plasma spraying to manufacture a sprayed preform. Ti-46Al-2Cr-2Nb
Table 1 shows an example of thermal spraying conditions for thermal spraying.
【0015】[0015]
【表1】 [Table 1]
【0016】次に、上記溶射プリフォームをドラムから
はずし、4層積層し、その積層体の両表面をTi−26
Al−11Nb(atomic%:このものはTi3 A
lタイプα2である)(商標:ALPHA−2)のシー
ト材(厚さ:約100μm)でサンドイッチする。この
シート材で被覆するのは溶射プリフォームの積層体の繊
維が露出するのを防ぐためである。なおTi3 Alタイ
プα2を用いたのは前述したようにγタイプTiAlは
室温延性に問題があり、シート材にするのが困難なた
め、入手が不可能であったからである。このサンドイッ
チした積層体を温度:1050℃、圧力:1500at
m、時間:120分でHIPし、複合化一体化した。Next, the above-mentioned thermal spray preform was removed from the drum and four layers were laminated, and both surfaces of the laminate were Ti-26.
Al-11Nb (atomic%: This is Ti 3 A
It is sandwiched with a sheet material (thickness: about 100 μm) (trademark: ALPHA-2, which is a type I α2). The coating with this sheet material is to prevent the fibers of the laminate of the thermal spray preform from being exposed. The Ti 3 Al type α2 was used because the γ type TiAl had a problem in room temperature ductility as described above, and it was difficult to obtain a sheet material, so that it was not available. This sandwiched laminate was heated at a temperature of 1050 ° C. and a pressure of 1500 at.
m, time: 120 minutes for HIP, and composited and integrated.
【0017】図1にその成形体(複合材料)の前記図2
と同様の)断面ミクロ組織を示す。図1よりわかるよう
に、マトリックスにクラックのない健全な成形体(複合
材料)が得られた。また、その界面のEPMA分析結果
を図2に示すが、これより、本発明の複合材料の界面に
おいては、界面反応がないか、または極めて小さいもの
であることがわかる。この成形体(複合材料)は100
0℃で57kgf/mm2 と高い値を示し、タングステ
ン繊維による強化は明らかである(γタイプTiAlの
1000℃における強度は約20kgf/mm2 であ
る。)。FIG. 1 shows the molded body (composite material) of FIG.
Cross section microstructure (similar to). As can be seen from FIG. 1, a sound molded body (composite material) having no crack in the matrix was obtained. Further, the EPMA analysis result of the interface is shown in FIG. 2, and it can be seen from this that the interface of the composite material of the present invention has no interface reaction or is extremely small. This molded body (composite material) is 100
It shows a high value of 57 kgf / mm 2 at 0 ° C, and the strengthening by the tungsten fiber is clear (the strength of γ-type TiAl at 1000 ° C is about 20 kgf / mm 2 ).
【0018】[0018]
【発明の効果】タングステン繊維はγタイプTiAlと
適合性が優れるため過度の界面反応を生じることなく、
クラックのない健全な成形体(複合材料)を得ることが
できる。EFFECTS OF THE INVENTION Tungsten fiber has excellent compatibility with γ-type TiAl and therefore does not cause excessive interfacial reaction.
A sound molded body (composite material) without cracks can be obtained.
【図1】本発明の一実施例のW繊維強化γタイプTiA
l基複合材の金属と繊維の断面ミクロ組織を示す顕微鏡
写真。FIG. 1 is a W fiber reinforced γ type TiA according to an embodiment of the present invention.
The micrograph which shows the cross-section microstructure of the metal and fiber of a l-base composite material.
【図2】本発明の上記実施例の複合材の繊維とマトリッ
クス界面でのEPMA線分析図表。FIG. 2 is an EPMA line analysis chart at a fiber / matrix interface of the composite material of the above-described embodiment of the present invention.
【図3】従来のSiC系繊維強化γタイプTiAl基複
合材の金属と繊維の断面ミクロ組織を示す顕微鏡写真。FIG. 3 is a micrograph showing a cross-sectional microstructure of a metal and a fiber of a conventional SiC-based fiber-reinforced γ-type TiAl-based composite material.
【図4】上記従来の複合材の繊維とマトリックス界面で
のEPMA線分析図表。FIG. 4 is an EPMA line analysis chart at the fiber / matrix interface of the conventional composite material.
【図5】上記従来複合材のX線回折像を示す図表。FIG. 5 is a chart showing an X-ray diffraction image of the conventional composite material.
Claims (1)
プのTiAlをマトリックスとしてなることを特徴とす
るチタンアルミナイド基複合材料。1. A titanium aluminide-based composite material comprising tungsten fiber as a reinforcing material and γ-type TiAl as a matrix.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26092494A JPH08104933A (en) | 1994-10-03 | 1994-10-03 | Titanium aluminide base composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26092494A JPH08104933A (en) | 1994-10-03 | 1994-10-03 | Titanium aluminide base composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08104933A true JPH08104933A (en) | 1996-04-23 |
Family
ID=17354661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26092494A Pending JPH08104933A (en) | 1994-10-03 | 1994-10-03 | Titanium aluminide base composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08104933A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016519303A (en) * | 2013-04-22 | 2016-06-30 | スネクマ | Method for analyzing fracture surfaces of turbine engine components |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01129938A (en) * | 1987-11-16 | 1989-05-23 | Mitsubishi Heavy Ind Ltd | Composite material and its manufacture |
JPH0225534A (en) * | 1988-06-03 | 1990-01-29 | General Electric Co <Ge> | Titanium-aluminum alloy |
JPH03104833A (en) * | 1989-07-03 | 1991-05-01 | General Electric Co <Ge> | Gamma-titanium-aluminum alloy modified with chrome and tantalum and its manufacture |
JPH03115539A (en) * | 1989-07-28 | 1991-05-16 | General Electric Co <Ge> | Gamma-titanium-aluminium alloy reformed with carbon, chromium and niobium |
-
1994
- 1994-10-03 JP JP26092494A patent/JPH08104933A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01129938A (en) * | 1987-11-16 | 1989-05-23 | Mitsubishi Heavy Ind Ltd | Composite material and its manufacture |
JPH0225534A (en) * | 1988-06-03 | 1990-01-29 | General Electric Co <Ge> | Titanium-aluminum alloy |
JPH03104833A (en) * | 1989-07-03 | 1991-05-01 | General Electric Co <Ge> | Gamma-titanium-aluminum alloy modified with chrome and tantalum and its manufacture |
JPH03115539A (en) * | 1989-07-28 | 1991-05-16 | General Electric Co <Ge> | Gamma-titanium-aluminium alloy reformed with carbon, chromium and niobium |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016519303A (en) * | 2013-04-22 | 2016-06-30 | スネクマ | Method for analyzing fracture surfaces of turbine engine components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4847044A (en) | Method of fabricating a metal aluminide composite | |
US4499156A (en) | Titanium metal-matrix composites | |
JPH04362147A (en) | Method of forming metal matrix composite by transition liquid phase strengthening | |
US5104460A (en) | Method to manufacture titanium aluminide matrix composites | |
US5030277A (en) | Method and titanium aluminide matrix composite | |
US5426000A (en) | Coated reinforcing fibers, composites and methods | |
US4141726A (en) | Method for producing composite materials consisting of continuous silicon carbide fibers and beryllium | |
JPH01215937A (en) | Heat resistant composite material | |
JPH08104933A (en) | Titanium aluminide base composite material | |
Jeng et al. | Effect of fiber coating on the mechanical behavior of SiC fiber-reinforced titanium aluminide composites | |
Petrasek et al. | Tungsten‐Fiber‐Reinforced Superalloys—A Status Review | |
Kreider et al. | Boron-reinforced aluminum | |
US5879760A (en) | Titanium aluminide articles having improved high temperature resistance | |
US5508115A (en) | Ductile titanium alloy matrix fiber reinforced composites | |
US5118025A (en) | Method to fabricate titanium aluminide matrix composites | |
JPH0568530B2 (en) | ||
Waku et al. | Future trends and recent developments of fabrication technology for advanced metal matrix composites | |
Lloyd | Fabrication of fibre composites using an aluminium superplastic alloy as matrix | |
JPH0959074A (en) | Production of combination of ceramic member with aluminum member | |
JPH06192818A (en) | Sic fiber reinforced ti-al composite material | |
Hebsur | Studies on tungsten (WHfC) filament-reinforced NbAl3-base alloy | |
JPH01230738A (en) | Aluminum alloy composite material | |
Sandhu et al. | Interfacial studies in titanium aluminide/SiCf composites | |
JPH01301827A (en) | Manufacture of hybrid material | |
JPH08311585A (en) | Fe-and v-containing titanium aluminide for precision casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19980407 |